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ABSTRACT
Knowledge about changes in wildlife poaching risk at fine spatial
scale can provide essential background intelligence for law enfor-
cement and crime prevention. We assessed interannual trends and
seasonal changes in elephant poaching risk for Kenya’s Greater
Tsavo ecosystem for 2002 to 2012 using spatio-temporal Bayesian
modeling. Poaching data were obtained from the Kenya Wildlife
Service’s database on elephant mortality. The novelty of our paper
is (1) combining space and time when defining poaching risk for
elephant; (2) the inclusion of environmental risk factors to improve
the accuracy of the spatio-temporal Bayesian model; and (3) the
separate analysis of dry and wet seasons to understand season-
dependent poaching patterns. Although Tsavo’s overall poaching
level increased over time, the risk of poaching differed significantly
across space. Three of the 34 spatial units had a consistently high
poaching risk regardless of whether models included environmen-
tal risk factors. Adding risk factors enhanced the model’s predic-
tive power. We found that highest poaching risk areas differed
between the wet and dry season. The findings improve our under-
standing of elephant poaching and highlight high risk areas within
Tsavo where action to reduce elephant poaching is required.
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1. Introduction

In the past decade, there has been an increase in African elephant (Loxodonta africana)
poaching, especially for ivory (Douglas-Hamilton 2009, Wittemyer et al. 2014, Nyirenda
et al. 2015). Estimates suggest that between 2011 and 2013, more than 100,000 African
elephants were poached (White 2013, Wasser et al. 2015), corresponding to 21% of the
total population. Kenya, like many other African countries, is suffering from a continuous
year-to-year increase in the proportion of illegally killed elephants since 2003 (Douglas-
Hamilton 2009, Maingi et al. 2012).

Insufficient human and financial resources, combined with the large areal extent to
be monitored, pose major challenges for anti-poaching activities in Kenya (Maingi et al.
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2012, Rashidi et al. 2015). Because of high conservation costs, Kenya cannot offer
adequate protection of wildlife from poaching within national parks and reserves
(Maingi et al. 2012). The Kenya Wildlife Service (KWS) is understaffed with less than
one ranger per 100 km2 of wildlife reserve (Maingi et al. 2012). Therefore, assessment of
trends and seasonal changes in wildlife crime on a small spatial scale allows for targeting
specific locations where crime may be concentrated and assists in the setting of con-
servation priorities and the concentration of management resources (Maingi et al. 2012).

Poaching is a dominant wildlife crime, but it is unevenly distributed over space and
time (Burn et al. 2011). Poaching data have a covert nature, which makes it difficult to
estimate poaching trends (Burn et al. 2011) in small spatial units. We therefore need
models that can take scarcity of poaching data or incomplete data into account (Gelman
and Price 1999). Spatio-temporal Bayesian models are particularly useful when working
with fine scale data (DiMaggio 2015) as they can consider poaching risk in areas with
zero counts by borrowing information from neighboring areas (Sun et al. 2000). This
helps to overcome problems of unstable poaching estimates related to a lack of data
(Gelman and Price 1999) as a result of low incident counts in small areas and large
variations in sampling (Bernardinelli et al. 1995, Congdon 2000).

The assessment of trends in wildlife poaching using Bayesian models has been
limited to large-scale studies at countrywide levels (Burn et al. 2011). Critchlow et al.
(2015) used ranger-collected data from 1999 to 2012 to identify spatio-temporal
trends in general illegal activities in a Ugandan national park. The illegal activities
included infringing upon nature reserves for plant harvesting, cultivation, animal
grazing, or poaching. Although the above studies used Bayesian models to monitor
the spatio-temporal variation in trends within a unified framework, they did not
incorporate expert knowledge for the selection of ecological covariates or for prior
probabilities. Prior probabilities are represented by probability distributions indicat-
ing known effects of the ecological covariates on illegal activities. Moreover, they
also did not investigate seasonal changes in areas highly at risk of illegal activity.
Rashidi et al. (2015) addressed the problem of limited data in small geographic units
(blocks) using expert knowledge and Bayesian modeling but focused on spatial
variations. Here we incorporate a temporal element into the analysis. Space-time
analyses have extra benefits to purely spatial analyses, since they permit the simul-
taneous study of mean trends and unusual local trends (Richardson et al. 2006). This
is important because patterns of illegal activities can vary over time and space
(Critchlow et al. 2015).

In this paper, we assess interannual trends and seasonal changes in elephant
poaching risk for Kenya’s Greater Tsavo ecosystem for an 11-year period, from
2002 to 2012, using spatio-temporal Bayesian modeling. This study has three specific
objectives, i.e. (1) to identify the presence of space–time interactions, by ascertaining
if temporal trends in poaching risk differ between areas of the Greater Tsavo
ecosystem; (2) to investigate if the accuracy of poaching prediction can be improved
by adding environmental risk factors to the spatio-temporal Bayesian model; and (3)
to assess whether locations of the highest elephant poaching risk differ between wet
and dry seasons.
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2. Materials and methods

2.1. Study area

The Greater Tsavo ecosystem covers 38,128 km2 in south-east Kenya (Figure 1). Our study area
was composed of the Tsavo East National Parks North (north of the Galana River) and South
(south of the Galana River), as well as the Tsavo West National Park, with the remaining areas
being covered by private ranches (Figure 1). The rivers and streams of the Tsavo ecosystem
include the Tsavo, Tiva, Galana, Athirivers and Voi (Maingi et al. 2012). Commiphora savanna is
the prevailing vegetation community in the study area (Cobb 1976). The area’s climate shows
clear seasonality and also displays a large geographic variation. The long wet season takes
place between March and May. Rainfall amount during the wet season is largest between the
Taita Hills and the Kilimanjaro area. The short rainy season occurs in November and December
when rainfall is concentrated mostly in the eastern and northern parts of the area (Smith and
Kasiki 2000, Ngene et al. 2013). The Tsavo ecosystem is home to the largest population of
Kenya’s elephants but also experiences the largest number of elephant poaching incidents in
Kenya (Maingi et al. 2012, Rashidi et al. 2015). It is also one of four sites for ‘Monitoring of Illegal
Killing of Elephants’ (MIKE program) in Kenya (Shaffer and Bishop 2016).

To quantify local differences in elephant poaching trends, the Greater Tsavo ecosystem
was subdivided into 37 blocks, which were initially designed for the aerial counting of the
elephant population in the Tsavo-Mkomazi ecosystem (Ngene et al. 2013). Block boundaries

Figure 1. Location of the Greater Tsavo ecosystem in Kenya. The points (151) indicate the recorded
sites of elephant poaching and the colors show the different ranches and sections of the Greater
Tsavo ecosystem (2002–2012).
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were defined by the KWS according to easily detectable features such as roads, hills, rivers
and protected area boundaries. Block sizes ranged from 248 km2 to 2008 km2, with and
average size of 1098 km2 (Ngene et al. 2013). Block numbers 33–35 were omitted since they
were located in Tanzania and poaching data there were not accessible (Rashidi et al. 2015).
We used the 34 blocks in the Kenyan part of the ecosystem as the geographic units in our
analysis. All data, for both the elephant population and elephant poaching incidents, were
linked to these geographic units (Figure 2).

2.2. Data

2.2.1. Elephant population and poaching incidence data
Data on elephant populations and poaching were obtained from the KWS. Aerial surveys
were undertaken by the KWS in the Tsavo ecosystem from 7 to 12 February 2011 to
record elephant populations (Ngene et al. 2013). We assumed that the spatial distribu-
tion of the elephant population in 2011 could be used for all blocks and years because
there were no significant changes in the population from 2002 till 2012 (Ngene et al.
2013). The data set comprised the number of elephants observed per location, the
geographic coordinates and names of these locations, and the observation dates (Ngene
et al. 2013). Aerial patrols and daily ground patrols were executed by the KWS through
the MIKE program to record elephant poaching incidents. Consistent patrolling and a
wide coverage of the monitored sites belong to the core methods employed by the
MIKE program (Burn et al. 2011) Rangers used their bush and tracking skills, as well as

Figure 2. Distribution of recorded elephant poaching incidents between 2002 and 2012 within the
defined blocks in the Greater Tsavo ecosystem.
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contacts with the local communities, to recognize poachers and poacher trails (Rashidi
et al. 2016). They also used visual cues in the field (e.g. the presence of vultures) to
identify carcass locations (Rashidi et al. 2016) and global positioning system units for
recording locations (Cites 2010). Patrol forms and carcass forms were completed by the
rangers. The full data set consisted of 151 poaching locations in the study area for the
years 2002–2012. The data contained the estimated date of death, location names of
where elephant carcasses were found and coordinates of the locations where elephant
carcasses were found. The Spatial Join geoprocessing tool in ArcMap 10 was used to link
the data on the 151 poaching locations to the 34 blocks (Tables S1, S2 and S3).

2.2.2. Environmental risk factors
The selection of environmental risk factors was based on previous studies (Kyale et al.
2011, Maingi et al. 2012, Rashidi et al. 2016). We obtained spatial and spatio-temporal
information on these risk factors as per Rashidi et al. (2016). The factors included: (1)
elephant population density, (2) livestock density, (3) mean normalized difference vege-
tation index (NDVI), (4) standard deviation of NDVI, (5) elevation, (6) slope, (7) density of
waterholes, (8) distance to rivers and streams, (9) distance to roads, (10) distance to
international border, (11) distance to settlements and (12) seasonal timing of elephant
poaching (i.e. poaching probabilities in the dry and wet seasons).

We used the variance inflation factor (VIF) to evaluate and account for the effects of
multicollinearity between variables (Dormann et al. 2013). This is a method based on the
calculated VIF statistics, which iteratively selects variables based on the maximum linear
correlation found between pairs of variables and excludes the variable that has the
larger VIF. This procedure is repeated until there is no variable pair with a high
coefficient of correlation left (Naimi 2013). Here, we first selected variable pairs that
had a linear correlation coefficient greater than the threshold set to 0.5. For the variable
pair with the highest correlation, one of the variables was excluded, that is, the one with
the highest VIF. The procedure was repeated until no variable pair with a correlation
coefficient above 0.5 remained. Of the selected variables, elephant population density,
livestock density, standard deviation (STD) of NDVI, distance to rivers and streams,
waterhole density, distance to road, distance to international border and seasonal timing
of elephant poaching (i.e. probabilities in dry and wet seasons) remained after account-
ing for multicollinearity (Table S4).

2.3. Modeling strategy and analysis

We fitted two different sets of spatio-temporal Bayesian models (Table 1). The first set
was used to assess local trends of elephant poaching from 2002 to 2012 in the Greater
Tsavo ecosystem and includes two models. Model 1.1 did not account for the potential
risk factors that vary geographically across the blocks, while Model 1.2 added risk
variables to the model to test whether the ‘risk’ covariates enhanced the prediction of
poaching (Table 1). Expert knowledge, based on survey responses from 30 experts, was
input to Model 1.2 (Rashidi et al. 2016). We used this expert knowledge for the selection
of environmental risk factors and also incorporated expert knowledge through priors
(prior knowledge), based on probability distributions representing what is known about
the effect of the environmental risk factor on elephant poaching risk. The second spatio-
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temporal Bayesian model set was used to investigate seasonal changes in elephant
poaching risk. The second set also includes two models, one fitted for the wet and one
for the dry season (Table 1). Data were divided into seasonal categories (wet and dry)
based on rainfall distribution in the study area. Model 2.1 was used to determine risk
areas for elephant poaching during the wet season, and Model 2.2 was used to
determine risk areas for elephant poaching in the dry season (Table 1).

For all models, we used Poisson regression with the log link function, as this function
accounts for rare incidences (McCullagh and Nelder 1989, Torabi and Rosychuk 2012, Li
et al. 2014). Bayesian approaches combine observed data (i.e. elephant poaching inci-
dents) and prior knowledge (e.g. neighborhood structure, information from adjacent
blocks or experts) to estimate posterior distributions of unknown parameters (e.g. local
differential trends in elephant poaching) (Luan et al. 2015). The prior data reflect the
knowledge available on model parameters before observing the current data (Stigler
1986, Schoot et al. 2014). The prior distribution is used to model data dependence
between neighboring areas (Law and Chan 2012) since it contains information about
how the poaching risks are related to one another.

The poaching cases (Yij) for area i = 1, . . ., I, and time period j = 1, . . ., T can be
modeled as a

Yij ~ Poison (lambdaij).
where the parameter lambdaij of the Poisson distribution (P) is the expected value of

Yij, exp [Yij].
exp [Yij,] = lambdaij = θij* eij
Using a log link function, unknown risk (θij) is split into parameters measuring purely

spatial variation, purely temporal variation and spatio-temporal interaction:
log (θij) = α+ ui+ si+ (ƴ + δi)tj
Log (lambda IJ) = log (eij) + α+ ui + si + (ƴ + δi)tj

where eij is the corresponding number of expected elephant poaching cases for area
i = 1, . . ., I, and time period j = 1, . . ., T. The purely spatial variation is represented by an
intercept α (average elephant poaching for the study region), ui (unstructured random
effects) and si (spatially structured random effects). These terms accommodate any over-
dispersion that may arise when modeling count data at the areal level (Luan et al. 2015).
Regional temporal variation of elephant poaching for the study region is captured by ƴ.
We assumed a linear regional trend over all areas in the study region, which depends on
the nature of the data set (the observed elephant poaching incidents data) (Torabi and
Rosychuk 2012). δi is the interaction between the spatial and temporal effects. To
explore the geographic variation of the local trends, we mapped the posterior prob-
ability (PP) of a local differential trend (δi) that was greater than the mean trend (Law
et al. 2014, 2015). PP can be viewed as the Bayesian equivalent of the p-value (Meng and

Table 1. Model structure for the two different model sets used in this paper.
Model Types Data

Set 1
1.1
1.2

log(eij) + α + ui + si + (ƴ + δi)tj
log(eij) + α + ui + si + (ƴ + δi)tj + + ß1x1i + . . . + ßkxki

Data include wet and dry season data
Data include wet and dry season data

Set 2
2.1
2.2

log(eij) + α + ui + si + (ƴ + δi)tj
log(eij) + α + ui + si + (ƴ + δi)tj

Data include only wet season data
Data include only dry season data
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Dempster 1987). It represents the degree that each spatial unit is greater than the mean
trend, which accounts for the variance of area-specific trends. High PPi values indicate
that area-specific trends have a high probability of differing from the mean trend,
whereas low PPi values indicate that area-specific trends have a low probability of
differing from the mean trend.

To capture the number of elephant poaching incidences expected, we used an
indirect standardization method (utilizing the average trend and elephant population)
(Law et al. 2015). Indirect standardization utilizes the risk estimates in the reference
population (total population in the study region as a whole) to calculate the expected
number of incidents in the study population (Yuan 2013). The expected number of
elephants poached was calculated for each block, season and year. For example, in 2011
block no. 3 had an elephant population of 27 and 5 poaching incidents. Given that from
2002 to 2012 the overall increase in incidents in the study region was 246, and in 2011
the total elephant population in the study region was 1370, the expected number of
incidents for block 3 in 2011 was 9.59 (= 5 + (27 × 246/1370)), where 246/1370 is the
average trend of elephant poaching in the whole study region.

2.4. Computational details

An improper uniform prior U (−∞, +∞) was defined for the intercept α (Luan et al.
2015). A normal distribution prior with mean 0 and variance σs

2 was specified for ui
(Law et al. 2015). The prior for the regional time trend (ƴ) was a vague prior normal
distribution with mean equal to zero and variance of 1000 (Law et al. 2014). An
Intrinsic Conditional Autoregressive Gaussian distribution (ICAR) was used to specify
priors for spatial random effect si and spatio-temporal interaction δi (Torabi and
Rosychuk 2012, Law et al. 2014, 2015, Li et al. 2014, Luan et al. 2015). Under the
ICAR specification, the means of si and δi for one block depend on the si and δi,
respectively, of the neighboring blocks’ distribution, where adjacency is defined as
areas that have common borders (Torabi and Rosychuk 2012, Luan et al. 2015). The
amount of variation of si and δi is controlled by hyperparameters σs

2 and σδ
2,

respectively, and is contrariwise related to the number of neighbors of the ith
block (Torabi and Rosychuk 2012, Law et al. 2014, 2015, Li et al. 2014, Luan et al.
2015). In Bayesian approaches, priors assigned to hyperparameters (i.e. the para-
meters of priors) are called hyperpriors (Luan et al. 2015). We conducted analysis
using a uniform hyperprior distribution of (0.5, 0.0005) for σu, σs and σδ. This gamma
distribution is a prior that offers a reasonable range for relative risk (Elliot et al. 2000).

Spatio-temporal modeling was conducted using the statistical software
WinBUGS, version 1.4.3 (McCarthy 2007). Models were specified textually via the
BUGS language in WinBUGS, in which the model likelihood and the prior distribu-
tion are defined (Figure S1) (McCarthy 2007). WinBUGS uses ‘Markov Chain Monte
Carlo’ (MCMC) algorithms to estimate posterior distributions of the model para-
meters (McCarthy 2007). MCMC methods create random samples from the posterior
distribution: the value of each step is conditional on the previous step (Kéry 2010),
and after enough iterations, the algorithm converges to the required posterior
value (Law et al. 2006). With a sufficient number of simulated observations, this
iterative procedure leads to an accurate estimation of the distribution (Kim 2011).
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To assess trends and seasonal changes in the elephant poaching risk in the Greater
Tsavo ecosystem from 2002 till 2012, we fitted the spatio-temporal Bayesian models
using WinBUGS software with two parallel chains thinned by 10 to reduce auto-
correlation (Luan et al. 2015). For each model, to obtain 20,000 samples from the
posterior distribution, MCMC chains comprising 10,000 iterations with a burn-in of
1000 were found to be sufficient to achieve convergence. Convergence was
assessed by Brook–Gelman–Rubin Diagnostic, history plots, visually examining
trace plots and Monte Carlo standard error (<5 % of the sample posterior standard
deviation) (Law et al. 2014, Luan et al. 2015).

To assess the model fit, we used the Deviance Information Criterion (DIC)
(Spiegelhalter et al. 2002). The DIC can be considered as Bayesian equivalent of the
Akaike Information Criterion (AIC), and it utilizes the number of effective parameters
(defined as the posterior expectation of the deviance minus the deviance evaluated at
the posterior mean of the parameter (King et al. 2009)) instead of the actual number of
parameters used by the AIC (Ntzoufras 2011). The advantage of DIC is that it can be
directly computed from an MCMC output, and moreover it can be applied in a larger
variety of models (Ntzoufras 2011). Lower values for the DIC indicate that the model fit is
closer to the data. A difference in DIC values between two models should be at least 5 to
conclude that one of the models fits the data better, because of Monte Carlo sampling
errors inherent in the calculation of the DIC (Law et al. 2014).

3. Results

Figure 3 shows the probability that local elephant poaching trends were greater than
the mean trend (Table 2) using two different models (Table 1). Variation in area-
specific elephant poaching trends was statistically significant at the 95% credible
interval (Table S4). Blocks with the highest probability were areas that have experi-
enced relatively higher risks of elephant poaching over the 11 years and showed a
steeper, increasing trend in poaching compared with the mean trend (Figure 3). In
both models, the largest positive trends (probability that elephant poaching risk is
above mean trend > 0.9) were located in specific blocks (blocks 9, 26 and 29) in the
Tsavo West National Park, Tita ranch and Galana ranch (Figure 3).

Our results indicate that while similar blocks with the highest poaching trend were
found by both models (Model 1.1 and Model 1.2), some blocks displayed different
probability classes (blocks 1, 2, 5, 6, 10, 14, 17, 19, 20, 22, 24, 25, 27 and 31) (Figure 3).
Moreover, Model 1.2, which accounts for potential risk factors, had a smaller value for the
DIC (Table 2) which indicates a more accurate model fit for Model 1.2 than Model 1.1.

Based on our modeling results, we could map elephant poaching incidences
(Figure 2) and estimate poaching trend over time (Figure 3). A large spatial variability
can be observed both in observed poaching incidence and estimated risk.

Further, the results indicate that among the selected factors that remained after
accounting for multicollinearity, livestock density, distance to road, seasonal timing of
elephant poaching, density of waterholes and distance to international border were
significant at the 95% credible interval (Table S4). Inclusion of zero values within the
95% Bayesian credible intervals implies the insignificance of the estimates (Jianmei
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Figure 3. Probability that local elephant poaching risks were greater than the mean temporal trend:
(a) Model 1.1: spatio-temporal Bayesian model without accounting for the potential risk factors and
(b) Model 1.2: spatio-temporal Bayesian model which includes potential risk factors.

Table 2. The results of model fitting for Models 1.1 and 1.2.
Model 1.1 Model 1.2

ƴ: overall time trend (credible interval: 2.5%, 97.5%) 0. 27 (0.4,0.61) 0.76 (0.1,1)
DIC: deviance information criteria 14,870 14,725
PD: effective number of parameters 276 250
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2014). In other words, if the credible interval for estimated parameters covers zero, then
that would be considered as lack of evidence for different variances (Kéry 2010).

Figure 4 shows that the highest risk areas for elephant poaching differ between the
wet and dry seasons.

4. Discussion

The ability to detect areas with increasing elephant poaching can aid decision-making
regarding conservation priorities, by prompting the need for further management

Figure 4. Seasonal changes in high risk areas for elephant poaching in Tsavo ecosystem (2002–2012)
using the spatio-temporal Bayesian model: (a) Model 2.1: wet season and (b) Model 2.2: dry season.
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attention, such as increased ranger/patrol activities in areas with higher poaching risk
(Figure 3). For example, for the Tsavo, blocks no. 26 and no. 29 in the Galana ranch and no.
9 in the Tsavo West National Park and Tita ranch should be prioritized for preventive
actions.

These three blocks are all located in areas with human settlements in and around them.
Therefore, the result can be partly explained by human–elephant conflict over resources
(space, water and forage) in these areas (Ngene 2010). Another reason could be possible
collaboration of local people with poachers or their indifference toward elephant poaching
(Maingi et al. 2012). The findings thus indicate the need for strategies such as local community
conservation programs (Maingi et al. 2012) to obtain community support. And priority should
be given to security patrols in these areas to mitigate elephant poaching risks.

The highest risk areas for elephant poaching determined by this study differ from those
identified in the previous study (Rashidi et al. 2016), which focused only on the spatial
variation observed in elephant poaching in the Tsavo ecosystem without investigating the
interaction between time and space. Spatio-temporalmethodsmay therefore detect relatively
subtle changes in elephant poaching risk in specific blocks over time that would not have
been detected by spatial analyses alone (Critchlow et al. 2015). However, there were also
blocks (blocks 6, 10, 16 and 21), which did display similar probability classes in both studies.

Furthermore, we found that block no. 9 was consistently identified as a hot spot with
a high poaching risk, as Rashidi et al. (2015) had also observed, when using spatial as
well as spatiotemporal clustering methods (Figure 3). However, in the current study,
some new areas showing a significantly increasing trend were detected (Figure 3) and
we further demonstrated the probability that each block would show a differential trend
from the mean elephant poaching trend in the Tsavo ecosystem (Figure 3). By explicitly
stating the probability of observed poaching risk in a particular block, we detected high-
risk areas where this risk is unlikely to be due to chance (DiMaggio 2015). This allowed
us to be more specific about high risk area locations rather than having to resort to
reporting clusters of areas (as typically recognized by SaTScan). For example, Rashidi
et al. (2015) found that blocks no. 8, no. 9 and no. 10 were hotspots, irrespective of the
clustering method used. However, they did not detect probabilities regarding elephant
poaching risk for these areas. In the current study, we detected that the elephant
poaching risk probability differed between these three blocks (Figure 3).

The fact that some areas show significantly different trends in poaching could be due
to potential risk factors that vary geographically across the blocks. Therefore, we set Model
1.2 to consider the effect of adding these variables to the Model 1.1 (Table 1) and to test
whether the covariates enhanced the prediction of the model. We found that density of
waterholes, livestock density, seasonal timing of elephant poaching, distance to roads and
distance to international border significantly contributed to the estimation of temporal
trends in elephant poaching in Kenya’s Greater Tsavo ecosystem (Table S4). Rashidi et al.
(2016) also found the first three risk factors to be covariates, while the latter two were new
in the present study. The fact that some variables like elephant density and distance to
rivers have been deemed important by experts but were not significant in our models
could be due to theoretical knowledge rather than personal and local experience
(Doswald et al. 2007). Such variables may be collinear with other covariates responsible
for elephant poaching and therefore make scoring difficult (Doswald et al. 2007). Although
expert opinion is useful for collecting general knowledge on elephant poaching,
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combined expert and field data enhanced the posterior estimates and further improved
elephant poaching models. Our results also indicated that selected variables were useful
predictors, because Model 1.2 provided an improved model fit through a lower DIC. This
result is in contrast with the results of Critchlow et al. (2015), who found that their selected
ecological covariates were not useful predictors for incidences of illegal activities. One
reason for this contrast could be the selection of potential risk factors in our study, which
were based on expert knowledge. This supports the idea that combining expert opinion
with empirical data improves model performance (Murray et al. 2009).

Furthermore, the results obtained from Models 2.1 and 2.2 demonstrated that the
highest risk areas for elephant poaching differed between the wet and dry seasons. This
finding supports the idea from the previous study (Rashidi et al. 2016) that elephant
poaching is more likely to occur in different locations in the dry season than in the wet
season. This could be explained by seasonal preferences for specific land cover by
elephant (Shaffer and Bishop 2016) as well as seasonal variations in surface water avail-
ability. It may be expected that elephants move to other areas where water and food
supplies are plenty, but conservation security there might be lower (Sibanda et al. 2016).

A limitation when studying elephant poaching trends lies in the collection of poaching
data, whichmay be underreported ormisreported by rangers (Maingi et al. 2012). It is possible
that the elephant poaching data that we used for this study only represent a proportion of the
total poaching that occurred between 2002 and 2012. However, wemitigated this problemby
utilizing a spatio-temporal Bayesianmodel, which provides a flexible framework for borrowing
information over space and time from adjacent blocks by using spatial and temporal random
effects (Li et al. 2014). For example, the recorded elephant poaching incidences (Figure 2) and
estimated poaching trend over time (Figure 3) are very different in blocks no. 26 and no. 29 in
the Galana ranch. Our study demonstrates that the spatio-temporal Bayesian model is a
valuable approach when recorded elephant poaching incidents are scarce or incomplete, as it
allowed the discerning of elephant poaching trends in some blocks that could not be
ascertained from a visual analysis of the poaching data alone. With improvements to the
observation effort and the recording of patrol data and associated contextual information,
and with the development of appropriate models, predictions of poaching could be further
improved (Keane et al. 2011).

A linear regional trend over an 11-year period was assumed in this study, which is
appropriate for the data on observed elephant poaching incidents. When using poach-
ing data that cover multiple time periods rather than subsequent years, a non-linear
trend analysis may further reduce error in the model, thereby providing additional
insight into poaching change over time.

5. Conclusions

We examined spatial variation in trends and seasonal changes in elephant poaching risk
from 2002 to 2012 in Kenya’s Greater Tsavo ecosystem, using spatio-temporal Bayesian
modeling. We also tested the hypothesis concerning whether risk factors enhanced the
prediction of the model. This modeling framework has been shown to effectively
account for inconsistent results due to limited and/or missing data. Our results indicate
that the mean trend in elephant poaching is increasing in the Tsavo ecosystem over
time. Assessment of spatio-temporal poaching trends in small areas showed that blocks
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with the strongest positive trends in elephant poaching are situated in the Tsavo West
National Park, Tita ranch and Galana ranch. Our results also indicate that adding risk
factors enhances model fit. Furthermore, our results indicate that areas with the highest
poaching risk differ between dry and wet seasons.

Obtained results have several practical implications. The KWS can benefit from our
results by allocating their financial and human resources more effectively to prevent or
reduce poaching activity in areas with relatively strongly increasing poaching trends.
Our results also provide vital information for decision-making and management regard-
ing setting conservation priorities. Moreover, the models we present here may also be
adjusted and applied to poaching data for other threatened species and in other areas.
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