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Deep Fully Convolutional Networks for the
Detection of Informal Settlements
in VHR Images

Claudio Persello

Abstract—This letter investigates fully convolutional net-
works (FCNs) for the detection of informal settlements in
very high resolution (VHR) satellite images. Informal settle-
ments or slums are proliferating in developing countries and their
detection and classification provides vital information for decision
making and planning urban upgrading processes. Distinguishing
different urban structures in VHR images is challenging because
of the abstract semantic definition of the classes as opposed to
the separation of standard land-cover classes. This task requires
extraction of texture and spatial features. To this aim, we intro-
duce deep FCNs to perform pixel-wise image labeling by auto-
matically learning a higher level representation of the data. Deep
FCNs can learn a hierarchy of features associated to increasing
levels of abstraction, from raw pixel values to edges and corners
up to complex spatial patterns. We present a deep FCN using
dilated convolutions of increasing spatial support. It is capable of
learning informative features capturing long-range pixel depen-
dencies while keeping a limited number of network parameters.
Experiments carried out on a Quickbird image acquired over the
city of Dar es Salaam, Tanzania, show that the proposed FCN
outperforms state-of-the-art convolutional networks. Moreover,
the computational cost of the proposed technique is significantly
lower than standard patch-based architectures.

Index Terms— Convolutional neural networks (CNNs), deep
learning, image classification, informal settlements, very high
resolution (VHR) satellite imagery.

I. INTRODUCTION

NFORMAL settlements are a global urban phenomenon.

According to UN-Habitat, the United Nations (UN) pro-
gram for human settlements, informal settlements (or slums)
are residential areas that: 1) lack legal tenure; 2) may not
comply with building regulations; and 3) are usually charac-
terized by dense substandard housing, poor living conditions,
and deficiency in basic services and city infrastructure [1].
According to UN statistics, around one-quarter of the world
urban population lives in slums and this proportion rises to
56% in sub-Saharan Africa [2].

Since the availability of very high resolution (VHR)
satellite images, remote sensing (RS) has been used for
mapping location and extent of informal settlements, provid-
ing essential information for managing and planning urban
upgrading projects [3]. Formal and informal settlements can
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Fig. 1. Subset of the Quickbird data set considered in this letter illustrating
different urban structures in Dar es Salaam: 1) formal urban area in the top
and 2) an informal settlement in the bottom of the image.

be distinguished in VHR images based upon physical and
morphological characteristics of the urban structure. Slums
are usually densely built-up areas characterized by irregular
layout of buildings and almost no presence of vegetation.
Fig. 1 shows an example of formal and informal settlements
in Dar es Salaam. The detection of slums in VHR images
is, however, a difficult task. The spectral information alone
is insufficient for discriminating different urban typologies.
In order to accurately distinguish informal settlements from
other built-up areas, it is necessary to extract spatial features
capable of capturing long-range pixel dependency in the
image. State-of-the-art methods are based on the extraction of
features specifically designed to address the problem at hand.
Popular choices are texture statistics, local binary patterns,
morphological profiles, oriented gradients, wavelet transforms,
and segment-based features. These methods depend on several
free parameters, which are usually set according to user
experience or by trial and error. An exhaustive optimization
of those parameter values is computationally costly, especially
when large spatial neighborhoods are considered.

Deep learning methods such as convolutional neural net-
works (CNNs) can overcome the above-mentioned issue
by automatically learning spatial features from the input
image [4]. CNNs are composed of a sequence of processing
layers that perform three main operations: 1) 2-D convo-
lutions; 2) unit-wise nonlinear activations; and 3) spatial
pooling with subsampling. Weights and biases of the convo-
lution operations are parameters learned through a supervised
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learning process in order to minimize the classification error.
Standard architectures use a series of convolutional layers
to extract feature maps, which are then flattened into a 1-D
vector and fed to a fully connected network. The convolutional
layers are responsible for learning the spatial features, whereas
the fully connected layers learn the classification rule to
be applied to the extracted feature vector. The network is
trained in an end-to-end fashion; hence, feature extraction and
classification occur simultaneously in a single framework. This
approach has shown to be effective in various computer vision
tasks, including multimedia image classification where one
label is assigned to the entire input scene. Deep CNNs have
been successfully applied to image categorization benchmarks,
considerably outperforming techniques based on hand-crafted
features.

CNNs have also been adapted to perform pixel-wise image
classification, also known as semantic segmentation. The stan-
dard patch-based approach consists in training the CNN to
label the central pixel of patches extracted from the input
image [5]. This, however, results in redundant processing
at inference time and therefore in high computational cost
when applied to large RS images. In this letter, we adopt
fully convolutional networks (FCNs), which are trained to
infer pixel-wise labels of the entire input image or patch
directly. In these networks, the fully connected layers are
usually substituted by one or multiple layers that upsample
the feature maps extracted by the convolutional layers to the
resolution of the input image [6]-[8]. Shelhamer et al. [6]
adapted contemporary CNNs into FCNs and fine-tuned them
to address semantic segmentation. In [7] and [8], architectures
with multiple deconvolution and unpooling layers have been
adopted. In the context of RS, similar FCN architectures based
on a downsample-then-upsample scheme have been applied to
the classification of aerial [9] and satellite images [10].

In this letter, we introduce deep FCNs for the detection
of informal settlements in VHR images. We design a novel
architecture using six layers of dilated convolutions interleaved
by max pooling with no downsampling and nonlinear activa-
tion functions. Such a network does not require deconvolu-
tion or upsampling modules, because every layer is designed to
output feature maps of the same spatial resolution of the input
image. In order to capture large patterns in the image, instead
of downsampling the image, we use dilated convolutions to
enlarge the receptive field of the network while restraining
the number of learnable parameters and therefore limiting the
risk of overfitting [11].

II. DEEP FCN WITH DILATED CONVOLUTIONS

The proposed FCN consists of a sequence of spatial filter
banks with parameters that are learned to extract informative
spatial features and gradually transform the input image into
the classification map. Unlike standard convolutional filters,
with kernel values that are fixed a priori to extract specific
image features (e.g., edges), the kernel values of the FCN are
learned in a supervised manner by minimizing a loss function.

A. Convolution With Dilated Kernel
The main building blocks of our network are convolutional
layers. They compute the convolution of the input image with
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Fig. 2. Convolution of an input image with a filter bank.

a bank of filter kernels and add a bias term. The learnable
weights of the filter bank are represented by a 4-D array
w € REXWxDXK where H and W are the height and width of
the kernel, D is the number of input feature channels, and K is
the number of filters. Additional parameters that control the
size of the output are the stride and zero padding. The stride s
is the spatial interval between convolution centers and defines
the downsampling factor (s = 1 means no downsampling).
Padding consists in adding zeros around the border of the input
image before applying the filter. The parameter p defines the
number of pixels used for zero padding. Given an input image
x of size M x N x D, the rth channel of the output feature
map y is given by
H W D

Ygre = b + Z Z Z Wijdt * Xs(g—D)+i—p,s(r—1)+j—p.d (1)
i=1 j=1d=1

assuming equal strides s in both spatial dimensions. The

size of the output feature map equals M’ x N' x K =

(M —H+2p)/s)+1] x [(N—=W+2p)/s)+1] x K

(Fig. 2).

In order to capture long-distance dependency, one should
adopt kernels of large spatial support H x W. Using large fil-
ters, however, increases the number of parameters, making the
training more difficult and decreasing the generalization capa-
bility of the network. To alleviate this problem, several tech-
niques adopt downsampling in the convolutional layers, which
then requires an upsampling strategy [6]-[9]. In this letter,
we adopt convolutions with dilated kernels (DKs), or dilated
convolutions, instead of downsampling. This allows us an
exponential expansion of the receptive field without increasing
the number of learnable parameters per layer [11]. DKs are
obtained by inserting zeros between filter elements, effectively
enlarging the spatial support of the filter without increasing the
number of elements. Fig. 3 shows the dilation of a 3 x 3 filter
with increasing dilation factors from one to four. The spatial
support of a DK becomes H' x W' = d(H — 1) + 1 x
d(W — 1) + 1, where d is the dilation factor.

B. Proposed Architecture

Our FCN architecture consists of six convolutional layers
using DKs and one final classification layer with a 1 x 1
convolution and a softmax loss function. The structure of
this architecture, named FCN-DK®6, is reported in Table I.
The convolutional layers use 5 x 5 kernels with increasing
dilation factors d from one to six that capture larger and
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TABLE 1
PROPOSED DEEP FCN WITH S1X LAYERS OF
DILATED CONVOLUTIONS (FCN-DK6)
o [of [ BN [ Layer | module type | dimension | dilation [ stride [ pad ]

: :: SrerG convolution S5X5x4x16 1 1 2
SiEle DK1 IReLU

o (o] |o max-pool 5x5 1 2

convolution S5x5x16 x 32 2 1 4
|| DK2 IReLU

max-pool 9%x9 1 4

convolution 5 X5 x%x32x32 3 1 6
DK3 IReLU

a) b) max-pool 13 x 13 1 6

convolution 5 x5 x32x 32 4 1 8
DK4 1ReLU

max-pool 17 x 17 1 8

° ° ° convolution 5 X5 x32x32 5 1 10
D D D DK5S IReLU

max-pool 21 x 21 1 10

= = = = = = convolution S X5x%x32x32 6 1 12
DK6 IReLU

max-pool 25 x 25 1 12

° ° D convolution I x1x32x2 1 1 0
O O O class. softmax

c) d) co-occurrence matrix (GLCM) [13]; 3) patch-based CNN

Fig. 3. Kernels with increasing dilation factors. Red circles represent
learnable filter weights. (a) 3 x 3 kernel with no dilation (or dilation factor
one). Same filter dilated with a factor (b) two, (c) three, and (d) four. The
area marked in green shows the receptive field obtained after consecutive
application of filters (a)-(c). The number of parameters is the same in each
layer, while the receptive field grows exponentially.

larger contextual information in deeper layers resulting in
an exponentially growing receptive field. Convolutions are
interleaved by max pooling and nonlinear activations. Max
pooling returns the maximum value within a square window
and assigns it to the central pixel of the window. The window
size is set to be equal to the corresponding DK support.
As activations, we adopt leaky rectified linear units (IReLUs)
with a leak factor of 0.1 [12]. The stride s is set equal to
one for every layer of the network to avoid downsampling.
We use zero padding to keep the same spatial dimension of the
feature maps in each convolutional layer. Unlike patch-based
architectures, the proposed FCN can be directly applied to the
classification of images with different sizes, not necessarily
matching the size of the input patches used for training it.
The classification of large RS images can be performed per
blocks of a size that can be tuned according to hardware
specifications.

We also consider shallower variants of the proposed archi-
tecture of different depths. We refer to the different networks
as FCN-DKx, where x indicates the number of convolutional
layers included in the network.

III. EXPERIMENTS AND RESULTS

We experimentally evaluated the performance of the pro-
posed FCN for the detection of informal settlements in
VHR images and compared the results against state-of-the-
art techniques: 1) pixel-based support vector machine (SVM);
2) SVM with texture features extracted from the gray-level

(PB-CNN); and 4) deconvolutional FCN (FCN-DEC) utilizing
a downsample-then-upsample strategy. For SVM, we adopted
a radial basis function kernel; its spread and the regularization
parameter are set according to hold-out validation. GLCM
features are extracted using a 125 x 125 window and a
lag of one pixel in both spatial directions. The patch-based
CNN consists of three convolutional layers with 5 x 5 filters
interleaved by stride two max-pooling and ReL.U activations
and one fully connected layer with softmax classification. The
FCN-DEC network consists of a downsampling (encoder) and
an upsampling block (decoder) as in [9]. The encoder uses
three convolutional layers with 5 x 5 filters, stride two max-
pooling, and IReLU activations with a leak factor of 0.1. The
decoder has three deconvolution layers interleaved by IReLU
activations. The patch size is 125 x 125 pixels for all our
networks.

A. Data Set

As case study, we considered the city of Dar es Salaam,
where about 70% of the population is living in informal
settlements scattered in different parts of the large urban
area. We used a pan-sharpened Quickbird satellite image
acquired in 2007. The four multispectral bands have a spatial
resolution of 60 cm. Labeled reference information is obtained
from the land use reference map [14] and updated by visual
interpretation. We addressed the binary classification task of
distinguishing “informal settlements” from the class “rest,”
which mainly includes formal urban settlements and limited
areas of vacant and agricultural land. We used five tiles of
2000 x 2000 pixels taken from different areas of the city, which
capture different types of formal and informal settlements
in relatively balanced proportions. Three tiles were used for
training (named TR1, TR2, and TR3) and two for testing the
considered classifiers (TS1 and TS2). The adopted image tiles
are shown in Fig. 4.
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Fig. 4. Tiles obtained from the Quickbird image of Dar es Salaam, Tanzania. TRs 1-3 are used for training and TS1-2 for testing.

B. Training the Networks

The networks are trained using stochastic gradient descend
with momentum. We used a training set of 3000 fully
labeled patches randomly extracted from the three training
tiles (1000 samples from each tile). We used minibatches
of 32 samples, a momentum of 0.9, and a weight decay
factor of 5-10~*. Batch normalization was applied after every
convolution. Dropout with 50% rate was used in the last classi-
fication layer. We first trained FCN-DK3 by randomly initial-
izing the weights. Then we trained FCN-DK4 by initializing
the weights of the first three layers according to FCN-DK3
and the fourth layer randomly. Then we progressively trained
deeper networks including the additional convolutional layers
one by one up to FCN-DK6. The networks were trained
for 150 epochs with a learning rate of 10~* and then for
another 20 epochs with a learning rate of 107>, This multistage
training proved effective: in the first stage, the training error is
substantially reduced, but the error on the validation set shows
an unstable behavior, whereas in the second stage, the network
is tuned with a lower learning rate stabilizing both training and
validation errors. We also observed the importance of batch
normalization, which considerably speeds up the training. The
trained networks were then applied to the classification of the
two test tiles. The classification of test tiles is performed using
blocks of 200 x 2000 pixels loaded into GPU memory.

The networks considered in this letter are implemented
using the MatConvNet library version 1.0-beta-23 compiled
with CUDA-8 toolkit and cuDNN support.!

C. Classification Results

The accuracies are computed with the reference maps
of the two test tiles. The obtained results are shown
in Tables II and III for TS1 and TS2, respectively. Accuracies
are reported in terms of overall accuracy (OA), average class
accuracy (AA), i.e., mean producer’s accuracy (PA), and PA
of the two classes [15]. Reference and classification maps are
shown in Fig. 5.

We observe that the accuracy of the pixel-based SVM
classification is poor on both test tiles, as expected. This
confirms that the spectral information alone is not sufficient
for discriminating the two abstract land-use classes. SVM
classification of TS2 results in 17% higher OA than TS1. This
suggests that the two information classes are spectrally more
different in TS2 than in TS1. GLCM features improve the

1 http://www.vlfeat.org/matconvnet/

TABLE II

CLASSIFICATION ACCURACIES OBTAINED BY THE
CONSIDERED METHODS ON IMAGE TILE TS1

[ Classifier [| OA (%) | AA (%) | PA informal (%) | PA rest (%) |
SVM 59.46 59.25 30.41 88.90
SVM+GLCM 67.14 67.31 40.42 94.21
PB-CNN 76.77 76.87 60.33 93.42
FCN-DEC 67.50 67.69 38.69 96.68
FCN-DK3 67.75 67.92 40.81 95.04
FCN-DK4 72.14 72.28 50.84 93.71
FCN-DK5 79.27 79.38 62.41 96.34
FCN-DK6 81.31 81.40 67.89 94.90
TABLE III

CLASSIFICATION ACCURACIES OBTAINED BY THE
CONSIDERED METHODS ON IMAGE TILE TS2

[ Classifier [| OA (%) | AA (%) | PA informal (%) | PA rest (%) |

SVM 77.01 72.58 56.16 89.01
SVM+GLCM 77.89 72.71 53.47 91.96
PB-CNN 84.39 80.71 67.02 94.40
FCN-DEC 80.88 75.09 53.60 96.58
FCN-DK3 82.74 77.55 58.29 96.82
FCN-DK4 82.62 77.44 58.16 96.71
FCN-DK5 84.70 79.90 62.09 97.71
FCN-DK6 86.09 81.74 65.58 97.91

separability of the classes, resulting in higher classification
accuracies (especially on TS1). The PB-CNN classification
reaches significantly higher accuracy by automatically learning
contextual features from the data. The maps produced by
PC-CNN are nonetheless noisy with many isolated pixels
falsely classified as “informal settlements.” FCN-DEC pro-
duces more regular maps, but the PA of “informal settlements”
is low. This is also evident from the classification maps
showing many missed detection errors.

The highest accuracies are obtained by the proposed
FCN-DK architecture. We observe the benefit of deeper
architectures using convolutional kernels with larger dilation
factors. They can learn more complex and abstract features
from a larger spatial neighborhood leading to higher accuracy.
The maps obtained by FCN-DKG6 are also more regular than
those obtained by other techniques.

The proposed FCN-DK architecture also offers an advantage
in terms of computational cost with respect to PB-CNN. One
tile is classified in 2.67 s with FCN-DK6 whereas PB-CNN
takes 110 min (average times over 10 repeated experiments).
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Fig. 5.
“Informal settlements” are given in yellow and the “rest” in blue.

The training time is about 2500 s for both architectures.
All experiments were performed on a desktop workstation with
an Intel Xeon CPU E5-1650 v4 at 3.6 GHz, 40 GB of RAM,
and an Nvidia Titan X (Pascal) GPU.

IV. CONCLUSION

The novel deep network proposed in this letter is capable of
learning a hierarchy of abstract appearance features capturing
long-range pixel dependencies while keeping a limited number
of network parameters. Experimental results carried out on
a Quickbird image acquired over Dar es Salaam show the
effectiveness of the proposed technique in accurately distin-
guishing informal settlements from other land-use classes. The
proposed architecture using six convolutional layers performs
better than state-of-the-art architectures such as PB-CNNs and
deconvolutional networks. Moreover, the fully convolutional
architecture allows us to significantly reduce the processing
time of patch-based networks at inference time.

Compared with deconvolutional networks using downsam-
pling and upsampling layers [6]-[9], we would argue that
the proposed architecture offers a more simple and flexible
design approach. There is no need to match feature map sizes
in the downsampling and upsampling parts to produce maps
of the required dimension. With the proposed structure, new
layers can be added to increase the receptive field without
the need for redesigning the rest of the network. The depth
can be adjusted depending on the spatial resolution of the RS
image and the type of information classes to be discriminated.
Therefore, variants of our network can be designed to address
different land-cover or land-use classification applications.

This letter shows that informal settlements can be effectively
detected in VHR images by the proposed automatic technique.
This can facilitate a systematic monitoring of slums and
provide useful information for international pro-poor pol-
icy development and for planning urban upgrading projects.
Future developments will aim at studying the transferability
of the model to different cities.

PB-CNN
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FCN-DK6
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Reference and classification maps obtained by the investigated techniques. The first row reports the maps of tile TS1 and the second row of TS2.
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