
Building a framework for developing interaction models:

Overview of current research

on dialogue and interactive systems

B.W. van Schooten

Faculty of Computer Science, University of Twente

Postbus 217, 7500 AE, Enschede, The Netherlands

schooten@cs.utwente.nl

February 15, 1999

Abstract

This text is an overview of literature relevant to the development and modelling of
interactive systems. It is the most comprehensive part of the documentation I made dur-
ing the literature research stage of my PhD project, which should result in a modelling
framework for interactive systems. More precisely, the scope of this project is natural
language, multimodal, and virtual reality systems, and ways of modelling the dynamics
of interaction of such systems for the purpose of aiding system development. The top-
ics addressed in this text naturally include existing systems and modelling techniques,
but theoretical frameworks and methodological issues are also addressed. Short intro-
ductions are given to cognitive psychology, semiotics, communication models, and HCI.
Systems and strategies are reviewed, covering the topics multimodality, redundancy and
confirmation, and ways of modelling dialogue and task structure. Methodological issues
are reviewed, in particular some methodologies, and strategies for design/implementation
and analysis/evaluation. Finally, some conclusions are given, as well as an indication of
the directions of my future research.

1

Contents

1 Foreword 4

2 What this text is about 4

2.1 Interaction models . 4

2.2 Objectives of the intended framework . 5

2.2.1 Specification . 5

2.2.2 Abstraction . 5

2.2.3 Modelling human users . 5

2.3 Overview of the current text . 5

I Theories 6

3 Cognitive frameworks 6

3.1 Cognitive psychology . 6

3.1.1 Extensions . 7

3.2 Semiotics . 8

3.2.1 Icon, index, and symbol . 9

3.2.2 Syntax, semantics, pragmatics . 9

3.2.3 Syntax, semantics, and pragmatics in dialogue 10

4 Communication 10

4.1 Abstract models . 10

4.2 Communication and cooperation . 11

4.2.1 Cooperative agent models . 12

4.3 Natural language . 14

4.3.1 Underspecification, redundancy and error in language 15

5 Human Computer Interaction 15

5.1 General criteria that determine usability . 15

5.2 Separation of interface and the computer’s internals: the UVM 16

5.2.1 Seeheim-like models . 17

5.3 Cognitive psychology in HCI . 17

5.4 Cinematography in HCI . 18

5.5 Semiotics in HCI . 18

II Systems 20

6 Systems 20

6.1 Purpose . 20

2

6.1.1 Cooperativeness . 20

6.2 Overview of existing systems . 21

7 Dialogue styles and strategies 23

7.1 Mode, style, and strategy . 23

7.2 Syntactic . 24

7.2.1 Modality . 24

7.3 Semantic . 26

7.3.1 Redundancy and confirmation . 26

7.4 Pragmatic . 26

7.4.1 Initiative . 27

7.4.2 Modelling of dialogue structure . 27

8 The development process 28

8.1 Description . 28

8.2 Prescription . 29

8.3 Products of the development process . 31

8.3.1 Formal specifications . 32

9 Design and implementation 32

9.1 Design methods and notations . 32

9.2 Design environments . 33

10 Analysis and evaluation 33

10.1 Some analysis methods and notations . 35

10.2 Data collection . 35

10.2.1 Simulating users . 38

10.3 Metrical evaluation . 40

III Conclusions 42

11 Review of this text and future directions of the framework 42

11.1 What are the problems anyway? . 42

11.2 What solutions could a framework offer? . 43

11.3 The framework, take two . 43

3

1 Foreword

This text is a result of my work as a PhD student at the Parlevink project, which is part of
the TKI (Taal, Kennis, en Interactie) group, formerly called SETI (Software Engineering en
Theoretische Informatica). Thanks go to my advisors E.M.A.G. van Dijk, A. Nijholt, and R.
op den Akker for reviewing this text.

2 What this text is about

This text is meant as an overview of the field of natural language interaction, multimodal
interaction, and general HCI. This includes theories, general HCI issues, methodological is-
sues, modelling and analysis techniques, design enviroments, existing systems and existing
interaction strategies. It is an overview of most of the literature I have accumulated until
now, classified and summarised in order to allow me, and other people, to retrieve information
and literature on the subject more easily. This text is a neatened snapshot of a draft text
that will be maintained further as new literature and ideas come in. The newest version of
the draft text can be found on my homepage:

http://wwwhome.cs.utwente.nl/~schooten/

In the beginning of most sections, some introductory literature on the subject is listed. Note
that some of the topics are covered in more detail than others. This reflects:

1. the areas of emphasis of my research up till now,

2. attempts to make the text more self-contained,

3. the areas I knew particularly little about.

So, some citations are little more than pointers, meant to show where to find more information
about the subject. Other citations include lists of models or systems that were reviewed in
them, showing where to find further information about those particular models and systems,
without having to cite literature on them directly. Other citations include a full summary.

The preliminary title of my PhD thesis is ‘Interaction models in (spoken) dialogue systems’.
The initial PhD proposal consists of building a modelling framework to obtain more control
over the development of interaction models in (spoken and natural language) interactive
human/computer systems. Meanwhile, the scope has extended to include multimodal systems
as well.

2.1 Interaction models

An ‘interaction model’ or ‘dialogue model’ dictates the interaction patterns, styles or strategies
that are and can be used in the interaction between human and computer system. Knowledge
about existing or possible interaction models should facilitate a more structured Human
Computer Interaction (HCI) design. In particular, more needs to be known about designing
interaction for information retrieval and exploration tasks, done by different kinds of users,
both computer-naive and experienced. Also, more needs to be known about some of the
more interesting interaction types by means of which such interaction may be achieved, in
particular natural language (NL) and multimodal interaction.

4

2.2 Objectives of the intended framework

Note that the following objectives are very much abstract and general objectives, but it does
show the benefits of each objective, and the different options available. The purpose of this
text is to review the literature in order to enable us to identify more specific objectives, and
to obtain an idea of the specific form that an actual framework may take.

2.2.1 Specification

A framework may provide a means to specify an interaction model, i.e. to ‘cast’ any (en-
visioned) dialogue system or user interface within a well-defined class of such systems into
a uniform specification, with as little loss of information as possible. This may include the
relevant task, goal, and environment. Possible benefits are: easier comparison of systems and
implementations, processing of corpora, or more mutual applicability and transferability of
software tools or theories based on the framework.

2.2.2 Abstraction

Furthermore, if the framework would allow abstraction (i.e. simplification with as little loss of
relevant information as possible) of specific aspects of the interaction, then interaction models
may be understood more easily in some respects. For example, it may lay a stronger link
between NL and other types of HCI, allow abstraction from content or modality in multimodal
interaction, or enable a more balanced choice of evaluation metrics.

2.2.3 Modelling human users

If the framework would explicitly incorporate description of features or variables of human
cognition, it may provide a means to understand, model, and generally talk about human
cognition. It might provide a basis of understanding and possibly predicting aspects of indi-
viduals and individual differences. It might also provide a basis for forming criteria for when,
or reasons why, some types of interaction may or may not work in some situations.

2.3 Overview of the current text

Part I describes various theoretic views of and approaches to human cognition, human inter-
action with the environment, and communication. This should give a notion of the available
intuitive ideas and concepts being used in the relevant areas. The areas that have been con-
sidered relevant up to now are: theories related to cognition, HCI, formal communication
models, agent models, and semiotics.

Part II gives an overview of real situations, existing interaction strategies and dialogue sys-
tems, and existing HCI methodologies, methods and tools. The emphasis of this part is
practical, explaining real human/computer systems, their architecture, and how they are and
can be built.

5

Part I

Theories

In this part, we will look at cognition, interaction, and communication. In our terminology,
cognition is anything that goes on inside the human mind. A cognitive framework is any
theoretical framework that helps in explaining aspects of cognition. Communication is similar
to interaction, but implies meaning and cooperation: the parties involved must understand
and meaningfully react to each other in a certain sense. Interaction is a more general term,
and covers any kind of interaction, whether possibly meaningful or not.

3 Cognitive frameworks

3.1 Cognitive psychology

The best-known cognitive framework is cognitive psychology. It is the study of human
intelligence, viewing thought and intelligence as computation (Pasquini et al., 1998). This
is in clear contrast with its predecessor, behaviourism, which effectively denies that there is
anything substantial going on inside the mind. The traditional viewpoint is that ‘computation’
is analogous to symbol manipulation as found in classical AI.

In an introductory text on cognitive psychology, one typically finds the following aspects of
human cognition (Veer and Lenting, 1995):

• Perception and primary memory: The human sensory apparatus has relatively well-
measured properties. Sensory data is apparently stored in great detail for very short
amounts of time, like a few hundred msec. This is called primary memory. The recog-
nition of elements in the environments, sometimes called ‘gestalts’, like visual objects,
letters, and sounds, depends on the raw sensory data and the situation or context in
which the data is received.

• Short term memory (STM): Some perceptions get stored (‘coded’) into the STM. It has
only a limited and fixed capacity: any individual has between 5 and 9 memory segments,
called ‘chunks’. When chunks are somehow too similar, they may be confused and the
capacity will be less. Coding implies a great deal of interpretation, and depends greatly
on knowledge already present. It is generally assumed that experts in a domain need
fewer chunks to code the same information, because they have a larger repertoire of
possible chunks available. When the memory is full, chunks are discarded. In the most
basic STM model, these are the chunks that haven’t been used for the longest time.

• Long term memory (LTM): Transfer from STM to LTM occurs slowly and after repe-
tition. The LTM contains well-structured episodic and semantic information. The high
degree of structure is related to people’s use of analogies in understanding. A related
concept is ‘consistency’: information to be learned is consistent if analogies can be used
effectively. Episodic aspects of the LTM are sometimes modelled using event schemas,
which are like event sequence templates, or production rules, which are like IF. . .THEN
clauses. Semantic aspects are often modelled using semantic nets, which are labelled
graphs. The nodes in semantic nets are concepts, and the arcs are relations, labelled
with the type of the relation, like ‘subclass’, ‘instance’, ‘is-part-of’, etc. The nodes are
thought to be closely related to nouns in language use, and to objects in the physical
world. Episodic aspects of language are thought to be related to episodic memory. This

6

implies that the surface form of language does not have an independent meaning in the
thinking process, but is tightly coupled to real-world imagery.

• Reasoning: Reasoning is seen as activity of a central symbolic processing unit, much like
many classical AI reasoning models. The processing unit has a limited capacity, and the
extent to which it is used is called ‘cognitive load’. High-level reasoning models, such as
agent models, often assume the existence of clearly-defined goals and intentions. This
is somewhat similar to the idea of Searle’s ‘intentional states’ (Searle, 1983). Many also
assume the construction and execution of plans, which are series of actions, in order to
accomplish goals. These are called plan-based models.

• Individual differences: Next to the knowledge structure and STM capacity, other dif-
ferences between individuals are identified. Some of them may change easily by means
of learning or training, while others may not. Some cognitive variables, from easily
changeable to unchangeable:

– knowledge: the presence of certain production rules, event schemas, or semantic
nodes.

– strategies: holism–serialism (general versus specific knowledge seeking)
– styles: field dependency (the extent to which people are influenced by the immedi-

ate context), operation learning (stepwise learning of procedures), comprehension
learning (discovery of general rules), reflection–impulsivity (accuracy versus speed),
and visual–verbal (preferring visual versus text representation).

– personality: capacity of the STM, intelligence, creativity, introversion–
extraversion.

• Error: People typically make errors on a regular basis. Error rate increases with higher
cognitive loads. Usually, two kinds of errors are distinguished, according to the cognitive
level at which they happen: there are slips, which are errors occurring in routine tasks,
and mistakes, which are planning and reasoning errors. In Rizzo’s lecture in (Pasquini
et al., 1998), there is a classification into three kinds of errors: slips, lapses and mistakes.
This more precise distinction is based on the existence of intentions and plans. A slip is
a mismatch between intended action and actual action. A lapse is a memory failure, in
which either the goal, the action to be executed, or the information needed to execute
the action is not in memory when needed. A mistake is a mismatch of plan or subgoal
with the main goal, which may occur either because of lack of knowledge of the situation,
erroneous knowledge, or faulty reasoning.

3.1.1 Extensions

However, people have argued that traditional cognitive psychology does not account well
enough for context. Other frameworks try to remedy the situation (Nardi, 1992): there is
activity theory (Kaptelinin et al., 1995), distributed cognition theory (Zhang and Norman,
1994), and situated action modelling. Basically, they assert that human cognition cannot be
seen as separate from the environment, in particular, the tasks and tools in the environment.
It is said that, as a human may shape a tool according to a task at hand, the tool will
also shape the human, as the human is restricted to working with the limitations of the
tool; humans and their tools co-evolve. Representation tools are a relevant case: an external
representation is read (internalised) or formed (externalised). Thinking is seen as an internal
activity with internal representations. Use of a specific external representation may make
cognitive tasks easier or harder, and may eventually shape thought. Consider the following
example: the two-player ‘game of 15’. In this game, there are nine numbers, 1 . . . 9. Each

7

player may in turn encircle a number. The player whose sum of numbers equals 15 first, wins
the game. As it turns out, this game is simply tic-tac-toe with a different representation.
However, one may expect that the original spatial version is quicker to understand and play
by most people than the numerical one.

One concrete example of the importance of context can be found in Rizzo’s lecture in (Pasquini
et al., 1998): he considers distinguishing coins. A traditional cognitive psychologist might
say that the distinguishability between two coins is adequately represented by difference in
measurable features, such as colour and size, assuming that the human mind simply computes
these to determine coin type. However, in reality, people’s ability to distinguish two types of
coins also depends on the existence of other coins: for example, if only one copper-coloured
coin type exists, people may confuse any new copper coin type with the existing one, even
though it is as different in size from the existing one as are any two of the existing silver-
coloured coin types.

3.2 Semiotics

Semiotics is the study of signs. The best-known people who have laid the foundation for
semiotics are Peirce (Peirce, 1958), Saussure (de Saussure, 1916), and Eco (Eco, 1976). For
a full beginners’ introduction to semiotics and some of its applications, see (Zoest, 1978).
In semiotics, a sign identifies something that stands for something else, when interpreted by
some individual interpreter in some individual situation. In its simplest form, a sign is a
2-tuple, consisting of: the form of the sign (the significatum), and what it stands for (the
denotatum). The precise form of the significatum and denotatum, and how interpretation
takes place, is not prescribed by general semiotics. In some semiotic theories though, a
sign simply stands for another sign. For any individual, anything that involves interpretation
may be called a sign: for example, smoke may be a sign of fire, a closed door may be a
sign of a certain person’s absence. This also includes signs of culture and convention, such
as language, road signs, etc., at least when they indeed are interpreted as such. Note that
the notion of the sign’s significatum in these examples already implies some (relatively low)
level of interpretation. Another sign may have participated at this level. In the first example,
it may have been a sign consisting of a significatum in the form of a retinal pattern and a
denotatum in the form of the concept ’smoke’.

Around this concept of sign, there are general classifications, some of which are used often.
We will discuss the particularly popular classification into syntax, semantics, and pragmatics,
and into icon, index, and symbol below.

So, firstly, semiotics identifies the existence of signs, in the form explained above, as units
in human interpretation. Also note that the idea of interpretation as replacing one sign by
another looks much like the symbolic processing paradigm of cognitive science. In these ways,
semiotics is a cognitive framework. We may also view signs not only as units of interpretation,
but as units of transmission by someone with the purpose of causing interpretation by another,
where transmission is the inverse process of interpretation. In this way, semiotics is also a
framework of communication. In both cases, semiotics by itself is a very loose framework, as
little is actually prescribed. For example, it is not prescribed when to identify something as
a sign, or as part of a sign, or as multiple signs, etc., so this is left to intuition or to other
disciplines. However, there is a body of sign classifications available in the literature: specific
signs are identified, described, and classified using semiotic concepts. Such semiotic theories
exist for psychology, music, cinematography, HCI, etc.

8

3.2.1 Icon, index, and symbol

Peirce classifies signs according to the relation between the significatum and denotatum: icon
(likeness), index (indirect manifestation), and symbol (relation by convention). Any sign
may be more or less iconic, indexical, or symbolic in nature. According to Van Zoest, this
classification is well-established because it has proven itself in practice. Each class may be

attributed certain extra properties (Zoest, 1978):

• icon. If the significatum looks or sounds like the denotatum, or has another such
likeness to the denotatum, then the sign is an icon. Example: a photograph of a person
may be a sign for that person. Iconic signs are easy to interpret and ‘seductive’.

• index. If the significatum is an indirect manifestation of, or is thought to be caused
by, the denotatum, then the sign is an index. Example: smoke may be a sign of fire.
Indexical signs are convincing, because they show us that something ‘really happens’.
According to Van Zoest, index is in a way similar to icon, because in both cases, signifi-
catum refers to manifestations of the denotatum, though it is not entirely made clear in
what way they are similar or different. In my own opinion, the distinction is practical,
according to the following criterium: with an icon, it is apparent that the icon is not
a manifestation of the thing itself, while with an index, the sign does appear to be a
manifestation of the thing itself. Example: seeing a person walk down the hall is an
index of that person being at that particular location. A photograph of a person is an
icon referring to that person. Seeing something that looks like a photograph of a person
is an index referring to a photograph of that person.

• symbol. If the sign is part of rules and conventions made by people, it is called a symbol.
Example: most English words are symbols. Since symbols are usually specially made
for communication, symbols may be transmitted more easily and in more sophisticated
ways than other kinds of signs. For example, to signify a person, it is easier to call
that person’s name than to draw a picture of that person. The name can also be
used in sentences, stating all kinds of things about that person. Though even Plato
was of the opinion that choosing iconic signs for representing something is superior to
choosing arbitrarily-chosen symbols (in our time, Plato might have been an advocate
of graphical user interfaces (GUIs)), Van Zoest also notes that people can get used to
symbols very well. For example, note that even in highly iconic languages, like Chinese,
many of the icons have changed so much in the history of the language that they have
become hardly recognisable as icons. Probably, the signs of the language have adapted
to increase efficiency of transmission and ease of reading, which are the more important
factors after a language user has gotten used to the signs.

3.2.2 Syntax, semantics, pragmatics

Syntax, semantics, and pragmatics are about sign systems (called ‘grammars’ in Van Zoest’s
terminology), rather than individual signs. Van Zoest calls them semiotic syntaxis, semiotic
semantics, etc. to distinguish them from the linguistic versions of the concepts. In semiotics,
these concepts have a more abstract and general meaning. First, of course, one has to identify
what is part of a ‘sign system’, and what is not. Examples of sign systems given in (Zoest,
1978) are: traffic signs (red for danger, circle for ‘forbidden’, etc.), fairy tales (they often
start with ‘Once upon a time...’, there’s usually a story with certain elements, etc.). Viewing
one sign system in isolation may not be enough, as sometimes, multiple sign systems work
together as a bigger sign system, for example, facial expression and tone may denote sarcasm,
possibly inverting the meaning of a spoken sentence.

9

• Syntax. Syntax refers to the rules governing the structure of the significata of a sign
system. Significata may seem relatively easy to analyse objectively, but there is no
meaning in identifying significata as part of a sign system without at least looking at
the semantics as well.

• Semantics. Semantics is the relation between significata and denotata of the signs in
a sign system, in relation to the other signs. For example, the reason for success or
failure of a sign transmission is a semantic issue.

• Pragmatics. Pragmatics refers to the relation between sign and sign user, in other
words, why does the user use a sign, and what happens when a user uses that sign?
Note that ‘user’ may both refer to a person who interprets a sign, and one who transmits
a sign. According to Van Zoest, pragmatics is a relatively ill-covered terrain in semi-
otics. One well-known pragmatical classification of sign transmissions (and language
utterances in particular) is the classification into locution, illocution and perlocution,
originally proposed by (Austin, 1962). Locution is the information contained in an
utterance. Illocution is the purpose that an utterance has, like informing, convincing,
requesting, or demanding. Another illocutionary classification is expressive (informing)
versus evocative (wanting to make the other party do something). Perlocution is the
actual effect that a statement has.

3.2.3 Syntax, semantics, and pragmatics in dialogue

In dialogue, utterances which influence or are explicitly meant to control the course of the
dialogue may be seen as pragmatical in nature, as they are a result of the goals of the
participants in relation to the dialogue. On the other hand, one can imagine that there are
rules governing dialogue control, which form a separate sign system.

Indeed, some people like to speak of ‘conversational grammar’ or ‘dialogue grammar’ to
describe patterns found in sequences of utterances. This dialogue grammar is on a different
level than the language grammar, and amounts to a classification of utterance types (for
example statement, question, or affirmation) and possible sequences of these. Some criticism
can be given to the ‘dialogue grammar’ view:(Good, 1989). See fig. 1 for a schematic view of
this idea.

4 Communication

4.1 Abstract models

Communication complexity (Kushilevitz, 1997) addresses how two parties could compute a
function, while each party only has a part of the needed information, with a minimum amount
of communication.

Information theory (Shannon and Weaver, 1964) is a mathematical theory of computer-
computer communication, but it has had some impact on people’s thinking about human
communication as well. It deals with efficiency and reliability of the communication of essen-
tially raw data. One of the main ideas is that a well-expected event contains less information
than a little-expected event because it can be shown that it can be coded more efficiently.
The theory also addresses how redundancy can be added to communicate reliably over a noisy
channel.

10

Syntax of dialogue grammar

Pragmatics of control

Semantics of dialogue grammar

Semantics of utterance

Syntax of utterance

Pragmatics of dialogue

Figure 1: Levels of semiotics in dialogue
Possible placement of the linguistic and dialogue sign systems in the ‘dialogue

grammar’ view. The arrows stand for ‘is derived from’ or ‘leads to’. The previous
dialogue utterances are not represented in this graph, but are assumed to be known.
Note that both syntax and semantics of the single utterance are needed as input for
the interpretation of the dialogue sign system. For example, a surface feature such

as a question mark may indicate an intention to provoke an answer, though,
depending on the meaning of the sentence, it may also happen to be meant as a

rhetorical question.

4.2 Communication and cooperation

Some analyses of cooperating human behaviour exist, see for example (Darses et al., 1993)
and (Karsenty, 1993). In these particular cases, the purpose is to gain insight in HCI issues.
The article (Darses et al., 1993) analyses cooperating human partners in design dialogues
and advisory dialogues, in a tutor-tutee setting. The data was segmented by hand into
Basic Cooperative Behaviours (much like illocutionary acts, see section 3.2) and classified
into one of 8 types, and the segments grouped into Basic Cooperative Interactions (much like
subdialogues) and classified into one of 11 types. Various qualitative observations are made
about tutor-tutee dialogues.

Well known are the Gricean cooperative principles (Grice, 1975): quantity (make response
exactly as informative as required), quality (do not lie, do not state something you are un-
certain of), relation (be relevant), manner (avoid obscurity of expression, ambiguity, be brief
and orderly, etc.). Grice also discusses relation to other principles, and clashes and violations
of principles. The principles can be said to have the common basis of maximising effective
communication. The Gricean principles imply an understanding of the other participant’s
intentions. However, they do not explicitly say when the cooperating partner should take
initiative.

Castelfranchi (Castelfranchi, 1991) decouples linguistic cooperation from goal-level coopera-
tion. For example, compliance of language utterances (taking desires ‘literally’) may mean
uncooperativeness at the goal level. He argues cooperation may or may not exist at the mon-
itoring level (checking whether information is received), linguistic level (following of orders),
and at the goal level independently. Note that he distinguishes between these three levels
implicitly. Explicitly, he distinguishes only between level one and level two/three. He argues
that his view is in conflict with most views of cooperative AI, which assume cooperation at the
first two levels, but ignore the third. However, what is usually called ‘cooperative behaviour’
in NL systems also encompasses tracking the user’s implicit goals and plans.

11

Some theories address ways of tracking and aiding a person’s intentions. One is missing-axiom-
theory (Smith, 1996), which is a theory of human reasoning. In this theory, goals are modelled
as the intention to prove certain propositions. Wanting to obtain missing information (missing
axioms) needed to prove the propositions is what results in dialogue. A related idea can be
found in (Dessalles, 1998): here, it is proposed that cognitive conflict drives dialogue. An
attempt to form a complete executable model of cooperative communication is found in the
DenK project (Bunt et al., 1995). DenK includes NL parsing, the result of which is represented
in underspecified language form (ULF), and belief modelling and visual knowledge modelling,
using type theory to represent knowledge.

When communicating, people adapt to a certain extent to the other participant. This is
a problem when envisioning new systems using previous experience. An example of lexical
accommodation can be found in (Fais and ho Loken-Kim, 1995): people adapt their word
usage to their dialogue partner. The cause that is suggested in this article is social approval.

4.2.1 Cooperative agent models

The origin of the term ‘agents’ lies in AI, where people found out that large knowledge bases
became unmaintainable by a single inference engine, because they would become intractable
or inconsistent. As a way around the problem, multiple inference engines (agents) with
private databases and negotiation protocols were introduced. In computer science, use of
the word ‘agent’ has recently become more fashionable, and is probably being used for many
more things that it originally was. It is sometimes even used as a new name for the more
established concept of module or subprogram.

There are several reasons for adopting the concept ‘agents’. They are software engineering
(as an alternative and extension to the object-oriented view), social and emergent system
modelling, design of negotiation systems and protocols, and user interface modelling.

In all cases, ‘agent-oriented’ it is a metaphor to aid in thinking, like ‘object-oriented’. There-
fore, it is no surprise that the term ‘agent’ is based on the intuitive, possibly naive conception
that people have when they think of the word ‘agent’. Here, we assume any agent has at least
one of the following qualities:

• ‘autonomy’ or ‘pro-activeness’: it is able to initiate relatively complex actions, or initiate
actions without needing a specific trigger or command, for example after waiting a
certain amount of time.

• ‘intentionality’: it is able to reason, and have explicit or complex intentions.

• ‘communicativeness’: it is able to communicate complex semantic and pragmatic infor-
mation or is capable of negotiation with other agents.

Possible benefits of agent theory for dialogue system development are:

1. Modelling of cognition. When human and computer are viewed as two agents, the
communication between them can be modelled using some of the agent theories.

Ex. It is important that intelligent agents should communicate their own view in a
clear way. The two parties usually found in NL systems are like agents in this respect:
the system should understand how the user thinks, and especially when the system’s
understanding starts failing, it is important that the user understands how the system
‘thinks’.

12

Ex. The protocols used are often a kind of formal versions of the ideas found in dialogue
systems. Analysis of the workability (like self-consistency or completeness) of such
protocols may be extendable to those of NL systems.

Ex. Existing agent implementation languages may be used to easily build prototypes
of interactive systems.

2. Modular design. Which parts of the total interface know or need to know of each other?
Should the different parts of a program that perform different functions be explicitly
presented to the user as such?

Ex. Some models assign roles to humans and computers after a first stage of design.
(Palanque and Bastide, 1996) even uses formal models to assess this kind of design
decisions.

Ex. Anthropomorphic interfaces, for example in a virtual-reality (VR) environment,
may be directly modelled using agents.

3. Multiple parties. It might be beneficial to be able to incorporate the possibility of more
than one human party into the framework.

Ex. In a VR environment with multiple computer and human agents, all parties may
be viewed as agents.

We continue with an overview of existing agent systems, models, and theories.

(Norman, 1994) discusses social and ergonomic aspects of humans using computer agents.
Some guidelines given are: keep a feeling of control, make sure people don’t overexpect
regarding agent’s intelligence. Safety and privacy issues are also discussed.

A model of psychological agents is introduced in (Watt, 1997). The article addresses means to
integrate human and computer parties effectively. It is argued that computer agents should be
able to communicate with humans using means that are native to humans, because this would
allow integration in human environments. Agents are classified by the number of understand-
ing levels they incorporate. The levels are, from low to high, behavioural (any program),
intentional (with reasoning engine) and psychological (able to understand/be understood by
humans). A scheduler agent Luigi is explained in this article, though not in much detail.

A formal model of social agents is described in (Dignum and Linder, 1997). This model
has four levels: informational (belief and knowledge), action (temporal aspects, including
possibilities, agent actions and cause-effect relationships), motivational (wishes and goals),
social (illocutionary acts: commitments, directions, declarations, assertions). Some related
approaches are summarised also.

The PAC-Amodeus model (Nigay and Coutaz, 1997) is a compositional model for software
and user interface design. PAC stands for Presentation-Abstraction-Control, referring to the
composition of a basic unit (the agent) in a PAC specification. Note that this looks much like
some of the Seeheim models discussed in section 5.2.1.

The Cyc project (Guha and Lenat, 1994) aims at providing an engine that allows common
sense reasoning using complex inference over a huge database of logical statements. It is
argued that such a large amount of common sense is needed to allow any two agents to
communicate. Internally, Cyc is in a way also agent-oriented, as multiple independent sub-
databases are maintained.

An article focussing on agent communication languages is (Nwana and Wooldridge, 1997).
It is argued that cooperating multi-agent systems imply complex communication, because
agents can not know everything that is relevant to the global task. Agent communication
languages, ontologies, and software tools are reviewed. This includes Knowledge Query and

13

Manipulation Language (KQML), which is like speech act theory. Each KQML message has
illocutionary meaning, which is explicitly stated in the message. Other information about
the message are: the body, the language in which the body is written, the ontology which is
to be used, and information about the dialogue that the message is part of. Also reviewed
are Knowledge Interchange Format (KIF), which is an interlingua for ontologies, and Cyc.

The article (Genesereth and Ketchpel, 1994) is also about agent communication, but specially
focusses on trying to set a standard for communication between heterogeneous applications.
This is done using a universal language, Agent Communication Language (ACL). ACL is
made up out of a lexicon, which may be selected from one out of multiple ontologies, the
language KIF, and a communication protocol using KIF which is similar to KQML.

The article (Barbuceanu and Fox, 1996) discusses COOL, an agent implementation language
which enables KQML-like communication, and cooperation and conflict management.

DESIRE (DEsign and Specification of Interactive REasoning components) is described in
(Brazier et al., 1995) and (Brazier et al., 1994). DESIRE is a design framework, complete
with diagram notation and executable specification language. The framework is based on the
‘shared task model’, i.e. a model of the (design) task that can be understood by all parties.

The task knowledge includes: information about the task structure, which should be hierar-
chical, with complex tasks (tasks which can be subdivided) and primitive tasks (which cannot
be subdivided further), the knowledge structures, the necessary information exchange between
the tasks, subtask sequencing constraints, task delegation constraints (specifying which agent
may do what).

This task knowledge can be specified in the specification language. Each task is mapped
1-to-1 to a component. As is the case with tasks, there are composed and primitive compo-
nents. Composed components contain: input/output interface (the interface to components
outside itself), task control structure (control flow constraints of the (sub)tasks known by
the component), the subtasks and their information links, and domain knowledge. Primitive
tasks may be implemented using conventional software.

Each component is specified in predicate logic, using sorts, predicates (relations), functions,
and constants. In order to allow flexible task allocation, information about task-knowledge
allocation and task allocation (which agent can and will do what) can also be specified.
Between the components there are information links. Each link links the truth value of one
component’s atom to one of another component’s atom. The mapping is changeable using
a translation table. Component-environment and component-human interaction can also be
described by viewing resp. the environment or human as a separate component.

The specification can be executed. The reasoning engine of each component entails object
reasoning (reasoning about states of variables), meta-reasoning, meta-meta-reasoning, etc.
using the specifications given.

There’s no complex negotiation between components built into DESIRE; communication
means sending or waiting for raw data of a specific type over each specific link. Agents
with complex negotiation will have to be implemented by hand, for example by implementing
a special kind of composed component (Brazier et al., 1995).

4.3 Natural language

Language allows communication to others, but language also seems to be closely related to
human thought processes, as advocated by cognitive science, see section 3. This seems to be
supported by experimental evidence from HCI, for example, there appears to be interference
of language use with thought (Ericsson and Simon, 1980). Thus, dialogue can be seen as

14

collective thinking (Allwood, 1995).

4.3.1 Underspecification, redundancy and error in language

According to (Levinson, 1987), people understate and oversuppose. If anything turns out to
be unclear, this will generally be detected later, and can be explained afterwards. Note that
it may be a significant problem finding out just what was and was not understood. For NL
systems, this means that good dialogue managing may compensate for bad speech or language
understanding (Fraser, 1995).

On the other hand, language contains a great degree of redundancy. It is often assumed
that redundancy is meant to provide more robust communication across everyday’s noisy
environment. The noise may sneak in at any level of communication: examples are speech
understanding trouble and misunderstood shades of meaning. This would also mean that
more efficient communication can and will probably occur in cases when there is less noise.
For example, when explaining something complex, it is probably best to define each word
you use precisely, and use very strict and unambiguous syntax, and while talking about
something routine or within a clear context, it is possible to skip a lot of words and generally
be unsyntactic.

5 Human Computer Interaction

An overview of HCI is given in (Shneiderman, 1998) and in (Veer and Lenting, 1995).
Overviews typically include models of human-computer systems, classifications of types of
user interfaces, and methods and guidelines to improve usability of a computer system. For
an example of user interface (UI) design recommendations, see (Roe and Arnold, 1988).

The article (Haan et al., 1991) summarises possible strategies to improve usability, which are:
user cooperation in system design, prototyping, using analogies or metaphors, using guidelines
or standards, or formal task-goal modelling coupled with metrics.

Generally, what is usually called ‘HCI’ focusses on more ‘classical’ user interfaces rather than
multimodal and NL interfaces. This is a problem, because much of it is based on experimental
findings, which cannot always be generalised easily. Still, it would be useful to understand the
relationship between these different kinds of interaction. For an overview of speech and NL
research topics in relation to HCI, see for example (Baecker et al., 1995). For an introduction
to dialogue system design, see (Bernsen et al., 1998). For articles on NL in HCI, see for
example (Aust and Oerder, 1995). For some examples of models and theories of semantics and
pragmatics in human-computer (and human-human) dialogue, see the workshop proceedings
(Hulstijn and Nijholt, 1998).

5.1 General criteria that determine usability

Well-known in the field of usability of computer systems is Jakob Nielsen (see for example
(Nielsen, 1993)). For Nielsen, usability is part of ‘usefulness’ which is in turn part of a bigger
system acceptability scheme, distinguishing ‘social acceptability’ and ‘practical acceptability’.
Usability is classified into: easy to learn, efficient to use, easy to remember, few errors, and
subjectively pleasing. Note the distinction between learning and remembering: learning in-
cludes learning the general concept of the system, while remembering is only remembering the
fussy details, while the general concept is already known. The criterium ‘easy to remember’
is therefore especially important for casual users.

15

The criteria most often found in other literature are effectiveness, efficiency, satisfaction
and learnability (Jones and Galliers, 1996). Variations on this theme exist. For example,
there is Relevance, Efficiency, Attitude, Learnability (REAL) (Ek, 1997) and functional,
easy to use, learnable, pleasant to use (Haan et al., 1991). Note that the aspect effec-
tive/relevant/functional is not included in Nielsen’s view of usability. For Nielsen, this is part
of a more general aspect, usefulness. Note also that error is no longer a separate category.

The article (Carlson and Hall, 1993) tries to determine a finer-grained covering set of criteria
by means of a review of existing literature. These are user performance (degree of success
or number of mistakes or time spent in error recovery), reliability (system does what user
intends), stability (system guards against damaging actions or allows easy recovery), power
(amount of functionality and number of different ways to achieve something), speed (speed in
executing the user’s commands), efficiency (speed with which the user can control the system),
effectiveness (time taken by the user to accomplish a task). The tradeoff relations between
the criteria are explained. The criteria consistency, flexibility, ease of use, ease of learning are
argued to be contained in the others. However, the argument for ease of learning is not quite
convincing: it is more than the combination of reliable, stable and effective, because these
do not imply a good learning curve. The satisfaction/attitude criterium is not accounted for.
Note that consistency is usually not seen as a general usability criterium but as one of the
means to achieve usability, see section 5.2.

5.2 Separation of interface and the computer’s internals: the UVM

Users, and often the interface designers themselves, typically don’t want to concern themselves
with the details of the underlying system. Rather, some HCI designers like to talk about a
user’s conception of the system as fully separate from the system, and have a separate model
for it. This is called the conceptual model or User’s Virtual Machine (UVM). This is the view
that a person has or should have of the system he/she is using. The UVM can be designed
independently from the actual system according to ergonomic principles.

One of the most important principles for UVM design is consistency. Consistency means that
the different actions and representations in the UVM are somehow analogous to other actions
and representations. This should make the system easier for people to learn, understand, and
remember. Note that ‘analogous’ is in principle a highly intuitive concept, but its meaning
is often quite clear in practice. Example: In a command-line system, it would be consistent
to have the source operand always in front of the destination operand, and the command
line switches always in front of the operands. One can imagine that a command-line system
in which the order of these operands is different for each command, is much harder to use.
Analogy can refer to both the relation between different features within the UVM, or to the
UVM in relation to everyday life. The last form of analogy is called metaphor.

However, care should be taken that the actual system will be able to comply to the UVM.
Often, it turns out that it is not fully possible to hide the system internals from the user.
This may happen in the following situations (note that this classification is my own):

• When the UVM is not watertight, and some of the internals show through in unexpected
places, presenting a particularly inconsistent system to the user.

• When it turns out that functionality is required that is quite possible using available
tools, but is not within the part of the interface that is designed according to the UVM.
Even while it may be consistent, a beginner-friendly UVM usually covers only a subset
of functionality. The user has to learn how the system really works before being able
to understand the special tools.

16

• When things go wrong. Either internal messages suddenly come pouring out, or the
nature of the system errors, or even the errors themselves, are hidden. The user is
baffled, but does not get the information required to take actions to repair the error.
This problem is addressed in more detail in (Lewis and Norman, 1986).

One may expect that these problems get worse when the UVM is farther away from the real
system, or when the possible user tasks are more complex. One way to prevent them would
be to design the UVM carefully, taking into account the system internals as well.

5.2.1 Seeheim-like models

This is a class of HCI models which model human-computer interaction as two-party com-
munication, described as flows of specific kinds and levels of information between software
components and the human. Components typically include presentation, domain, and inter-
action handlers. One of the first and best-known is the Seeheim model–hence the name of
this section. This model, along with some others, is described in (Encarnacão, 1997). The
Seeheim model basically consists of four components, connected serially as follows: the hu-
man, the presentation component (lexical level), the dialogue component (syntactic level),
the application interface (semantic level), and the computer program. The other models are
rather similar to the Seeheim model, but are more elaborate. They include: two versions of
the arch model (this model, specifically meant for modelling adaptive user interfaces, has sim-
ilar components, represented as an arch bridging between the user and the system), and the
triple agent model (which consists of three components: the user, the user discourse machine,
and the task machine). The purpose of such models is usually to model proper distinction
between the UVM and the underlying system. Some of these also model the user in terms of
the same kind of components as the computer. This more symmetrical view is closer to agent
models, discussed in section 4.2.1. The difference is that they always model a single human
and a computer party, and that they do not explicitly refer to the concept of agent as used
in typical agent models.

The article (Waugh and Taylor, 1995) introduces a layered feedback model of communica-
tion. In this model, three theories are examined and brought together: Norman’s human-
computer hierarchical feedback theory (goal-intention-action-feedback-evaluation), Layered
Protocol (LP) (a two-party cooperation model like Norman’s feedback theory but with par-
allellism and information integration within each party and ‘virtual communication’ between
similar levels of the two parties (‘real’ communication only occurs at the lowest, physical,
level)), Perceptual Control Theory (PCT) (a human is modelled using a hierarchy of Elemen-
tary Control Systems, each of which stands for an activity related to other activities by a
task-subtask hierarchy).

In (Diel et al., 1993), an object-oriented UI specification language is described, with the main
goal of separating program from user interface. The UI is specified by specifying objects out
of four main types: Abstract (modality-independent), Data (specifies data structures), View
(which of the items of the Abstract object should be viewed), Presentation (implementation
of view). The bulk of the interaction should be implemented in the Presentation objects.
Some related models are mentioned also. These are Seeheim, Model View Controller, PAC,
Tube UIMS, ScreenView, MacApp, InterView.

5.3 Cognitive psychology in HCI

Cognitive psychology and HCI are much related, but often, the contribution of cognitive
psychology to HCI design is implicit or indirect. Sometimes however, cognitive psychology

17

concepts are translated directly to HCI guidelines. Some examples of the latter case are given
here.

In (Nielsen, 1993) for example, it is argued that gestalt theory should be applied to design
layouts, memory load should be minimised, and the frequency and consequences of slips should
be minimised by good interaction design. In ‘chunking and phrasing in HCI’ (Buxton, 1986),
the concept of chunking is translated to: one should design possible actions in the interface in
such a way, that they correspond one-to-one to chunks in an expert’s memory. This enables
quicker learning. In ‘designing for error’ (Lewis and Norman, 1986), the distinction between
slips and mistakes goes parallel with a distinction of feedback needed to enable the user to
recover from an error.

5.4 Cinematography in HCI

Some people argue that ideas from cinematography and theatre can effectively be used for
HCI. These ideas can be divided into two kinds: adapting the design paradigm, or adapting
practical principles, such as filming techniques.

The book (Laurel, 1993) argues for adopting the design paradigm of structuralist theory
of theatre. Basically, the human and computer (or rather, representations of ‘agents’ by the
computer) are seen as analogous to agents participating in a play. One of the main points made
is that the traditional use of metaphor is insufficient for designing easy-to-use systems, because
human-computer activity is necessarily different from real-life activity. The alternative would
be to design the metaphor as a deliberately and carefully simplified and modified caricature
of reality. Another main point can be seen in the fact, that the word ‘human-computer
interaction’ is deliberately replaced by ‘human-computer activity’ throughout the book. The
main purpose of this is apparently to advocate an integrated view, in which the human is
supposed to feel part of the action, rather than feel that the computer is something separate
which has to be communicated with (as is stated in the book, ‘see the computer as a medium,
not as a tool’). More detailed adoptations of theatre theory include the notions of formal
cause (form), material cause (the materials used), efficient cause (the way in which they
are implemented by the actors) and end cause (the purpose); probability and possibility;
complication and resolution; discovery, surprise, and reversal; the effect of constraints, etc.
However, the examples given are not quite concrete enough to show how this theory is an
actual improvement of current practice in HCI development, nor are the illustrations of the
‘failures’ of traditional HCI always quite accurate.

An example of the use of practical principles of cinematography in HCI can be found in (May
and Barnard, 1995). The main idea pointed out in this article is: make sure of cognitive
congruence. Two examples are given: a new object that should be in focus should start
at the same screen position as the previous object that was in focus, and continuous sound
should remain continuous during change of viewpoint.

5.5 Semiotics in HCI

Some material exists that tries to couple semiotic theory with HCI, for example (Andersen,
1990), (Uzilevsky, 1994), and (Ehrich and Williges, 1986) chapter 5. Possibly, the concept
of ‘signs’ may aid in forming a more general understanding of, and relations between human
cognition, HCI, NL, and multimodal interaction.

In (Callahan, 1994), the relevance of the sign type classifications icon, index, and symbol for
HCI is addressed. It is argued that the choice of sign type in a user interface (for example,
direct manipulation is mostly iconic, command line is mostly symbolic) influences the kinds

18

of interaction that are possible or feasible. For example, a point is made in favour of using
symbols (words) rather than icons (pictures), because if you give something a name, you may
give the user an opportunity to talk about it, using the superior techniques that symbolic
communication enables.

19

Part II

Systems

6 Systems

6.1 Purpose

Many HCI analyses and models are based on the assumption that there is some concrete task
to be achieved or problem to be solved (task-oriented or cooperative problem solving models),
while some focus on vaguer tasks, like advisory, exploratory, and learning tasks. (Walker and
Whittaker, 1990) contrasts properties of advisory dialogues (AD) and task-oriented dialogues
(TOD).

Some task-oriented NL dialogue systems can be found in (Fischer and Reeves, 1991), (Sikorski
and Allen, 1996), and (Stent and Allen, 1997).

Relatively often however, NL, multimodal, and ‘intelligent’ interfaces are used for the classes
of less well-defined tasks.

One is evaluation-oriented information provision (Jameson et al., 1995), which means infor-
mation provision specifically meant to assess a certain situation, such as personal assistants
or sales assistants. Another well-known example is expert systems (Fass et al., 1996).

Often found is information retrieval (IR) (Bouzeghoub and Metais, 1995). (Androutsopoulos
et al., 1995) gives an overview of existing IR systems. A more specific domain is NL database
query (NLDB) system for network management (Chau, 1993). This article also lists general
advantages and disadvantages of NLDB: Advantages are adaptation to user domain knowl-
edge, no learning time and remembering commands, and contextual ability. Disadvantages
are: the imperfection of NLP technology, because there are hard-to-avoid ambiguities at all
levels: unambiguous generated language looks awkward, and users always make (grammati-
cal) mistakes. Another is users’ overestimation of system capabilities.

In educational research, much material concerns instructional dialogues. (Beun et al., 1995)
contrasts instructional with informational dialogues. In instructional dialogues, the tutor
typically provides information and then asks questions about the subject matter, after which
a dialogue may occur. Unlike informational dialogues, the first information is given sponta-
neously, i.e. without a query, and questions are asked by the one who gave the information
(the tutor), because the tutee usually doesn’t react spontaneously. So, the tutor usually takes
initiative even while the information to be conveyed is usually complex. The student’s current
knowledge and learning abilities will have to be understood well by the tutor. A particularly
subtle technique in instruction is pedagogically motivated misrepresentation (PMM). (Gutwin
and McCalla, 1992) explains how and when PMMs are used, and a system that uses them
is presented. More specific examples of instructional dialogue are: design instruction (Lee,
1995), optics instruction (Reiner, 1995).

6.1.1 Cooperativeness

In some systems, and especially in NL systems, cooperativity is explicitly modelled. For a
taxonomy of cooperative response types, see (Yamada et al., 1993).

Much of the basic ‘cooperative answers’ as referred to in NL (and sometimes command line)
systems can be seen as equivalent to browsing in GUIs. In GUIs, data that is related to the
data requested is displayed on screen while the user is selecting the request. For example,

20

users select a specific entry out of a list of files, emails, or icons. If the user is not quite
sure what to select he/she is enabled to browse. The linguistic equivalent of browsing is
the computer coming up with data that may be useful in response to a not-quite-valid or
imprecise request. In other words, cooperativeness is the same as ensuring visibility. See for
example (Wolf et al., 1995), where a voice-driven email system was tested and was compared
to its graphical equivalent. ‘Visibility’ is shown to be an issue in the voice-driven variant: one
has to: 1. make sure the user knows what the computer has understood, 2. give cues as to
where the user is in the interface, 3. for larger mailboxes, query commands plus cooperative
answers rather than browse commands would be more appropriate.

There is very little research on uncooperative dialogue systems: the most notable example is
PRACMA (Jameson et al., 1994), which tries to maintain discourse obligations while having
conflicting goals with the user (Jameson and Weis, 1995). The example application domain
is second-hand car sales.

6.2 Overview of existing systems

In this section, an overview of some major existing NL and multimodal projects and systems is
given. Other such overviews exist. In (Androutsopoulos et al., 1995), an overview of dialogue
systems for IR is given. In (Smith and Hipp, 1994), an overview of NL dialogue systems is
given.

The systems are summarised in the table below. The classification of the systems is divided
into application domain, technical abilities, and the strategies and styles used. Most systems
use a NL strategy, all systems use at least a NL style (see section 7 for definition of strategy
and style).

Abilities:

NLP Natural language parsing

DIS Discourse and context tracking, and negotiation

GES Gesture recognition

SPR Speech recognition

IMM Integration of multiple modalities (or sensory channels, for more detailed information
see section 7), either in the form of recognition or generation.

Strategies and styles:

PNT Pointing, including menus, tables, buttons, maps, drag-n-drop

VIR 3D, virtual reality

MUL Support for multiple participants

21

System, name and reference Domain Abilities Styles
N
L
P

D
I
S

G
E
S

S
P
R

I
M
M

P
N
T

V
I
R

M
U
L

Schisma: (Nijholt et al., 1998) (Lie et al.,
1998)

theatre booking x x x x

Dialogos: (Albesano et al., 1997) railway enquiry x x x
TRAINS93: (Sikorski and Allen, 1996),
(Stent and Allen, 1997)

route planning x x x

ARTIMIS: (Sadek et al., 1997) (Bretier and
Sadek, 1997)

telephone enquiry x x x

PADIS: (Bouwman, 1998) telephone enquiry x x x
COSMA: (Busemann et al., 1997) appointment scheduling x x x
CASSY: (Gerlach and Onken, 1993) pilot assistance x x x
WOMBAT: (Blandford, 1995) purchase planning x x
CARTOON: (Martin, 1997) map enquiry x x x
InterLACE: (Trafton et al., 1997) map enquiry x x x
ORIMUHS1 (Encarnacão, 1997) intelligent help x x x x
QuickSet(Johnston et al., 1997) war tactics x x x x x
Circuit fix-it shop (Smith and Hipp, 1994) circuit repair x x x

Schisma ((Nijholt et al., 1998), more specific information about the parser can be found in
(Lie et al., 1998)) is a theatre inquiry and booking system. Its language parser is based on
‘rewrite-and-understand’, which means any language utterance is rewritten, using production
rules, into a ‘canonical’ form. The dialogue manager is based on resolving unfilled entries
after a transaction is initiated. Schisma is currently being integrated with the Virtual Music
Centre (VMC), which is a virtual-reality version of the music centre building in Enschede.

Dialogos (Albesano et al., 1997) is a task-oriented railway-enquiry telephone speech system
which has been tested with a large user base.

TRAINS93 (Sikorski and Allen, 1996), (Stent and Allen, 1997) is a system for route planning
of cargo trains. TRAINS93’s dialogue manager (Traum, 1997) is described as a reactive-
deliberative dialogue agent. Modelled are social attitudes: mutual belief (grounding), obliga-
tions, and multi-agent plan execution. Formal descriptions of intention, commitment, plan-
ning and plan execution, goal satisfaction, failure, and repair are given.

ARTIMIS (Sadek et al., 1997) (Bretier and Sadek, 1997) is a telephone inquiry system. It is
plan-based, and is described as a rational communicating agent. It is reputed to be a good
system.

PADIS (Philips Automatic Directory Information System) (Bouwman, 1998) is a voice dialling
system, used as a test-bed for HDDL (High Level Dialogue Definition Language), developed
at Philips.

COSMA (Busemann et al., 1997) is a NL front-end for appointment scheduling applications.
Uses the InterRAP agent architecture as a basis. The program has to communicate with
applications and multiple users.

CASSY (Cockpit ASsistant SYstem) (Gerlach and Onken, 1993) tries to assist pilots in flight
planning and decision tasks. Its ultimate goal is to reduce error in the human decision-making
process.

WOMBAT (Blandford, 1995) is a decision making tutor/assistant (‘agent’) system, which
actually ‘abstracts’ from using full natural language, but instead, focusses on problem solving
and argumentation. Each party chooses from a set of canned sentences with parameters that
can be filled in at specific places. The system models user goals and beliefs and knowledge

22

about the situation. It decides what to say next by weighing the different options against a
Gricean-like priority-system (though the rules are somewhat more tailored to the ‘tutor’ pur-
pose). The system generates reasonable replies but does not support complex argumentation.

CARTOON (CARTography and cOOperatioN between modalities) (Martin, 1997) is a system
to assist in obtaining information from a map. The system attempts modal integration of
user input, which comes in the form of NL and pointing.

InterLACE: (Trafton et al., 1997) is a multimodal system, combining pointing on a map with
typed text. It includes a full natural language engine.

ORIMUHS1 (Encarnacão, 1997) is a generic intelligent help and support system for users of
complex software. It keeps a user, task, and discourse model to generate multimedia help.
It can also be given commands using speech, keyboard, and mouse. It is implemented as a
server, serving multiple individual users at the same time.

QuickSet (Johnston et al., 1997) is an assistant for planning war tactics. The user can supply
speech combined with gestures on a map. The gestures recognised are out of a limited set of
symbols, such as fortified line, area, tank platoon and mortar. The input from the different
modalities is unified to form a feature structure. This is called unification-based multimodal
integration.

The circuit fix-it shop is described in detail in the book (Smith and Hipp, 1994), along with
the underlying theories and ideas, and evaluations of the system. The application domain
is highly task-oriented, and consists of diagnosing and repairing an electronic circuit. The
user is capable of doing the physical actions to repair the circuit, while the computer knows
what to do. It is plan-based, assuming a single shared goal, and dynamically generating the
best next step, based on the current situation. An inference engine, combined with missing-
axiom theory, is the central mechanism for driving the dialogue. It is used to: determine
the next step in the task, keep track of user knowledge, and model dialogue focus. The
system allows mixed-initiative by distinguishing four modes, which augment the working of
the central engine. The modes are: directive (computer has control), suggestive (computer
suggests but user may change the course of the task or dialogue), declarative (the user has
control but the computer mentions relevant facts), and passive (user has control).

7 Dialogue styles and strategies

Classifications of dialogue strategies in HCI can be found in many HCI overview books. One
classification that is recommended often is the one by Shneiderman (Shneiderman, 1998). A
similar one can be found in (Veer and Lenting, 1995).

7.1 Mode, style, and strategy

Mode and style are sometimes used to indicate classification of surface features of interaction,
though the precise meaning varies. Indexical, iconic, and symbolic are sometimes called
modes (Callahan, 1994). Others call ‘interactive’ and ‘noninteractive’ modes. (Oviatt and
Cohen, 1989), for example discusses the effect of interactiveness on verbal explanations.

A classification of user interface types often found is: conversational, direct-manipulation,
command-line, question answering, menu choosing, and form-filling. In (Shneiderman, 1998),
they are called styles, while in (Veer and Lenting, 1995), they are called ‘paradigms’.

In (Androutsopoulos et al., 1995) (page 7), the advantages of NL are contrasted with those of
other interface styles. Some interesting advantages are given: NL is better for some questions,

23

which would require lenghty notation in other languages, NL discourse has context, which
allows briefer queries. An apparently similar contrast, namely conversational versus direct-
manipulation, is given in (Stein and Maier, 1995). However, here it is argued that the
conversational style can also be used in conventional GUIs. The GUI example given in this
article even uses a dialogue grammar.

In an attempt to get rid of the confusion, a terminology will be defined here. We will not
use the word ‘mode’. We will indicate the use of a particular (static) representation that is
used to communicate a state of the system to the user and vice-versa with the word ‘style’,
while we indicate the possible system dynamics, when viewed as abstract system states and
possible transitions between them, with the word ‘strategy’. In this view, the two discus-
sions summarised in the previous paragraph are really talking about different things: while
both are talking about dialogue strategy and style as found in dialogue-grammar models of
human-human conversation, (Androutsopoulos et al., 1995) is talking about natural-language
strategy, while (Stein and Maier, 1995) is talking about natural-language style combined with
GUI strategies.

7.2 Syntactic

7.2.1 Modality

What is generally meant by ‘a modality’ is a specific channel through which communication
can be conveyed. Typically, multiple channels may be identified, each with its own distinct
properties, and each, in some way, separate from the others. The first question that comes to
mind is: what channels are there? The answer probably depends on your viewpoint: in what
way are the channels meaningfully distinct and separate? We will not take one viewpoint
here, but instead, show some of the options available.

If we look at human perception, the most ‘objective’ answer is probably that a modality
corresponds to a human sensory and motoric subsystem, like the eyes, ears, hands, and
voice. When we consider a ‘deeper’ cognitive level, we might also say that, for example,
people think differently about written language than they do about graphs, even though both
are visual, suggesting another classification of modalities.

On the other side, if we are considering technological issues, we might view modalities as
corresponding to the computer’s input and output subsystems, like screen, speaker, keyboard,
mouse, and microphone. A classification according to a ‘deeper’ level of technological issues
could also be made, for example, continuous speech versus isolated-word speech, or screen
versus paper.

After having recognised the existence of modalities, some issues arise:

• Choosing between modalities. According to the situation, one modality may be
more efficient or comprehensive than another.

• Integration of modalities. In what way is or should the data arriving from the
different modalities be merged into coherent information?

A classification of the ways in which combinations of modalities can be used to convey infor-
mation is found in (Martin, 1997). He identifies equivalence (modalities can convey the same
information), specialisation (a modality is used for a specific subset of the information), re-
dundancy (information conveyed in modalities overlaps), complementarity (information from
different modalities has to be integrated to arrive at coherent information), transfer (infor-
mation from one modality is transferred to another), concurrency (information from different
modalities is not related, but merely speeds up interaction).

24

(Bernsen, 1996) presents modality theory, which classifies modalities according to both hu-
man and computer issues, for example, written text, typed text, typed keywords, continuous
speech, and isolated-word speech are different modalities. Properties of each modality are
given, so that the effects of a certain choice of modality or modalities can be predicted. The
emphasis of the article lies on the speech modalities, and on when to choose for or against
using speech input or output. Another article contrasting advantages and disadvantages of
voice to other modalities is (Cohen and Oviatt, 1995).

Using multiple modalities coherently in some way is called multimodality. (Nagao and
Takeuchi, 1994) gives a classification of the multimodal interfaces typically encountered:

1. NL and direct manipulation,

2. NL and contextual feedback,

3. NL combined with facial expression.

In the general case, multimodality helps to decrease ambiguity by supplying additional con-
text. The article itself addresses an example of the third kind. Examples of the first and
second kinds are given below.

An example of integrating gestures and natural language can be found in (Fahnrich and
Hanne, 1993). Another can be found in (Johnston et al., 1997), which is called unification-
based multimodal integration. This approach uses feature structures in which drawings are
incorporated as concepts. The system QuickSet, which is also described, illustrates the ap-
proach. (Lee, 1995) concerns the feasibility of combining graphics and NL in design instruc-
tion. Design activities are argued to be found as part of all kinds of problem-solving activities.
Design is argued to be impossible to explain and has to be learnt while doing. So, a ‘design
studio’, an environment for designing and learning to design, is argued for. Such a design
studio may be implemented on a computer. An analysis is given of human-human interior
design dialogues aided by drawings. The messages conveyed in the drawings are sometimes
quite subtle, and go beyond the usage of graphical symbols out of a limited symbol set, as is
assumed by a lot of gesture- and drawing-interpreting computer systems.

An example of the second class may be found in(Nagao and Rekimoto, 1995). Here, the
context is some nearby object. The interface is meant to act as if the user talks to the object
directly.

(Dybkjaer et al., 1995) addresses the effect that choice of representation modality has on the
language use of the user.

An example of modalities at a ‘deeper’ cognitive level is given in (Reiner, 1995), which dis-
cusses the use of different kinds of symbols in an optics learning environment. Disciplines
like physics and optics use a non-everyday set of symbols and expressions. It is argued that
symbols (’labels’) can be learned best by using them in communication. It is studied how such
means of expression can be acquired in a collaborative-learning setting, using a computer tool
to construct optics models. Four kinds of symbols are studied during the learning session:
graphical (using the program), mathematical, verbal, and physical (using real objects). The
introduction of new symbols in the course of the dialogue are plotted against time. Some
requirement relations between symbols are shown. The students appear to prefer graphical
representations.

Using multiple output modalities is called multimedia. See for example (Andre and Rist,
1995) and (Sutcliffe and Faraday, 1993). Generating multimedia presentations from task
plans using a generalised text-discourse generation method is discussed in (Rist and Andre,
1993). A cognitive-walkthrough method for designing multimedia is discussed in (Faraday

25

and Sutcliffe, 1993). Their underlying theory is that visual and text objects are interpreted to
form respectively objects and propositions, which are then integrated using rules from LTM
into ‘macro-propositions’, which are mode-independent. From there, a sequence of ‘macro
structures’ is formed, representing the discourse. The method is as follows: fist, make a task
analysis, then evaluate user attention, topic focus, argument repetition (is a concept repeated
at the right times and consistently?), and macro-proposition and macro structure forming (do
the propositions make sense?).

7.3 Semantic

(Rauterberg, 1993) proposes a semantic description of user interfaces, which can be used to
derive measures of user interface properties, such as interactive directness, feedback, flexibility
of dialog interface, flexibility of application interface. The main idea behind the description is
the identification of ‘object space’, ‘function space’ and ‘functional interaction points’. Note:
history is not accounted for in the model. For example, command-line interfaces should have
scored higher on feedback because they explicitly show history.

7.3.1 Redundancy and confirmation

The relation of redundancy with mutual belief is discussed in (Walker, 1992). It is argued that
informationally redundant utterances (IRUs) often occur in human-human dialogue. IRUs
are meant to make inferences explicit. For example, paraphrases occur often and are meant
to represent the conclusion that the hearer has drawn. (Walker, 1994) and (Walker, 1996a)
go on where the previous article left off, and discuss the relation between reasoning and
redundancy. It is argued that the occurrence of IRUs is also related to the trade-off between
cost of retrieval for the hearer and cost of communication for the speaker. This contrasts with
the assumption of omniscient parties.

(Smith, 1997) evaluates strategies for selection of utterance verification in case of speech
understanding uncertainty in the Circuit Fix-It Shop. It is not efficient or user-friendly to
verify everything, so, selections are made according to ‘parse cost’ (the unlikeliness that an
insertion, substitution, or deletion of a recognised word could have happened) and ‘expec-
tation cost’ (the unlikeliness that a specific semantic frame could occur given the previous
utterances). Experimentally, a combination of both proves best. Introduction of a variable,
topic-dependent, verification threshold is shown to make little difference. The remaining bot-
tleneck appears to be misrecognition of content words (like one digit for another, or one name
for another).

(Trabelsi et al., 1993) discusses heuristics for generating informative responses to failing
queries in NLDB. The kinds of failures are classified into: value (there were no matches
for a specific value of an attribute), condition (no matches for value in current context), at-
tribute (attribute does not exist), concept (concept or entity type is not known). Basically,
the solution to each is to state clearly the reason why the query failed. Repair is done using
lists of options to be selected until a complete query is specified or the user decides that the
option wanted is not present.

7.4 Pragmatic

Several varieties of plan-based models exist: one can model one joint plan, one plan per
agent, or multiple (tentative) plans for a single agent. (Ramshaw, 1991) discusses a plan
exploration model. This allows multiple and hypothetical plans. It has three levels: domain

26

level, exploration level, and discourse level. (Jameson and Weis, 1995) discusses discourse
obligations in noncooperative dialogues, which implies non-shared plans.

7.4.1 Initiative

Initiative, or control, refers to who is taking control of the interaction. Typically distinguished
are mixed-, user-, and system-initiative. (Kitano and Ess-Dykema, 1991) discusses a plan-
based understanding model for mixed-initiative dialogues. The model proposed allows non-
shared domain plans.

Mixed versus system initiative in NL dialogues is examined experimentally in (Walker et al.,
1997a). One particularly striking remark made here was that people found the pace of the
system-initiative alternative faster, even though the mixed-initiative was actually quicker. A
reference was made to similar findings in the case of GUIs (Smith, 1996).

7.4.2 Modelling of dialogue structure

Dialogue structure refers to the discourse structure of one participant, and to initiative and
initiative shifts between participants. (Passoneau, 1989) discusses discourse structure in rela-
tion to the discourse referents ‘it’ and ‘that’. Theory about the function of the two pronouns
is given. The article concludes with a set of rules relating pronoun to discourse center, center
retention, and antecedent. (Walker and Whittaker, 1990) discusses topic centering in relation
to mixed initiative.

(Karsenty, 1993) models interactive explanations using rhetorical schemas. Human-human
design dialogues and draft pictures were recorded and analysed using rhetorical schemas. It
was found that rhetorical schemas only explain dialogue goals, and not task goals.

The relation between communication goals and feedback is discussed in (Nivre, 1995). Com-
munication goals are classified into a three-level hierarchy: evocative (pragmatic), signalling
(semantic), utterance (syntactic). Feedback may concern each of these goals, and may be
positive (OK), neutral (inconclusive), negative (failed). Some combinations are not possible:
negative feedback on a lower goal implies negative feedback on a higher goal. The converse
goes for positive feedback. Veridical feedback is any feedback received; intentional feedback
is explicit feedback by the other participant.

(Bunt, 1995) argues for transparency and naturalness as the key concepts for successful inter-
action. To achieve this, it is argued that precise modelling of what is going on in a dialogue
is needed. Presented is Dynamic Interpretation Theory: the contextual aspects covered are
linguistic, semantic, physical, social, and cognitive context. Dialogue acts (one utterance may
consist of multiple acts) are classified into dialogue control and task-oriented dialogue acts.
A classification of acts is given.

In (Tillmann and Tischer, 1995), self-repair disfluencies (hesitations and repetitions) are mea-
sured in different control circumstances, which are using a button to shift control, using normal
conversation, and using normal conversation without a given problem to solve.

(Heeman and Allen, 1997) analyses speech to determine intonational boundaries (segment
the speech into phrases), speech repairs (self-repairs), discourse markers (these influence the
structure of the discourse) . They argue for the need of an integrated analysis, integrating
these three kinds of information.

In plan-based models, plans may include discourse plans next to task plans. For example,
(Moore and Paris, 1989) discusses text planning in advisory dialogue. A distinction is made
between intentional and attentional structure. A scheme is explained with which the system

27

is able to take task goals, text goals and text structure into account for generating text.
(Lambert and Carberry, 1991) discusses another plan-based model of dialogue, which has
three plan levels: domain level, problem solving level, and discourse level. (Lambert and
Carberry, 1992) continues on the previous model, which is extended for modelling conflicting
beliefs and negotiating about such conflicts, thus enabling negotiation subdialogues. Another
approach is found in(Kitano and Ess-Dykema, 1991), a plan-based understanding model for
mixed-initiative dialogues. This particular model also allows non-shared domain plans.

Another often-found approach to model the effect of dialogue utterances to the dialogue
structure is the dialogue grammar approach. Sometimes, the dialogue grammar approach
is meant merely to give some extra cues to predict control shifts. The types of utterances
identified have at least the distinction question–assertion. In (Jönsson, 1993), this approach
is compared to the plan-based approach. It is argued that, in practice, the dialogue grammar
approach works as well as the plan-based approach. Shifts in initiative are usually modelled
either by means of a finite state automaton or a hierarchy of dialogues and subdialogues.
(Walker, 1996b) contrasts a linear with a hierarchical model of control shifts. Since old
utterances are forgotten, it is argued that control shifts are never completely hierarchical.

(Walker and Whittaker, 1990) discusses the relation between centering and conversation con-
trol in advisory dialogues (ADs) and task-oriented dialogues (TODs). The utterance types
that are identified are assertions, commands, questions, and prompts. Control shift types that
are identified are abdication, summary, and interruption. Control shifts are either persistent
or temporary. In the case of temporary control shifts, the control is relinquished as soon as
possible. Possibly, these interruptions have a hierarchical structure. Apparently, interruptions
happen when there are problems with either the information quality or the plan quality. It is
shown that control-shifts have a specific influence on references. Also, control shifts happen
more often in ADs, especially summaries and abdications occur more often in ADs.

(Chu-Carroll and Brown, 1997) discusses prediction of initiative in collaborative (planning)
dialogues. A summary of previous work on dialogue initiative is given. It is argued that
task initiative and dialogue initiative have to be separated. A predictive-cue approach, which
is similar to the dialogue grammar approach, is proposed, obtained after annotating and
analysing TRAINS91 dialogues. Nine cue types, classified into three classes, are used to
predict initiative.

(Iwadera et al., 1995) divides a dialogue in components (acts or utterances) which each have
a type, and can be combined into higher-level structures, called moves and exchanges. The
theory classifies topics into short-term and long-term. The scope of a topic is determined
by the act-move-exchange-structure. Note: it is not clear how the theory deals with sudden
interruptions or changes of topic.

8 The development process

8.1 Description

There are soms studies that try to analyse the processes that developers (analysts, designers,
programmers) go through (Schooten, 1997). The following general observations are particu-
larly relevant:

• In typical development activities, developers should be able to choose what they want
to see and what they want to hide. This can range from something as simple as being
able to temporarily replace a part of the design by a single box or piece of text, to being
able to view a design from different complementary viewpoints.

28

• Experts on one field have problems understanding other fields. In HCI, the classical
example is HCI analysts versus software developers.

8.2 Prescription

We will define a methodology as a stepwise prescription of development activities. Method-
ologies may have various levels of detail and rigidity. For example, specific activities and/or
specific kinds of descriptions may be prescribed for each step. Various low-detail and general
examples can be found in Kaaniche and Mazet’s lecture in (Pasquini et al., 1998), some of
them prescribing a rather complex sequence of steps. Most often found, however, is the ‘de-
sign cycle’ that goes something like: analysis - design - implementation - evaluation - analysis
- The purpose of going through the stages systematically is to be able to gain maximum
insight needed to develop a successful system. Usually, one starts with the analysis stage,
analysing the system that is already present and has to be rebuilt, but in some methods, one
may jump in at any stage. Some variants are not cyclic, but finish at the evaluation stage,
assuming the problems found in evaluation are small enough to be fixed on the fly, without
requiring a reiteration. Some methods lump together the design and implementation stage
into a single stage, while others lump together the analysis and evaluation stage.

Analysis is finding out things about the current situation, which includes existing sys-
tem(s), task(s), and environment.

Design is describing a system. The description may be in the form of a specification of
constraints the system must conform to (this is usually called specification) or a first
description of the system to be built. Design is sometimes split into the separate stages
specification and descriptive design.

Implementation is design that leads to an executable specification.

Evaluation is analysis with the purpose of determining whether a (new or old) system
fits its purpose. This may mean evaluation of the implementation and the description
against the specification (testing or verification), or of the working system in its real
environment.

Why use a development methodology? (Tullis, 1993) shows that a naive choice of interface
strategy may not be the best one. In their experiment, naive designers turn out to be fond
of ‘drag and drop’, while evaluation points out that it is one of the slowest to use, nor is it
the strategy that the users prefer. Also shown in this study is a positive correlation between
user’s preference and efficiency.

The EAGLES handbook (Gibbon et al., 1997) proposes guidelines for specification, design,
and assessment (which means evaluation) of NL and spoken dialogue systems, as well as
practical tips. The book identifies and addresses three different kinds of dialogue systems:
menu, spoken, and multimodal. These are also contrasted with command systems. The
book gives some general recommendations for dialogue systems, as well as methodological
recommendations for building such systems. Possible purposes of development methodology
are classified into:

• Comparing systems to select the best one. Note that comparison is hard, as different
systems and the situations in which they work are generally too far apart.

• Diagnosing a system in order to improve it, which means making it either more effective
and efficient, or more general.

29

• Knowing which steps to take in designing a system from scratch.

Design strategies are classified into: design by intuition, by observation (analysing existing
corpora), or by simulation (also called Wizard of Oz (WOz) experiment; this means using
a human to simulate a computer, see section 10). Iteration in design strategy is also de-
scribed. Some issues concerning WOz experiments are addressed: a set of subject, wizard,
dialogue model, and communication channel variables for WOz are explained. An assessment
is described as consisting of two components: characterisation and assessment framework.
Characterisation consists of a list of system, user, task, environment, the resulting corpus,
and overall characteristics. Assessment framework consists of assessment situation, choice of
glass or black-box view, quantitative and qualitative measures, and methodological recom-
mendations. The quantitative metrics listed in the book are: average dialogue duration,
average turn duration, contextual appropriateness, correction rate, transaction success.

Group Task Analysis (GTA) (Veer et al., 1996b), (Veer et al., 1996a) prescribes a combination
of ethnography with more traditional task analysis methods and notations, like Hierarchical
Task Analysis (HTA), work flow analysis, and object modelling. Unlike the name suggests, it
covers both analysis and design stages, but does not prescribe precise procedures for specific
stages. Furthermore, one may jump in at either stage. The method does prescribe the
definition of two task models for each loop in the design cycle, and suggests various methods
for obtaining the knowledge needed to form these models. Task model 1 describes the current
situation, and is part of analysis. Task model 2 describes the functioning of the envisioned
changed system, and is part of design.

Task Oriented Modelling (Warren, 1993) (TOM) splits the problem to be tackled into three
models: domain, user, and device model. The development process is split into four steps.
The process may be repeated until the resulting system is satisfactory.

1. Preliminary models can be constructed using expertise or experience in order to aid
construction of a prototype system.

2. Real user behaviour with the system is observed. From these, the domain, user and
device models are constructed.

3. These three models are used to determine the value of the Domain Quality, User Costs,
and Device Costs metrics.

4. Redesign decisions can now be made, supported by the models thus formed, so no
further experiments are required.

In this article, the three models are not explained further.

Method for Usability Engineering (Lim and Long, 1994) (MUSE) is an attempt to integrate
HCI into structured software engineering methods. It is argued that in most methodologies
used in practice, the consideration of HCI issues is limited to the evaluation phase, which
is usually at the end of the design process. This means there is not enough human factors
input. In their own words, human factors are addressed ‘too little, too late’. In order to over-
come this problem, concepts, notations, and design procedures have to be integrated with
existing software engineering methodologies. MUSE’s emphasis is on defining procedures of
notational transformation, rather than defining HCI knowledge and methods needed to do
this successfully; it is assumed that the method is used by experienced HCI developers. The
general idea of MUSE is to incorporate both human and computer factors in the task and
domain models used in the development process. The basic conception of human and com-
puter factors is by a separation of: online tasks (with computer) and offline tasks (completely
without computer) tasks. Online tasks are split into interactive tasks and automated tasks.

30

A number of notations are suggested, in particular, semantic nets for domain modelling, and
structured diagrams for task modelling. The stages of the methodology are:

1. Information elicitation and analysis consists of the extant systems analysis, in which the
current version of the system and related systems are analysed. The main results are a
task description and an ‘extant generalised task model’ of each system. An extant gen-
eralised task model is an attempt to bring the task description closer to the envisioned
system by removing device-dependent details.

2. The generalised task model stage consists of building two task models: the target gen-
eralised task model, derived from the client’s wishes, and the extant composite task
model, which is an attempt to merge the extant generalised task models.

3. The statement of user needs stage results in plain text stating the user needs and a
domain of design discourse model.

4. The composite task model stage mainly results in a model of the complete system.

5. The system and user task model stage results in two models, the target system task
model (specifying online tasks) and target user task model (specifying offline tasks).

6. The interaction task model stage results in a detailed device-dependent task model,
with additional screen layouts at specific points in-between tasks.

7. The interface model and display design stages, which are iterated. They mainly result in
interface models (detailed models of dialogue in the form of task models), a dictionary
of screen objects, and pictorial screen layouts.

Integration with popular software engineering methodologies is discussed, in particular with
the Jackson Structured Development (the result is called MUSE*/JSD). The book ends with
an assessment of MUSE and MUSE*/JSD, though it should be noted that limited evidence
was available at the time.

8.3 Products of the development process

Specification, or modelling, is description of a system and context in any stage of the devel-
opment process, typically describing objects, processes, or constraints directly related to the
system.

Data collection is gathering raw data about the system which may be interpreted by the
developers afterwards. Sometimes, the data is gathered by humans, by hanging around, ob-
serving, and keeping a log, as for example happens in ethnographical methods. In other cases,
data may be collected automatically, by means of computer input logging or video cameras.
In any case, the experimental setup (or absence of any explicit setup, as in ethnography), has
to be specified, which describes how the data is obtained. After data is collected, it may be
interpreted, resulting for example in performance information (such as performance metrics)
or qualitative information (such as a specification). Data collection only happens in the
analysis and evaluation stage.

We define abstraction as simplification or reduction of information to filter out only those
parts that are the most relevant, as seen from a specific viewpoint. Specification necessarily
means abstraction, though some abstractions may be more explicitly or better chosen than
others. Note that data collection also implies abstraction, because, necessarily, not all data
is collected. It is important to realise that abstraction always implies throwing away data
that may actually turn out to be relevant. Abstractions are sometimes chosen according to
the same theory that underlies the design of the system that is being abstracted. If the

31

abstraction is wrong, the developers may remain blind to the real issues. So, it is useful to
be aware when abstraction is occurring, and to know the underlying assumptions.

8.3.1 Formal specifications

Formal specification is unambiguous and explicit, hence it allows exact reasoning and descrip-
tion. Sometimes such a specification is executable (which means it can be run on a computer)
as well. It is also possible to under-specify, explicitly leaving things unspecified, thus specify-
ing a range of systems, rather than just one. Underspecified specifications are generally not
simulable.

The article (Wright et al., 1997) shows an example of how formal specification may play a
role in the HCI development process. Formal specification (Z) is considered complementary
to non-formal empirical evaluation (cognitive walkthrough and usability inspection). Formal
modelling enforces precision, and going from an abstract to a concrete model shows possible
options clearly. Empirical evaluation shows what relevant aspects of the model are still
missing, and need further elaboration.

The article (Palanque and Bastide, 1996) argues for formal modelling of both the user’s task
(task model) and the system’s functionality using Petri nets. It is shown how these two
models can be combined to obtain a human-computer-interaction model with explicit and
even executable dynamics. This allows a clear view of what roles the human and computer
are playing, and may make remodelling by shifting tasks between human and computer easier.

9 Design and implementation

9.1 Design methods and notations

(Lauesen and Harning, 1993) argues that current UI design is mostly done either using formal
methods (which are not good for user-centered design) or using prototyping (which is not
structured enough for large systems). An attempt is made to supply an alternative by using
a variation on traditional design methods for user-centered design, participating the users
in the design process. Special care has to be taken to make sure the users understand the
specifications, i.e. the diagrams used in the design method have to be novice-friendly. The
notations in the method consist of:

1. user data model (the user’s relevant data and its relationships) preferably shown in the
way it may be shown in the real system

2. task list, together with a ‘formal’ check whether all data can be seen and changed to
make sure the task list is exhaustive,

3. information demand diagrams (which information must be visible during each task),

4. function diagram (like information demand diagrams but with the possible operations
that can be done),

5. screen outlines,

6. state diagrams,

7. syntactical design (binding the operations to modalities).

The article (Lim and Long, 1993) argues for using structured notations from software engineer-
ing for UI specification. In their view, structured notations may solve the lack of specificity,

32

descriptive scope, communicability, and maintainability of current methods. The notations
are intended to be read by the users as well. Examples given are: semantic nets, network
diagrams (DFDs), and structured diagrams (flowcharts).

In (Ehrich and Williges, 1986) chapter 3, a notation for control and data flow for specifying
dialogues, called SUPERMAN, is described. Chapter 5 describes language specification in
Backus-Naur Form (BNF) and by stating examples.

Some notations are simply programming languages, tailored for interaction design. Some-
times, the programs written in these languages are not quite fit for producing professional
products, because the languages are very limited, to keep them simple, but they are still useful
to create an approximation of an envisioned system which allows early analysis. Examples
are Speechmania (Philips, 1998), which is meant for NL dialogue design, and 3dt (Lewin,
1997), which is meant for dialogue design for more traditional user interfaces.

The article (Baekgaard, 1995) describes Dialogue Description Language (DDL). DDL consists
of three layers: the graphical layer, the frame layer, and the textual layer. In this article,
only the graphical layer is described, which is similar to a finite-state automaton. It is not
possible to describe mixed-initiative systems with this language.

The article (Palanque and Bastide, 1996) describes Petri nets to model both human and
computer activity in a global task. It is also shown how the Petri net can be used to provide
automatically-generated help on specific actions.

9.2 Design environments

The article (Kinoe et al., 1993) introduces a tool for both the analysis stage and the redesign
stage of (iterative) user-centered UI design. In the first stage, empirical data is segmented
(cut up in units according to the user’s basic subtasks) which are tagged (given attributes
according to the analysis model). This is done by hand with support by the tool. The results
can be ordered in several ways, and can then be reordered and commented on by hand.
Reordering is supported by a genetic algorithm that reshuffles orderings. The designers can
select the produced orderings that look best.

DIGIS (Bruin and Bouwman, 1993) (Direct Interactive Generation of Interacting Systems) is
an object oriented design environment based on the PAC (Presentation, Abstraction, Control)
model. UI design is argued to have 3 aspects: presentation, control flow, and interfacing
with application. Objects consist of attributes and access protocols. A protocol is described
using a regular expression that defines the allowable sequences of actions. On top of that,

higher-level tasks can be described as regular expressions of lower-level tasks.

AME (Martin and Winterhalder, 1993) (Application Modeling Environment) is based on
using traditional CASE-tools for object oriented (OO) analysis and design, combined with a
knowledge-based User Interface Management System. AME’s representations are split into
three levels: analysis/design, construction, and generation. In the analysis/design level, an
OO representation of the interface is constructed using object oriented analysis and design
tools. This can then be refined in the construction level. The generation level only generates
code. Note that there is no extra help for UI design except the ability of constructing an
interface rapidly, assuming that using OO as a paradigm is indeed a good choice.

10 Analysis and evaluation

The book (Jones and Galliers, 1996) addresses some methodological aspects of NL evaluation
in great detail. The book is mostly about speech recognition, language parsing, language

33

generation, and NL information retrieval (this aspect is the closest to NL dialogue).

First, terminology and experimental design issues are addressed. An evaluation has a setup
(environment of the system), system (including goal and identifications of subsystems), task,
and domain language. Evaluation is separated into three levels: the criteria, measures, and
methods levels. The criteria are the general requirements. They are classified into intrinsic
(related to system objective), and extrinsic (related to system function inside setup). Multiple
measures (or metrics) may be used to measure each criterium. Measures may be general (ap-
plicable to multiple systems), in the form of baselines or benchmarks, and can be compared
to exemplars or norms. A method is the way an experiment is designed. Evaluations are
classified into investigation (reviewing a system at work), and experiment (trying to figure
out how something will work). The factors that determine performance are classified into
system variables and environment variables. It is argued, though, that it is hard to identify
environment variables meaningfully. Note that a system may be viewed from different angles
and perspectives: the goals or interests of different users/people may be very different, im-
plying there is no one set of criteria that’s unequivocally important. For evaluation, generic
systems (systems which can be reprogrammed entirely) are a particularly hard case: possible
setups and environments may vary greatly, and cost of customisation is also important.

Evaluation tools are described next. For the purpose of comparative evaluation, these tools are
shared criteria, measures, and methodologies. General problems with the use of such tools are
incomparability of systems, or goals and setups that are too different. For basic evaluations,
there are: test data, evaluation data (this is test data with answers), benchmarks, test beds,
(support) toolkits. Tools from social science are: the general usability criteria effectiveness,
efficiency and acceptability, and the general validation measures reliability (are the results
consistent?), and validity (how good is the relation to criterium?). There is supposed to
be a norm value for each measure. Other things discussed are antecedent and intervening
variables, and quantitative and qualitative measures.

The book continues with a review of evaluations and evaluation methodologies in the lit-
erature. The only actual dialogue systems reviewed are database query systems. Typical
measures used are ratio of successful answers, percentages of utterances understood, duration
measures, problem complexity measures, and utterance rating (such as type of utterance and
correctness). An interesting measure is dialogue tree breadth, obtained by asking many peo-
ple what utterance should be next at a point in the dialogue. A particular problem is the
validity of using general measures, which may not be quite applicable to systems. For exam-
ple, a parser may yield output that works very well for the next subsystem in the chain, but
may look bad when viewed in comparison with a parser norm based on parsers with a slightly
different purpose or underlying theory. Summarising performance in only very few numbers
is dangerous: the numbers do not answer why a system has a particular performance, and
the numbers may not even be relevant, especially in view of variations in the larger setting of
a system.

Corpus issues are discussed next. Addressed first is design and purpose of Wizard of Oz (WOz)
experiments. The idea behind WOz is to assist evaluation by supplying corpora which can
be tested. The performance results can be gathered easily and may cover many aspects of
language processing. However, it is limited to syntax parsing, and the usual problems of
incompatible metrics are not solved. Also, domain properties are not accounted for. Further
corpus design issues addressed are using corpora and test collections, test suites and tools,
architectures (which means ways to build systems from components), and standards (such as
annotation standards).

Mega-evaluation, which is evaluation across many systems, is addressed next. Two models are
discussed: the hub-and-spokes model and the braided-chain model. In the hub-and-spokes

34

model, evaluations are considered to be linked (meaning that they are comparable) when
they have common data, tasks, systems, or metrics. The links can be mapped to a hub-and-
spokes map, with the hub standing for inter-system comparison, and the spokes for testing
data mismatch problems. In the braided chain model, comparison among different tasks is
modelled as well. Different kinds of systems can be ‘braided’ together by supplying the output
of one as input to another. This way, different kinds of systems can be evaluated stand-alone
as well as in combination with other systems.

Some final comments and issues on evaluation are given. In particular, it is claimed that
evaluation is generally task-oriented, and it is generally not clear how to decompose or identify
system and environment factors.

10.1 Some analysis methods and notations

The article (Frascina and Steele, 1993) discusses using task analysis for UI development for a
hospital information system. The old method (using paper instead of computers) was anal-
ysed first. The task analysis methods used is called TAKD (Task Analysis for Knowledge
Descriptions). It consists of: data collection and creation of a list of activities, then construc-
tion of a task description hierarchy from the activity list, and then an analysis of sentences
of Knowledge Representation Grammar, which are generated from the task hierarchy.

The article (Chase et al., 1993) aims at describing and assessing different user activity no-
tations from the literature according to: scope (what design activities/phases they support),
content (what design aspects/objects they can represent), and requirements (what kinds of
communication/documentation are required). A 3D chart is made with a (hopefully) cover-
ing set of criteria describing each of the three dimensions. Each intersection point in the 3D
cube can be given a value. The method was tested by measuring analysts’ agreement after
analysing User Action Notation (UAN) using the method.

A method for finding out and anticipating common errors by means of early experiments in
multimodal systems is described in (Trafton et al., 1997).

The article (Brouwer-Janse, 1995) describes a method to analyse problem-solving procedures.
First, data is collected by means of the think-aloud method, followed by an interview and a
retrospective report of the task. Analysis is done in two stages: first, the procedures used are
identified by analysing the data, then, each step in each procedure is classified into one of 24
‘subroutines’.

In (John and Marks, 1997), the effectiveness of some usability evaluation methods is com-
pared. The methods compared are: claims analysis, cognitive walkthrough, GOMS, heuris-
tic evaluation, user action notation, and simply reading the specification. Comparison is
done by determining whether problems were identified, whether the problems led to a design
change, and whether the design change was good or bad. The methods were tested on a
partially-implemented multimedia authoring package. The results are not clear-cut, but it
was concluded that they were generally unsatisfactory, especially since the ‘simply reading
the specification’ method seems to come out relatively well.

10.2 Data collection

Figure 2 shows the possible experimental setups and sources of experimental data. This only
concerns the evaluation of a one-on-one system, and the broader context of global goals or
organisational settings is not included. The different combinations of agents and data flows
shown in the figure will be explained below.

35

PP

S S

System

WOz

simplified system

User

user survey

corpus annotation

think-aloud

task
environment

user selection
simulation model

corpus collection

corpus collection
corpus annotation

formal description of system

program
WOz design

Substitute user

Simulated user

N/A

formal description of user

Subjective Verification

user survey

Cognitive simulation Glass boxand

Black box

Figure 2: Evaluation setups and data collection
This figure shows the different evaluation setups encountered. Circle = role. The
bold letters in each circle denote the agent that normally fills that role. Box =

evaluation method. P = Static properties of agent. S = State of agent. Arrow =
data flow. The text denotes the different options available for each data flow, agent,

or evaluation method. N/A = not relevant.

36

The following combinations of systems may be found:

• Wizard of Oz (WOz) simulation. One places a human where the computer normally
is. This is often done to obtain initial data for a system, when no working computer
system is available yet. WOz is only applicable to situations where the interaction
can be achieved relatively easily by a human, and relatively hard by a computer. It is
usually used for NL systems, and sometimes used for multimodal systems. A special
case is the ‘bionic wizard’, which is a human wizard, heavily aided by computer tools
to simulate the interface.

• Computer simulation. One places a computer where the human normally is. This is
attractive in the sense that human effort is greatly reduced. Usually, the system’s part
of the interaction is simplified.

• Verification or cognitive walkthrough. One uses a (possibly much simplified) spec-
ification of the user and system, instead of an actual experimental setup of user and
system. Analysis of certain properties may be done formally (verification) or informally
(cognitive walkthrough), completely by hand or by using computer tools.

• Prototype or mock-up. One uses a simplified system where the system should nor-
mally be.

An unusual example of protocol verification in NL systems is found in (Guinn, 1995). Here, the
self-consistency of a natural-language dialogue system is tested by simulating it against itself.
Since NL dialogue tries to offer ‘human-like’ communication, the relation between human and
computer is more symmetrical, and it becomes feasible to make a computer system talk to
itself to test it.

In an evaluation with a real system and real users, the role of the user may be filled by actual
end users, or by other people representative of the end users. The task and environment may
be the real-life situation (which is called field study) or may be designed carefully to reduce
random environment factors (which is called laboratory- or controlled study).

The following means of getting data for analysis are found:

• corpus collection. This includes all data that can be collected fully automatically. It
is relatively easy to obtain a corpus for a given system: for example, offer the system
as a free service to the people it was designed for. However, the intentions behind the
actions done by the users is not known.

• think-aloud method. This is an attempt to gather immediate and detailed infor-
mation about what the user is thinking when he/she is using the system, rather than
information that has to be reconstructed afterwards. Note that the requirement to talk
while using a system may influence the user’s behaviour. Speech systems are the worst
case, as the user is already using speech and language in his/her interaction with the
system. See (Ericsson and Simon, 1980) for detailed information about issues concerning
the gathering and use of think-aloud data.

• user surveys. Instead of using think-aloud, the user may also be asked about the
system afterwards. This may be both qualitative information (why did you do that?)
or quantitative information (did you find this particular aspect of the system good or
bad?).

• corpus annotation. Usually, corpora are annotated by hand, which is very time-
consuming. Note that corpus annotation is generally not done by the users themselves,

37

so it is an attempt to interpret what the user was thinking when he/she was mak-
ing contributions to the corpus. In case annotation consists of parsing the users’ NL
utterances, for which it is most often used, interpretation is relatively straightforward.

There are several attempts at standardisation of corpus annotation. Such standardisation
should allow general tools to be used for annotation, and better comparison of different
systems. One such attempt is described in (Dahlback et al., 1997). It addresses:

• Forward-looking communicative function. For each utterance, there can be zero or
more labels out of the types: statement of belief, addressee’s future action, commitment
of action, and miscellaneous (including explicit performative, exclamation, convention
openings/closings). It was chosen that the label should be assigned according to the
utterance’s effect rather than the speaker’s intention. The labeler may not take into
account too many future utterances when interpreting an utterance. Collaborative
completions are not resolved. It was noted that, in the current scheme, joint future
action cannot be distinguished well from multiple individual future action.

• Backward looking communicative function. Issues here are: what is being responded
to? Which utterances belong to the response? What is the type of the response? The
attributes to be tagged are: understanding, agreement (which is classified into clos-
ing, nonclosing, and hold), informational relation with source utterance, answer, seg-
mentation of dialogue acts, information level (task, about task, communication, about
communication, nonrelevant) and status (old, new).

• Coreferences. Words that refer to other words are labelled with where they refer to.

In the proceedings (Andernach et al., 1995), using corpora for systems development is ad-
dressed. Using corpora for utterance type prediction is addressed in (Andernach, 1996).
Using corpora for obtaining a simulated-user model for evaluation is described in (Eckert
et al., 1998).

The following means of analysing data are found:

• Qualitative analysis. Here, the result of analysis is some kind of specification of what
is going on in the interaction, hopefully resulting in new insight, for example in the form
of an explicit task, user, or system model.

• Metrical analysis. Here, data from either corpora or quantitative user surveys is
summarised by measuring and counting surface properties. For corpora, this can for
example be duration and success percentage measures.

• Formal analysis. Here, formal properties of a system are derived, for example, reach-
ability of certain states and deadlock-freeness.

Some examples of formal verification exist. In (Lewin, 1997), deadlock and reachability of
states is verified, using a finite-state model of the system. In (McInnes et al., 1995), similar
verification is done, though it also includes some text style checks. The article also discusses
the possibilities of statistical state-transition checking, based on statistics of frequency of use.
This idea is much like the user simulation scheme described in (Eckert et al., 1998).

10.2.1 Simulating users

There are a particularly large number of user simulation systems, which are described in this
separate section. Usually, the simulation model is directly based on cognitive psychology, and
often, the results of the simulation are used in combination with metrical methods.

38

The article (Haan et al., 1991) summarises a number of simulated-user analysis models: ETIT,
TAG, GOMS, ETAG, CCT, and CLG. All these models are based on a compositional
description of the user’s task. Rules are defined which break down a high-level description
of the task into low-level descriptions (usually, this simply means the steps to be taken to
achieve the task). Levels that are typically identified in these models are some selection from
the levels task, semantic, syntactic, and physical. Usually missing in these models is a way
of accounting for error. Missing in the examples and considerations in the article however, is
the possibility of modelling the effect of computer feedback (which is essential in NL systems;
note that this may also account for error). Computer feedback may actually cause the user’s
subtasks and subgoals to change, especially for tasks where the outcome is not known yet (for
example in exploration, when getting to know a computer system, or when searching complex
databases).

Goals, Operators, Methods, and Selection rules (GOMS, see (Shneiderman, 1998) page 55
and (Olson and Olson, 1990) for an overview) is a procedural model of user activities. GOMS
is a well-established method, and many variations exist. GOMS tries to model users’ tasks
all the way from the ‘goal level’ to the ‘operator level’ (which is the lowest level of subtasks).
This is done using a set of rules (methods) describing the sequence of steps (operators) that
have to be taken to complete a goal, and rules (selection rules) of how to choose between
alternative methods according to more specific goal information.

The main idea is that one arrives at a sequence of operators, which are low-level enough to
allow prediction of performance (like speed) easily, using easily-obtainable experimental data
(for example, duration of pressing a key, typing a word, clicking a mouse, etc.). At this lowest
level, a simple cognitive performance model is assumed. Basically, it amounts to summing up
all operator durations to arrive at the total duration. Some variations on GOMS have more
complex low-level cognitive models, which take into account operators which can be done
simultaneously, by using critical path analysis (Gray et al., 1990). Users can be simulated by
feeding all rules into an inference engine or an AI (for example, SOAR), and then feeding the
resulting sequence operators into the low-level cognitive model.

GOMS is typically used for traditional HCI in which the users’ goals are clearly defined and
the user drives the system. However, it was also used with good effect for a real-time machine-
paced interface with machine-driven subtasks (a video game) (John and Vera, 1992), which
shows that GOMS is more universally usable.

(Byrne et al., 1994) describes a system (USAGE) that automatically generates a NGOMSL
specification from a user interface specification created in an UIDE (User Interface Develop-
ment Environment) and runs it with user task specifications to obtain an efficiency prediction
automatically. The biggest limitation mentioned is that no multi-level task hierarchies are
supported.

Execute Process-Interactive Control (EPIC) is described in (Kieras et al., 1997). EPIC is
based on CPM-GOMS, which makes use of information about temporal dependencies of sub-
tasks, and uses the Model Human Processor model to simulate human behaviour. Like CPM-
GOMS, EPIC is advocated as being well-suited for multimodal and complex tasks. It is
argued that CPM-GOMS is labour-intensive, as the sequence human behaviour correspond-
ing to each task to be tested must be specified explicitly. EPIC tries to solve this problem by
generating simulated human behaviour directly from the task specification. The article refers
to other cognitive simulation models MHP, HOS, SAINT, CCT, ACT-R, and SOAR.

EPIC consists of a relatively complete and detailed cognitive model, with auditory and visual
processor, vocal and manual processor, and a cognitive processor with short-term memory
which is based on production rules. This means that the computer party, with input and
output devices, can also be effectively simulated with a good deal of detail. This way, reactive

39

tasks (where information that influences the task structure only arrives later on in the task)
can also be modelled. Results show that performance times can be predicted reasonably
accurately.

The Procedural Knowledge Structure Model (PKSM) is described in (Benysh and Koubek,
1993). PKSM models procedural knowledge as a flowchart of which some nodes (called the
task goals) can be subdivided further until one obtains the full-detail flowchart with only task
actions and decisions. The flowchart allows multiple ways to do the same task.

There are also automatic methods which are specifically used on NL dialogue. In (Baber
and Hone, 1993) and (Hone and Baber, 1995), task flow modelling is used to determine
dialogue duration. The emphasis lies on comparing different repair strategies in relatively
simple NL dialogues. In their task flow model, statistical word duration, word misrecognition
probability and utterance correction probability are used as parameters for a flowchart model
of the dialogue, which can then be used to predict task duration. One of their findings was
that the best choice of strategy depends on error rate.

In (Eckert et al., 1998), a dialogue system is evaluated using a statistical user model, obtained
from statistical corpus analysis. The model assumes there are only a limited number of
different kinds of utterances, and that the user’s utterance depends on the last few utterances
only.

10.3 Metrical evaluation

Evaluation by using metrics is used often, and warrants a separate section. Such evaluation
tries to tell whether a system component or aspect is good or bad. Metrics are easy to use,
but there is the risk that important information is not reflected in them. Metrics are often
used to compare one system to another system or another version of the system (comparative
analysis), or to check whether an existing system is acceptable. Such comparative analysis is
useful for verifying a redesign or for deciding whether to commit to the usage of a new system.
It may even be possible to compare multiple systems across multiple domains (benchmark-
ing). See (Minker, 1998) and (Hirschman and Thompson, 1996) for an overview of metrical
evaluation. The evaluation schemes described below are mostly for evaluating NL systems.

Note that there is often no way to verify the evaluation method itself. For some concrete
problems that may occur, see (Walker, 1989). Also, metrical evaluation does not explicitly
say why one system is better or worse than another, though there are some ways in which it
may help to obtain such information:

• Subject each component of a system to performance analysis, so bottlenecks can be
identified. The interaction between components and the effect on overall performance
must be accounted for.

• Use performance analysis as a filter to obtain the most interesting examples from a large
corpus.

• Do a performance analysis after a redesign step to determine the effect of the redesign.

Some metrical systems have been proposed, with metrics that try to measure various things.
The most often used metric is length, which comes in the form of duration and number of
turns. Another is accuracy, for instance word recognition accuracy, meaning accuracy, and
number of turns spent on repair dialogues.

In (Minker, 1998), some benchmarking metrics are proposed. These are word recognition
error (substitutions, insertions, deletions), semantic all-label (compare all generated semantic

40

word labels with manual transcriptions), semantic concept-value (compare only the labels
that belong to values that fill the slots in the relevant query), system response (first, see how
answerable the user query was, then compare the system’s information with a minimal and
maximal reference answer). The article also addresses evaluation of translation systems.

Another metrical evaluation framework is PARADISE (see (Walker et al., 1997b) and (Walker
et al., 1997a)), which measures success rate and dialogue duration. PARADISE’s aim is to
specify metrics that calibrate for differences in tasks, so it can be used for comparison across
different systems. A metrical system similar to PARADISE can be found in (Eckert et al.,
1998).

In (Danieli and Gerbino, 1995), more metrics are described. These are: Implicit Recovery
(IR), Contextual Appropriateness (CA), Turn Correction Ratio (TCR), and Transaction
Success (TS).

TRAINS95 (Sikorski and Allen, 1996) and TRAINS96 (Stent and Allen, 1997) have a task
(namely, find as short a route as possible) which allows multiple possible solutions but which
is clear enough to allow a special metric to be used effectively, namely solution quality.

In (Albesano et al., 1997), evaluation of Dialogos is described. A special metric is used for
transaction success. This amounts to classifying transactions into: Success (S), Success with
Constraint Relaxation (SC), System Failure (SF), User Failure (UF).

In (Polifroni et al., 1998), metrical analysis of whole systems and system components is
described, with the main criterium measured being accuracy. Accuracy was obtained by
comparing the computer parse with a human transcription containing syntactic and semantic
information. A concrete system with several components is analysed. The discourse-tracking
module is tested by looking at the accuracy difference between the semantic frames with
the predictor turned on or off. The response generator is tested by comparing the query
hypothesis with the query hypothesis resulting from the transcription.

(Dillon et al., 1993) studies effects of vocabulary size and experience on efficiency and ac-
ceptability of speech systems. Efficiency was measured using completion time, word non-
recognitions, phrase misrecognitions, and items skipped by the users. Acceptability was mea-
sured by a survey with 15 bipolar questions. Basically, both improve efficiency, and experience
improves acceptability.

41

Part III

Conclusions

11 Review of this text and future directions of the framework

After getting an idea of what literature is relevant for understanding human-computer sys-
tems, we may attempt to specify the framework in further detail.

11.1 What are the problems anyway?

When looking at today’s everyday computer applications and transaction systems, it is ap-
parent that there are many usability problems. In the literature discussed here, the existence,
and the cause and nature of these problems are often implicit in the solutions offered. Some-
times it is questionable whether the solutions are actually solutions to real, existing problems.
Hence, the next stage of this research necessarily includes working with a real system.

In real life, it is often the case that the practice of developing systems is purely by intuition,
rather than by making use of any of the available theories or methods. Even if such theories
or methods are used, results are not always clear-cut. It appears that they are not easy to
use, because (Nielsen, 1995):

1. considerable experience and insight is needed to apply them successfully (Blandford,
1998),

2. communication between parties (in particular the software engineering, HCI, and end-
user parties) does not proceed easily (for example, in the application of MUSE (Lim
and Long, 1994) it was mentioned that the communication prescribed was starting to
take too long and was shortened),

3. they imply considerable investment of resources.

In a way, one of the usability problems is that the usability frameworks themselves need to
be made more usable also.

NL and multimodal systems have some special problems. In these systems, an attempt is
made to make the interaction strategies, and not just some of the styles, analogous to real-
life, and in particular, to human-human interaction strategies. However, this implies that the
computer has to do things it isn’t very good at. To make the systems work, natural interaction
has to be ‘forged’ by only accounting for the interaction patterns that occur most frequently,
and by careful engineering around the available techniques, like the various existing speech
processing, integration of modalities, NL parsing, and dialogue tracking techniques. Most of
these techniques have their own specific problems, and, when built into a system, often turn
out to have unpredictable weaknesses. Part of the weaknesses are problems that are caused
by inconsistency between the conceptual model and the actual system. A basic example is
that people tend to overestimate the abilities of NL systems. Hence, a relatively large part
of NL and multimodal systems development is about corpus collection and evaluation.

A first look at our own Schisma system makes it apparent that its domain coverage could be
improved, even, for example, by the ability to supply answers to questions such as ‘Where
am I?’ or ‘Who are you?’, since users could have arrived at Schisma from any location on
the Web. It could also be improved at the dialogue level, for example by providing a better
invalidation mechanism for repair utterances. Perhaps, the story is not as easy as it sounds,

42

and these particular problems are a result of underlying design decisions that imply that the
other feasible alternatives are worse. Perhaps more problems, or solutions, could be found
after specifying the system in a more abstract way, or making a first analysis of the system’s
possible usage and real-life setting.

The current development surrounding Schisma includes adding Schisma as an agent (the
‘Karin’ agent) into the Virtual Music Centre (VMC) virtual-reality environment, giving Karin
a facial expression, adding other agents to make the system easier and/or quicker to use, such
as the talking notice board and the navigation-assisting agent, and adding new possibilities to
the lower-level interface, like multiple dynamically-generated and tiled windows. This implies
a lot of extra complexity, and may provide a test bed for examining many of the aspects of
human-computer system development we have encountered in this review of literature.

11.2 What solutions could a framework offer?

In the literature we have reviewed, we have found several major classes of strategies for
attacking the usability problem:

1. Providing classifications of interaction strategies and styles, and supplying recommen-
dations or guidelines about them.

2. Clarifying design decisions by means of various kinds of diagrams, formal specification,
or by making a prototype or a simple screen layout for examination by the relevant
people.

3. Obtaining information about the (old or new) system’s real functioning, setting, and
users, by using various analysis strategies (such as ethnography and interviews) and
notations (such as hierarchical task diagrams).

4. Verifying the design by means of quantitative user surveys, metrical and simulated-user
evaluation, or formal verification.

5. Trying to give a proper place for each of these strategies in any practical development
process by defining methodologies.

11.3 The framework, take two

In this second attempt at the framework, we try to make room for all of these strategies.
Perhaps we will fill in only one or two of them, but further research may result in a more
complete development framework. The framework may be part of a methodology, even if
just prescribing documentation of the system using certain specifications at first. Some care
should be taken to make the framework developer-friendly.

It seems feasible to use the current VMC system as a test-bed to examine if such a framework
can be a help in its development. The current research is centred around a formal specification
notation, based on ‘agent’ models. It seems feasible to use such a compositional ‘agent’ model
for this system. Such a model could be used to specify interaction between the different
elements of the interface, both at the ‘deeper’ level (the agents walking around inside the
3D environment) and the connection between the ‘deeper’ and ‘surface’ level (how are the
windows that are opened and can be used related to the agent–for example, which window
belongs to which agent?). Windows may be modelled as a special kind of agent.

Such a notation, if properly designed, may aid in all five strategies listed:

43

1. provide recommendations based on the framework of possibilities within such a speci-
fication, for example, how to keep the model ‘consistent’ when viewed as a conceptual
model,

2. (a) clarify design decisions by allowing multiple views, for example, conceptual model
and implementation model, or internal model (agents only) and full model (agents,
windows), or a dynamical communication model of one agent, and the system of
agents as a whole,

(b) demonstrate the working of the actual system more easily by being executable,

3. be suited as part of the documentation for systems analysis,

4. (a) be suited to formal verification because of its formal properties,
(b) be suited for simulated users by modelling users as agents within or as part of the

system,

5. provide a basis for documentation in a methodology.

It may also provide help in the issues specific to NL and multimodal interaction. The context
and all available communication channels for each agent should be made explicit. Existing
agent communication frameworks could be adopted, giving a basis for reasoning, communi-
cation, and dialogue. Existing agent or parallel programming languages could be adopted,
allowing parts of the specification to be immediately executable.

Our current research includes combining process algebra (CSP) and predicate logic (Z) to
obtain a system model at the ‘deeper’ level. The process of going from an ‘intuitive’ model
to a formal model is being examined. For example, our CSP specification starts with a
data flow diagram. After CSP specification, we will try to add more details by means of
Z. Our first experiences with modelling the VMC’s agent platform were that several things
about the documentation need further clarification. HCI aspects and implementation aspects
may be unified by viewing the model as a conceptual model so it can be seen whether it is
consistent. For example, we found that discussions emerged about the naturalness of having
the blackboard communicate with Karin directly, about whether agents that were in different
parts of the world should know of each other, or how a dialogue initiation should take place,
based on context cues such as proximity and direction of vision. Possibly, formal verification
of consistency may be possible by designing a generic abstract model, and fitting a concrete
model of the current system into it.

44

References

Albesano, D., Baggia, P., Danieli, M., Gemello, R., Gerbino, E., and Rullent, C. (1997).
Dialogos: A robust system for human-machine spoken dialogue on the telephone. In
Proc. ICASSP ’97, pages 1147–1150, Munich, Germany.

Allwood, J. (1995). Dialog as collective thinking. In Pylkkänen, P. and Pylkkö, P., editors,
New Directions in Cognitive Science. Publications of the Finnish Artificial Intelligence
Society. International conferences no. 2.

Andernach, J. A. (1996). A machine learning approach to the classification and prediction
of dialogue utterances. In Proceedings of the Second International Conference on New
Methods in Language Processing, pages 98–109.

Andernach, J. A., Burgt, S. P. v., and Hoeven, G. F. v., editors (1995). TWLT9: Corpus-based
approaches to dialogue modelling.

Andersen, P. B. (1990). A Theory of Computer Semiotics. Cambridge Series on Human-
Computer Interaction. Cambridge University Press, Cambridge, UK.

Andre, E. and Rist, T. (1995). Generating coherent presentations employing textual and
visual material. In Integration of Natural Language and Vision Processing (Volume II):
Intelligent Multimedia, pages 75–93. Kluwer.

Androutsopoulos, I., Ritchie, G. D., and Thanisch, P. (1995). Natural language interfaces to
databases - an introduction. Natural Language Engineering 1:1, pages 29–81.

Aust, H. and Oerder, M. (1995). Dialogue control in automatic inquiry systems. In ESCA
workshop on spoken dialog systems: theories and applications, pages 121–124.

Austin, J. L. (1962). How to do things with words. Harvard university press.

Baber, C. and Hone, K. S. (1993). Modelling error recovery and repair in automatic speech
recognition. International Journal of Man-Machine Studies, 39(3):495–515.

Baecker, R., Grudin, J., Buxton, W., and Greenberg, S., editors (1995). Readings in Human-
Computer Interaction: Towards the Year 2000, chapter 8. Morgan Kaufmann.

Baekgaard, A. (1995). A platform for spoken dialogue systems. In ESCA workshop on spoken
dialog systems: theories and applications, pages 105–108.

Barbuceanu, M. and Fox, M. S. (1996). Capturing and modeling coordination knowledge
for multi-agent systems. Internation Journal of Cooperative Information Systems Vol.5
Nos.2-3, pages 273–314.

Benysh, D. V. and Koubek, R. J. (1993). The implementation of knowledge structures in
cognitive simulation environments. In Proceedings of the Fifth International Conference
on Human-Computer Interaction, volume 2, pages 309–314.

Bernsen, N. O. (1996). towards a tool for predicting speech functionality. Free Speech Journal,
1.

Bernsen, N. O., Dybkjaer, H., and Dybkjaer, L. (1998). Designing interactive speech systems.
Springer.

45

Beun, R., Baker, M., and Reiner, M. (1995). editor’s introduction. In Beun, R., Baker, M., and
Reiner, M., editors, Dialogue and instruction. Modeling interaction in intelligent tutoring
systems. Proceedings of the NATO Advanced Research Workshop on natural dialogue and
interactive student modeling, pages 1–12.

Blandford, A. E. (1995). Deciding what to say: an agent-theoretic approach to tutorial
dialogue. In Beun, R., Baker, M., and Reiner, M., editors, Dialogue and instruction.
Modeling interaction in intelligent tutoring systems. Proceedings of the NATO Advanced
Research Workshop on natural dialogue and interactive student modeling, pages 157–166.

Blandford, A. E. (1998). Training software engineers in a novel usability evaluation technique.
International journal of human-computer studies, 49:245–279.

Bouwman, A. G. G. (1998). Spoken dialog system evaluation and user-centered redesign with
reliability measurements. Master’s thesis, University of Twente, Deparment of Computer
Science. February draft.

Bouzeghoub, M. and Metais, E., editors (1995). Proceedings of the First International Work-
shop on Applications of Natural Language to Databases (NLDB’95), Versailles, France.

Brazier, F., Dunin-Keplicz, B., Jennings, N., and Treur, J. (1995). Formal specification of
multi-agent systems: a real-world case. In First International Conference on Multiagent
Systems.

Brazier, F. M. T., Langen, P. H. G. v., J., T., Wijngaards, N. J. E., and M., W. (1994).
Modelling a design task in DESIRE : the VT example. Technical Report IR-377, Faculteit
der Wiskunde en Informatica, Vrije Universiteit, Netherlands.

Bretier, P. and Sadek, D. (1997). A rational agent as the Kernel of a cooperative spoken dia-
logue system: Implementing a logical theory of interaction. In Müller, J. P., Wooldridge,
M. J., and Jennings, N. R., editors, Proceedings of the ECAI’96 Workshop on Agent
Theories, Architectures, and Languages: Intelligent Agents III, volume 1193 of LNAI,
pages 189–204, Berlin. Springer.

Brouwer-Janse, M. D. (1995). Method for dialogue protocol analysis. In Beun, R., Baker,
M., and Reiner, M., editors, Dialogue and instruction. Modeling interaction in intelligent
tutoring systems. Proceedings of the NATO Advanced Research Workshop on natural
dialogue and interactive student modeling, pages 275–285.

Bruin, H. d. and Bouwman, P. (1993). The software architecture of DIGIS. In Proceedings
of the Fifth International Conference on Human-Computer Interaction, volume 2, pages
244–249.

Bunt, H., Ahn, R., Beun, R.-J., Borghuis, T., and Overveld, K. v. (1995). Cooperative
multimodal communication in the denk project. In Proceedings of the International
Conference on Cooperative Multimodal Communication CMC/95, pages 79–102.

Bunt, H. C. (1995). Dialogue control functions and interaction design. In Beun, R., Baker,
M., and Reiner, M., editors, Dialogue and instruction. Modeling interaction in intelligent
tutoring systems. Proceedings of the NATO Advanced Research Workshop on natural
dialogue and interactive student modeling, pages 197–214.

Busemann, S., Declerck, T., Diagne, A. K., Dini, L., Klein, J., and Schmeier, S. (1997).
Natural language dialogue service for appointment scheduling agents. In Fifth Conference
on Applied Natural Language Processing, pages 25–32.

46

Buxton, W. (1986). Chunking and phrasing and the design of human-computer dialogues. In
Kugler, H. J., editor, Information Processing ’86, Proc. of the IFIP 10th World Computer
Congress. North Holland Publishers, Amsterdam.

Byrne, M. D., D.Wood, S., Noisukaviriya, P., Foley, J. D., and Kieras, D. (1994). Automating
interface evaluation. In Proc. of CHI-94, pages 232–237, Boston, MA.

Callahan, G. (1994). Excessive realism in GUI design: Helpful or harmful? Software Devel-
opment.

Carlson, J. R. and Hall, L. L. (1993). The impact of the design of the software control
interface on user performance. In Proceedings of the Fifth International Conference on
Human-Computer Interaction, volume 2, pages 116–121.

Castelfranchi, C. (1991). No more cooperation, please! in search of the social structure of
verbal interaction. In Orthony, A., Slack, J., and Stock, O., editors, AI and Cognitive
Science Perspectives on Communication. Springer.

Chase, J. D., Hartson, H. R., Hix, D., Schulman, R. S., and Brandenburg, J. L. (1993). A
model of behavioral techniques for representing user interface designs. In Proceedings
of the Fifth International Conference on Human-Computer Interaction, volume 2, pages
861–866.

Chau, R. (1993). Natural language interfaces for integrated network management. In Proceed-
ings of the Fifth International Conference on Human-Computer Interaction, volume 2,
pages 368–372.

Chu-Carroll, J. and Brown, M. K. (1997). Tracking initiative in collaborative dialogue interac-
tions. In ACL ’97/EACL ’97: Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics and of the 8th Conference of the European Chapter of the
Association for Computational Linguistics, pages 262–270.

Cohen, P. P. and Oviatt, S. L. (1995). The role of voice input for human-machine communi-
cation. Proc. Natl. Acad. Sci. USA, 92:9921–9927.

Dahlback, N., Reithinger, N., and Walker, M. A. (1997). Standards for Dialogue Coding in
Natural Language Processing: Report on the Dagstuhl-Seminar. Dagstuhl.

Danieli, M. and Gerbino, E. (1995). Metrics for evaluating dialogue strategies in a spoken
language system. In Proceedings of the 1995 AAAI Spring Symposium on Empirical
Methods in Discourse Interpretation and Generation, pages 34–39.

Darses, F., Falzon, P., and Robert, J. M. (1993). Cooperating partners: Investigating natural
assistance. In Proceedings of the Fifth International Conference on Human-Computer
Interaction, volume 2, pages 997–1002.

de Saussure, F. (1916). Cours de linguistique générale. Payot. Missing from my collection.

Dessalles, J.-L. (1998). The interplay of desire and necessity in dialogue. In TWLT13: Formal
semantics and pragmatics of dialogue, pages 89–97.

Diel, H., Uhl, J., and Welsch, M. (1993). An information-based user interface architecture.
In Proceedings of the Fifth International Conference on Human-Computer Interaction,
volume 2, pages 110–115.

47

Dignum, F. and Linder, B. v. (1997). Modelling social agents: Communication as action.
In Müller, J. P., Wooldridge, M. J., and Jennings, N. R., editors, Proceedings of the
ECAI’96 Workshop on Agent Theories, Architectures, and Languages: Intelligent Agents
III, volume 1193 of LNAI, pages 205–218, Berlin. Springer.

Dillon, T. W., Norcio, A. F., and DeHaemer, M. J. (1993). Spoken language interaction:
Effects of vocabulary size and experience on user efficiency and acceptability. In Proceed-
ings of the Fifth International Conference on Human-Computer Interaction, volume 2,
pages 140–145.

Dybkjaer, L., Bernsen, N. O., and Dybkjaer, H. (1995). Scenario design for spoken language
dialogue systems development. In ESCA workshop on spoken dialog systems: theories
and applications, pages 93–96.

Eckert, W., Levin, E., and Pieraccini, R. (1998). Automatic evaluation of spoken dialogue
systems. In TWLT13: Formal semantics and pragmatics of dialogue, pages 99–110.

Eco, U. (1976). A theory of semiotics. Indiana University Press.

Ehrich, R. W. and Williges, R. C., editors (1986). Human-Computer Dialogue Design, vol-
ume 2 of Advances in Human Factors/Ergonomics. Elsevier Science Publishers B. V.,
Amsterdam.

Ek, Å. (1997). Margrathea - a planning tool for environment adaptation. usability test and
evaluation. Master’s thesis, Lund university, Sweden.

Encarnacão, M. (1997). Concept and realization of intelligent user support in interac-
tive graphics applications. PhD thesis, Faculty of computer science, Eberhard-Karls-
University, Tübingen.

Ericsson, K. A. and Simon, H. A. (1980). Verbal reports as data. Psychological review, 87(3).

Fahnrich, K.-P. and Hanne, K.-H. (1993). Aspects of multimodal and multimedia human-
computer interaction. In Proceedings of the Fifth International Conference on Human-
Computer Interaction, volume 2, pages 440–445.

Fais, L. and ho Loken-Kim, K. (1995). Lexical accomodation in human-interpreted and
machine-interpreted dual language interactions. In ESCA workshop on spoken dialog
systems: theories and applications, pages 69–72.

Faraday, P. and Sutcliffe, A. (1993). Toward a walkthrough method for multimedia design.
In Proceedings of the Fifth International Conference on Human-Computer Interaction,
volume 2, pages 452–457.

Fass, D., Hall, G., Laurens, O., Popowich, F., and von Rüden, M. (1996). A distributed
intelligent information system with natural language input for ad hoc knowledge discovery
in databases. In Energy Information Management VI: Conference Papers, volume I:
Computers in Engineering.

Fischer, G. and Reeves, B. (1991). Beyond intelligent interfaces: Exploring, analyzing, and
creating success models of cooperative problem solving. Applied Intelligence, 1:311–332.

Frascina, T. and Steele, R. A. (1993). Task analysis in design of a human-computer interface
for a ward based system. In Proceedings of the Fifth International Conference on Human-
Computer Interaction, volume 2, pages 226–230.

48

Fraser, N. M. (1995). Quality standards for spoken language dialogue systems: a report
on progress in EAGLES. In ESCA workshop on spoken dialog systems: theories and
applications, pages 157–160.

Genesereth, M. R. and Ketchpel, S. P. (1994). Software agents. Communications of the ACM,
37(7):48–53.

Gerlach, M. and Onken, R. (1993). A dialogue manager as interface between aircraft pilots
and a pilot assistant system. In Proceedings of the Fifth International Conference on
Human-Computer Interaction, volume 2, pages 98–103.

Gibbon, D., Moore, R., and Winski, R. (1997). Handbook of Standards and Resources for
Spoken Language Systems. Mouton de Gruyter, Berlin.

Good, D. A. (1989). The viability of conversational grammars. In Taylor, M. M., Neel, F.,
and Bouwhuis, D. G., editors, The Structure of Multimodal Dialogue, pages 135–144.
North-Holland, Amsterdam. Missing from my collection.

Gray, W. D., John, B. E., Stuart, R., Lawrence, D., and Atwood, M. E. (1990). GOMS
meets the phone company: Analytic modeling applied to real-world problems. In Pro-
ceedings of IFIP INTERACT’90: Human-Computer Interaction, Foundations: Cognitive
Ergonomics, pages 29–34.

Grice, H. P. (1975). Logic and conversation. In Cole, P. and Morgan, J. L., editors, Syntax
and Semantics: Vol. 3: Speech Acts, pages 41–58. Academic Press, San Diego, CA.

Guha, R. V. and Lenat, D. B. (1994). Enabling agents to work together. Communications of
the ACM, 37(7):127–142.

Guinn, C. (1995). The role of computer-computer dialogues in human-computer dialogue
system development. In Empirical Methods in Discourse Interpretation and Generation.
Papers from the 1995 AAAI Symposium, pages 47–52. AAAI Press USA.

Gutwin, C. and McCalla, G. (1992). Would I lie to you? Modelling misrepresentation and
context in dialogue. In 30th Annual Meeting of the Association for Computational Lin-
guistics, pages 152–158.

Haan, G. d., Veer, G. C. v., and Vliet, J. C. v. (1991). Formal modelling techniques in
human-computer interaction. Acta Psychologica, 78(1-3):27–67.

Heeman, P. A. and Allen, J. F. (1997). Intonational boundaries, speech repairs and discourse
markers: modeling spoken dialog. In ACL ’97/EACL ’97: Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics and of the 8th Conference of
the European Chapter of the Association for Computational Linguistics, pages 254–261.

Hirschman, L. and Thompson, H. (1996). Overview of Evaluation in Speech and Natural
Language Processing, pages 475–518. Cambridge University Press.

Hone, K. S. and Baber, C. (1995). Using a simulation method to predict the transaction time
effects of applying alternative levels of constraint to user utterances within speech inter-
active dialogues. In ESCA workshop on spoken dialog systems: theories and applications,
pages 209–212.

Hulstijn, J. and Nijholt, A., editors (1998). TWLT13: Formal semantics and pragmatics of
dialogue.

49

Iwadera, T., Ishizaki, M., and Morimoto, T. (1995). Recognizing an interactional structure
and topics of task-oriented dialogues. In ESCA workshop on spoken dialog systems:
theories and applications, pages 41–44.

Jameson, A., Kipper, B., Ndiaye, A., Schafer, R., Simons, J., Weis, T., and Zimmermann, D.
(1994). Cooperating to be noncooperative: the dialog system pracma. In Nebel, B. and
Dreschler-Fischer, L., editors, KI-94: Advances in Artificial Intelligence. 18th German
Annual Conference on Artificial Intelligence., pages 106–117. Springer-Verlag.

Jameson, A., Schäfer, R., Simons, J., and Weis, T. (1995). Adaptive provision of evaluation-
oriented information: Tasks and techniques. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI-95), pages 1886–1893.

Jameson, A. and Weis, T. (1995). How to juggle discourse obligations. In Proceedings of
the Symposium on Conceptual and Semantic Knowledge in Language Generation, pages
171–185.

John, B. E. and Marks, S. J. (1997). Tracking the effectiveness of usability evaluation methods.
Behaviour and Information Technology, 16(Issue 4–5):188–202.

John, B. E. and Vera, A. H. (1992). A goms analysis of a graphic, machine-paced, highly
interactive task. In Proc. of CHI-92, pages 251–258, Monterey, CA.

Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J. A., and Smith, I. (1997).
Unification-based multimodal integration. In ACL ’97/EACL ’97: Proceedings of the
35th Annual Meeting of the Association for Computational Linguistics and of the 8th
Conference of the European Chapter of the Association for Computational Linguistics,
pages 281–288.

Jones, K. S. and Galliers, J. R. (1996). Evaluation natural language processing systems, an
analysis and review. springer.

Jönsson, A. (1993). Dialogue management for natural language interfaces. PhD thesis,
Linköping University, department of computer and information science.

Kaptelinin, V., Kuutti, K., and Bannon, L. (1995). Activity theory: Basic concepts and
applications. Lecture Notes in Computer Science, 1015:189–??

Karsenty, L. (1993). Task-dependent descriptions: A preliminary study. In Proceedings of
the Fifth International Conference on Human-Computer Interaction, volume 2, pages
897–902.

Kieras, D. E., Wood, S. D., and Meyer, D. E. (1997). Predictive engineering models based on
the EPIC architecture for a multimodal high-performance human-computer interaction
task. ACM Transactions on Computer-Human Interaction, 4(3):230–275.

Kinoe, Y., Mori, H., and Hayashi, Y. (1993). Integrating analytical and creative processes
for user interface re-design. In Proceedings of the Fifth International Conference on
Human-Computer Interaction, volume 2, pages 163–168.

Kitano, H. and Ess-Dykema, C. v. (1991). Toward a plan-based understanding model for
mixed-initiative dialogues. In 29th Annual Meeting of the Association for Computational
Linguistics, pages 25–32.

Kushilevitz (1997). Communication complexity. In Advances in Computers, ed. by Marshall
C. Yovits, volume 44. Academic Press.

50

Lambert, L. and Carberry, S. (1991). A tripartite plan-based model of dialogue. In 29th
Annual Meeting of the Association for Computational Linguistics, pages 47–54.

Lambert, L. and Carberry, S. (1992). Modeling negotiation subdialogues. In 30th Annual
Meeting of the Association for Computational Linguistics, pages 193–200.

Lauesen, S. and Harning, M. B. (1993). Dialogue design through modified dataflow and data
modelling. In Proceedings of the Fifth International Conference on Human-Computer
Interaction, volume 2, pages 220–225.

Laurel, B. (1993). Computers as theatre. Addison-Wesley.

Lee, J. R. (1995). Graphics and natural language in design and instruction. In Beun, R.,
Baker, M., and Reiner, M., editors, Dialogue and instruction. Modeling interaction in
intelligent tutoring systems. Proceedings of the NATO Advanced Research Workshop on
natural dialogue and interactive student modeling, pages 72–84.

Levinson, S. C. (1987). Minimization and conversational inference. In Verschueren, J. and
Bertucelli-Papi, M., editors, The pragmatic perspective: selected papers from the 1985
International Pragmatics Conference, pages 60–129. Missing from my collection.

Lewin, I. (1997). 3dt: User Manual (draft April 13 1997?).

Lewis, C. and Norman, D. A. (1986). Designing for error. In Norman, D. A. and Draper,
S. W., editors, User Centered System Design: New Perspectives on Human-Computer
Interaction, pages 411–432. Erlbaum, Hillsdale, NJ.

Lie, D., Hulstijn, J., Akker, R. o. d., and Nijholt, A. (1998). A transformational approach
to natural language understanding in dialogue systems. In Natural language processing
and industrial applications (NLP+IA 98) - Special accent on language learning, pages
163–168.

Lim, K. Y. and Long, J. (1994). The MUSE method for usability engineering. Cambridge
University Press.

Lim, K. Y. and Long, J. B. (1993). Structured notations for human factors specification of
interactive systems. In Proceedings of the Fifth International Conference on Human-
Computer Interaction, volume 2, pages 325–331.

Martin, C. and Winterhalder, C. (1993). Integrating CASE and UIMS for automatic software
construction. In Proceedings of the Fifth International Conference on Human-Computer
Interaction, volume 2, pages 291–296.

Martin, J.-C. (1997). Towards ‘intelligent’ cooperation between modalities: the example
of multimodal interaction with a map. In Proceedings of the IJCAI’97 workshop on
Intelligent Multimodal Systems.

May, J. and Barnard, P. (1995). Cinematography and interface design. In Nordby, K.,
Helmersen, P. H., Gilmore, D. J., and Arnesen, S. A., editors, Human Computer Inter-
action: Interact ’95, pages 26–31. Chapman and Hall, London.

McInnes, F. R., White, L. S., Foster, J. C., and Jack, M. A. (1995). An automated style
checker for human-computer dialogue engineering. In ESCA workshop on spoken dialog
systems: theories and applications, pages 149–152.

51

Minker, W. (1998). Evaluation methodologies for interactive speech systems. In First Inter-
national Conference on Language Resources and Evaluation (LREC), pages 198–206.

Moore, J. D. and Paris, C. L. (1989). Planning text for advisory dialogues. In 27th Annual
Meeting of the Association for Computational Linguistics, pages 203–211.

Nagao, K. and Rekimoto, J. (1995). Ubiquitous talker: Spoken language interaction with real
world objects. In IJCAI-95 Proceedings.

Nagao, K. and Takeuchi, A. (1994). Speech dialogue with facial displays: Multimodal human-
computer conversation. In Proceedings of ACL-94.

Nardi, B. A. (1992). Studying context: A comparison of activity theory, situated action
models, and distributed cognition. In East-West International Conference on Human-
Computer Interaction: Proceedings of the EWHCI’92, pages 352–359. Missing from my
collection.

Nielsen, J. (1993). Usability engineering. Academic Press.

Nielsen, J. (1995). Getting usability used. In Human-computer interaction, Interact ’95,
pages 3–12. Chapman and Hall.

Nigay, L. and Coutaz, J. (1997). Software architecture modelling: bridging two worlds using
ergonomics and software properties. In Palanque, P. and Paterno, F., editors, Formal
Methods in Human Computer Interaction, chapter 3, pages 49–73. Springer-Verlag.

Nijholt, A., Hessen, A. v., and Hulstijn, J. (1998). Speech and language interaction in a
(virtual) cultural theatre. In Natural language processing and industrial applications
(NLP+IA 98) - Special accent on language learning, pages 176–182.

Nivre, J. (1995). Communicative action and feedback. In Beun, R., Baker, M., and Reiner,
M., editors, Dialogue and instruction. Modeling interaction in intelligent tutoring sys-
tems. Proceedings of the NATO Advanced Research Workshop on natural dialogue and
interactive student modeling, pages 231–240.

Norman, D. A. (1994). How might people interact with agents. Communications of the ACM,
37(7):68–71.

Nwana, H. S. and Wooldridge, M. (1997). Software agent technologies. In Software agents
and soft computing, pages 59–78.

Olson, J. R. and Olson, G. M. (1990). The growth of cognitive modeling in human-computer
interaction since GOMS. Human-Computer Interaction, 5(2-3):221–265.

Oviatt, S. L. and Cohen, P. R. (1989). The effects of interaction on spoken discourse. In
Proc. of the 27th ACL, pages 126–134.

Palanque, P. and Bastide, R. (1996). A design life-cycle for the formal design of interac-
tive systems. In Roast, C. R. and Siddiqi, J. I., editors, Proceedings of the BCS-FACS
Workshop on Formal Aspects of the Human Computer Interface.

Pasquini, A., Monfardini, G., Kaaniche, M., Mazet, C., Anderson, S., Embry, D., Rizzo,
A., Veer, G. v. d., Sonneck, G., Ciciani, B., Laprie, J. C., Kanoun, K., Littlewood, B.,
Mortensen, U., Goerke, W., and Strigini, L. (1998). Lecture sheets and notes from the
OLOS reliability and safety of human-computer systems summer school. Handouts.

52

Passoneau, R. J. (1989). Getting at discourse referents. In 27th Annual Meeting of the
Association for Computational Linguistics, pages 51–59.

Peirce, C. S. (1931–1958). Collected papers. Harvard University Press. Missing from my
collection.

Philips (1998). SpeechMania 2.0: Dialogue Description Language, developer’s guide, overhead
sheets. Philips.

Polifroni, J., Seneff, S., Glass, J., and Hazen, T. J. (1998). Evaluation methodology for a
telephone-based conversational system. In First International Conference on Language
Resources and Evaluation (LREC), pages 43–49.

Ramshaw, L. A. (1991). A three-level model for plan exploration. In 29th Annual Meeting of
the Association for Computational Linguistics, pages 39–46.

Rauterberg, M. (1993). Quantitative measures for evaluating human-computer interfaces.
In Proceedings of the Fifth International Conference on Human-Computer Interaction,
volume 1 of V. Methodologies, pages 612–617.

Reiner, M. (1995). Tools for collaborative learning in optics. In Beun, R., Baker, M., and
Reiner, M., editors, Dialogue and instruction. Modeling interaction in intelligent tutoring
systems. Proceedings of the NATO Advanced Research Workshop on natural dialogue and
interactive student modeling, pages 137–155.

Rist, T. and Andre, E. (1993). Designing coherent multimedia presentations. In Proceedings
of the Fifth International Conference on Human-Computer Interaction, volume 2, pages
434–439.

Roe and Arnold (1988). checklist of recommendations on human-computer interface design.

Sadek, M. D., Bretier, P., and Panaget, F. (1997). ARTIMIS: Natural dialogue meets rational
agency. In international joint conference on artificial intelligence, pages 1030–1035.

Schooten, B. W. v. (1997). Problemen met object-georienteerd programmeren. Student report
for Cognitive Ergonomics.

Searle, J. R. (1983). Intentionality, an essay in the philosophy of mind. Cambridge university
press.

Shannon, C. E. and Weaver, W. (1964). The Mathematical Theory of Communication. Uni-
versity of Illinois Press.

Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, Reading, MA, 3 edition.

Sikorski, T. and Allen, J. F. (1996). TRAINS-95 system evaluation. Technical Report TN96-3,
University of Rochester, Computer Science Department.

Smith, R. W. (1996). Initiative-dependent features of human-computer dialogs in a task-
assistance domain. In Energy Information Management VI: Conference Papers, volume
I: Computers in Engineering.

Smith, R. W. (1997). An evaluation of strategies for selective utterance verification for spoken
natural language dialog. In Fifth Conference on Applied Natural Language Processing,
pages 41–48.

53

Smith, R. W. and Hipp, D. R. (1994). Spoken Natural Language Dialog Systems: A Practical
Approach. Oxford University Press.

Stein, A. and Maier, E. (1995). Structuring collaborative information-seeking dialogues.
Knowledge-Based Systems, Vol. 8 Iss. 2-3, pages 82–93.

Stent, A. J. and Allen, J. F. (1997). TRAINS-96 system evaluation. Technical Report TN97-1,
University of Rochester, Computer Science Department.

Sutcliffe, A. G. and Faraday, P. (1993). Designing multimedia interfaces. Lecture Notes in
Computer Science, 753:105–114.

Tillmann, H. G. and Tischer, B. (1995). Collection and exploitation of spontaneous speech
produced in negotiation dialogues. In ESCA workshop on spoken dialog systems: theories
and applications, pages 217–220.

Trabelsi, Z., Kotani, Y., and Nisimura, H. (1993). Heuristics for generating informative
responses to failing user’s queries in natural language database interfaces. In Proceedings
of the Fifth International Conference on Human-Computer Interaction, volume 2, pages
362–367.

Trafton, J. G., Wauchope, K., and Stroup, J. (1997). Errors and usability of natural lan-
guage in a multimodal system. In Proceedings of the IJCAI’97 workshop on Intelligent
Multimodal Systems.

Traum, D. (1997). A reactive-deliberative model of dialogue agency. In Müller, J. P.,
Wooldridge, M. J., and Jennings, N. R., editors, Proceedings of the ECAI’96 Work-
shop on Agent Theories, Architectures, and Languages: Intelligent Agents III, volume
1193 of LNAI, pages 157–172, Berlin. Springer.

Tullis, T. S. (1993). Is user interface design just common sense? In Proceedings of the Fifth
International Conference on Human-Computer Interaction, volume 2, pages 9–14.

Uzilevsky, G. (1994). Ergosemiotics of user interface research and design: Foundations, ob-
jectives, potential. Lecture Notes in Computer Science, 876:1–11.

Veer, G. C. v. d., Hoeve, M., and Lenting, B. F. (1996a). Modeling complex work systems
- method meets reality. In Proceedings of the Eight European Conference on Cognitive
Ergonomics, pages 115–120.

Veer, G. C. v. d. and Lenting, B. F. (1995). Cognitive Ergonomie en MCI, lecture notes
from the 1995 student course. University of Twente, faculty of WMW, department of
ergonomics.

Veer, G. C. v. d., Lenting, B. F., and Bergevoet, B. A. J. (1996b). GTA: Groupware task
analysis - modeling complexity. Acta Psychologica, 91:297–322.

Walker, M., Hindle, D., Fromer, J., Di Fabbrizio, G., and Mestel, C. (1997a). Evaluating
competing agent strategies for a voice email agent. In EUROSPEECH97: Proceedings of
the European Conference on Speech Communication and Technology.

Walker, M. and Whittaker, S. (1990). Mixed initiative in dialogue: An investigation into
discourse segmentation. In Proceedings of the 28th Annual Meeting of the Association of
Computational Linguistics.

54

Walker, M. A. (1989). Evaluating discourse processing algorithms. In Proc. of the 27th ACL,
pages 251–261.

Walker, M. A. (1992). Redundancy in collaborative dialogue. In Fourteenth International
Conference on Computational Linguistics.

Walker, M. A. (1994). Discourse and deliberation: Testing a collaborative strategy. In
Fifteenth International Conference on Computational Linguistics.

Walker, M. A. (1996a). The effect of resource limits and task complexity on collaborative
planning in dialogue. Artificial Intelligence, 85, Numbers 1-2:181–243.

Walker, M. A. (1996b). Limited attention and discourse structure. Computational Linguistics,
22-2.

Walker, M. A., Litman, D. J., Kamm, C. A., and Abella, A. (1997b). PARADISE: a framework
for evaluating spoken dialogue agents. Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics.

Warren, C. P. (1993). The TOM approach to system development: Methods and tools for
task oriented modelling of real-time safety critical systems. In Proceedings of the Fifth
International Conference on Human-Computer Interaction, volume 2, pages 285–290.

Watt, S. N. K. (1997). Artificial societies and psychological agents. In Software agents and
soft computing, pages 27–41.

Waugh, D. A. and Taylor, M. M. (1995). The role of feedback in a layered model of com-
munication. In Beun, R., Baker, M., and Reiner, M., editors, Dialogue and instruction.
Modeling interaction in intelligent tutoring systems. Proceedings of the NATO Advanced
Research Workshop on natural dialogue and interactive student modeling, pages 215–230.

Wolf, C., Koved, L., and Kunzinger, E. (1995). Ubiquitous mail: Speech and graphical user
interfaces to an integrated voice/e-mail mailbox. In Interact ’95, pages 247–252.

Wright, P., Merriam, N., and Fields, B. (1997). From formal models to empirical evaluation
and back again. In Palanque, P. and Paterno, F., editors, Formal Methods in Human
Computer Interaction, chapter 14, pages 283–313. Springer-Verlag.

Yamada, K., Mizoguchi, R., Harada, N., Nukuzuma, A., Ishimaru, K., and Furukawa, H.
(1993). Model of utterance and its use in cooperative response generation. Lecture Notes
in Computer Science, 753:260–271.

Zhang, J. and Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive
Science, 18:87–122.

Zoest, A. v. (1978). Semiotiek: over tekens, hoe ze werken en wat we ermee doen. Ambo.

55

Index

3D, 21, 35, 43

abstraction, 5, 13, 32, 33
accommodation, 12
ACL, 14
activity theory, 7
AD, 20
ADs, 28
agent model, 17
agent models, 5, 7, 12, 17
AME, 33
Amodeus, 13
antecedent, 27, 34
anthropomorphic, 13, 21
ARTIMIS, 22

behaviour, 11, 30, 37, 39, 41
behavioural, 13
behaviourism, 6
BNF, 33

CA, 41
CASSY, 22
CCT, 39
chunking, 18
cinematography, 8, 18
circuit fix-it shop, 23, 26
claims analysis, 35
CLG, 8, 39
cognitive framework, 6, 8
cognitive load, 7
cognitive psychology, 1, 6, 7, 18, 38
cognitive walkthrough, 32, 35, 37
communicability, 33
conceptual model, 16, 42, 44
cooperativity, 20
coreferences, 38
COSMA, 22
CPM-GOMS, 39
criteria, 5, 15, 16, 34, 35
criterium, 9, 15, 16, 34, 41
Cyc, 13, 14

DDL, 33
DenK, 12
denotata, 10
denotatum, 8, 9
DFDs, 31, 33
Dialogos, 22, 41

dialogue grammar, 10, 11, 24, 28, 32
DIGIS, 33
distributed cognition, 7

ergonomic, 13, 16
ETAG, 39
ethnographical, 31
ETIT, 39
executable, 12, 14, 29, 32, 44
externalised, 7

formal specification, 32, 43

gestalt, 18
gestalts, 6
GOMS, 29, 35, 39, 40
Gricean, 11, 23
GTA, 30
GUI, 24
GUIs, 9, 20, 24, 27

HDDL, 22
HOS, 39
HTA, 30

icon, 8, 9, 18
iconic, 9, 19, 23
illocution, 10
illocutionary, 10, 11, 13, 14
indexical, 9, 23
information theory, 10
intentionality, 12
interaction model, 4, 5, 32
interaction models, 1, 4, 5
InterLACE, 23
internalised, 7
InterRAP, 22
intervening variables, 34
InterView, 17, 35
IR, 20, 21, 41
IRUs, 26

JSD, 31

KIF, 14
KQML, 14

learnability, 16
learnable, 16
locution, 10

56

long term memory, 6
LP, 17
LTM, 6, 26, 39

MacApp, 17
metaphor, 12, 16, 18
metaphors, 15
methodologies, 1, 5, 29–31, 34, 43
methodology, 29, 31, 43, 44
metric, 40, 41
metrical, 38, 40, 41, 43
metrics, 5, 15, 30, 31, 34, 35, 40, 41
MHP, 39
misrecognition, 26, 40
misrecognitions, 41
modalities, 9, 21, 23–25, 32, 42
modality, 5, 9, 17, 24, 25
motoric, 24
multimedia, 23, 26, 35
MUSE, 30, 31, 42

NGOMSL, 39
NLDB, 20, 26
NLP, 10, 20, 21
noncooperative, 27

ontologies, 13, 14
OO, 33
organisational, 35
ORIMUHS, 23

PAC, 13, 17, 33
PADIS, 22
PARADISE, 41
parallellism, 17
PCT, 17
performative, 38
perlocution, 10
Petri nets, 31–33
Philips, 22
PKSM, 39, 40
PMM, 20
PMMs, 20
PRACMA, 21
pragmatical, 10
pragmaticism, 10
primary memory, 6
protocol, 14, 17, 33, 37
protocols, 10, 12, 13, 33

qualitative, 11, 30, 31, 34, 37, 38
quantitative, 30, 34, 37, 38, 43

QuickSet, 23, 25

SC, 41
Schisma, 22, 42, 43
ScreenView, 17
Seeheim, 13, 17
semiotic, 8, 9, 18
semiotics, 1, 5, 8–11, 18
SF, 41
short term memory, 6
sign, 8–11, 18
significata, 10
significatum, 8, 9
simulable, 32
situated action modelling, 7
Speechmania, 33
standardisation, 38
STM, 6, 7, 39
subdialogues, 11, 28
SUPERMAN, 33
symbol, 6, 8, 9, 18, 25
symbolic, 7–9, 19, 23

TAKD, 35
task-oriented, 20, 22, 23, 27, 28, 35
TCR, 41
test-bed, 22, 43
theatre, 18, 22
TOD, 20
TODs, 28
TS, 8, 41

UAN, 35
UF, 41
UI, 15, 17, 32, 33, 35
UIDE, 39
UIMS, 17
ULF, 12
uncooperativeness, 11
underspecification, 15
underspecified, 12, 32
unsyntactic, 15
usability, 15, 16, 30, 32, 34, 35, 42, 43
UVM, 16, 17

VMC, 22, 43, 44
VR, 13

WOMBAT, 22
WOz, 30, 33, 34, 37, 38

57

Author Index

Abella, Alicia 41
Ahn, Rene 12
Akker, R. op den 22
Albesano, D. 22, 41
Allen, James F. 20, 22, 27, 41
Allwood, Jens 15
Andernach, J. A. 38
Andersen, P. B. 18
Anderson, Stuart 6, 7, 8, 29
Andre, Elisabeth 25
Androutsopoulos, I. 20, 21, 23, 24
Arnold 15
Atwood, Michael E. 39
Aust, Harald 15
Austin, J. L. 10

Baber, C. 40
Baekgaard, Anders 33
Baggia, P. 22, 41
Baker, M. 20
Bannon, L. 7
Barbuceanu, Mihai 14
Barnard, P. 18
Bastide, R. 13, 32, 33
Benysh, D. V. 40
Bergevoet, B. A. J. 30
Bernsen, Niels Ole 15, 25
Beun, R. 20
Beun, Robbert-Jan 12
Blandford, Ann E. 22, 42
Borghuis, Tijn 12
Bouwman, A. G. G. 22
Bouwman, Peter 33
Brandenburg, Jeffrey L. 35
Brazier, F. 14
Brazier, F. M. T. 14
Bretier, P. 22
Bretier, Philippe 22
Brouwer-Janse, Maddy D. 35
Brown, Michael K. 28
Bruin, Hans de 33
Bunt, Harry 12
Bunt, Harry C. 27
Busemann, Stephan 22
Buxton, W. 18
Byrne, M. D. 39

Callahan, Gene 18, 23
Carberry, Sandra 28

Carlson, John R. 16
Castelfranchi, Cristiano 11
Chase, J. D. 35
Chau, Raymond 20
Chu-Carroll, Jennifer 28
Ciciani, Bruno 6, 7, 8, 29
Cohen, P. R. 22, 23, 25
Cohen, Philip P. 25
Coutaz, J. 13

Dahlback, N. 38
Danieli, M. 22, 41
Darses, Francoise 11
de Saussure, Ferdinand 8
Declerck, Thierry 22
DeHaemer, Michael J. 41
Dessalles, Jean-Louis 12
Di Fabbrizio, Giuseppe 27, 41
Diagne, Abdel Kader 22
Diel, H. 17
Dignum, Frank 13
Dillon, Thomas W. 41
Dini, Luca 22
Dunin-Keplicz, B. 14
D.Wood, S. 39
Dybkjaer, Hans 15, 25
Dybkjaer, Laila 15, 25

Eckert, Wieland 38, 40, 41
Eco, Umberto 8
Ek, Åsa 16
Embry, David 6, 7, 8, 29
Encarnacão, Miguel 17, 22, 23
Ericsson, K. Anders 14, 37
Ess-Dykema, Carol van 27, 28

Fahnrich, K.-P. 25
Fais, Laurel 12
Falzon, Pierre 11
Faraday, P. 25
Faraday, Peter 26
Fass, Dan 20
Fields, B. 32
Fischer, G. 20
Foley, J. D. 39
Foster, J. C. 38
Fox, Mark S. 14
Frascina, T. 35
Fraser, Norman M. 15
Fromer, Jeanne 27, 41
Furukawa, H. 20

58

Galliers, Julia R. 16, 33
Gemello, R. 22, 41
Genesereth, Michael R. 14
Gerbino, E. 22, 41
Gerlach, M. 22
Gibbon, D. 29
Glass, J. 41
Goerke, Winfried 6, 7, 8, 29
Good, D. A. 10
Gray, Wayne D. 39
Grice, H. P. 11
Guha, R. V. 13
Guinn, C.I. 37
Gutwin, Carl 20

Haan, G. de 15, 16, 39
Hall, Gary 20
Hall, Laura L. 16
Hanne, K.-H. 25
Harada, N. 20
Harning, Morten Borup 32
Hartson, H. Rex 35
Hayashi, Yoshio 33
Hazen, T. J. 41
Heeman, Peter A. 27
Hessen, Arjan van 22
Hindle, Donald 27, 41
Hipp, D. Richard 21, 22, 23
Hirschman, L. 40
Hix, Deborah 35
ho Loken-Kim, Kyung 12
Hoeve, M. 30
Hone, K. S. 40
Hulstijn, J. 22

Ishimaru, K. 20
Ishizaki, M. 28
Iwadera, T. 28

J., Treur 14
Jack, M. A. 38
Jameson, A. 20, 21, 27
Jennings, N. 14
John, B. E. 35, 39
John, Bonnie E. 39
Johnston, M. 22, 23, 25
Jones, Karen Sparck 16, 33
Jönsson, Arne 28

Kaaniche, Mohamed 6, 7, 8, 29
Kamm, Candace A. 41
Kanoun, Karama 6, 7, 8, 29

Kaptelinin, V. 7
Karsenty, Laurent 11, 27
Ketchpel, Steven P. 14
Kieras, D. 39
Kieras, David E. 39
Kinoe, Yosuke 33
Kipper, B. 21
Kitano, Hiroaki 27, 28
Klein, Judith 22
Kotani, Y. 26
Koubek, R. J. 40
Koved, L. 21
Kunzinger, E. 21
Kushilevitz 10
Kuutti, K. 7

Lambert, Lynn 28
Langen, P. H. G. van 14
Laprie, Jean Claude 6, 7, 8, 29
Lauesen, Soren 32
Laurel, Brenda 18
Laurens, Olivier 20
Lawrence, Deborah 39
Lee, J. R. 20, 25
Lenat, Douglas B. 13
Lenting, B. F. 30
Lenting, Bert F. 6, 15, 23
Levin, Esther 38, 40, 41
Levinson, Stephen C. 15
Lewin, Ian 33, 38
Lewis, C. 17, 18
Lie, D.H. 22
Lim, K. Y. 32
Lim, Kee Yong 30, 42
Linder, Bernd van 13
Litman, Diane J. 41
Littlewood, Bev 6, 7, 8, 29
Long, J. B. 32
Long, John 30, 42

M., Willems 14
Maier, E. 24
Marks, S. J. 35
Martin, Christian 33
Martin, Jean-Claude 22, 23, 24
May, J. 18
Mazet, Corinne 6, 7, 8, 29
McCalla, Gordon 20
McGee, D. 22, 23, 25
McInnes, F. R. 38
Merriam, N. 32

59

Mestel, Craig 27, 41
Meyer, David E. 39
Minker, Wolfgang 40
Mizoguchi, R. 20
Monfardini, Gianpietro 6, 7, 8, 29
Moore, Johanna D. 27
Moore, R. 29
Mori, Hirohiko 33
Morimoto, T. 28
Mortensen, Uffe 6, 7, 8, 29

Nagao, Katashi 25
Nardi, Bonnie A. 7
Ndiaye, A. 21
Nielsen, Jakob 15, 18, 42
Nigay, L. 13
Nijholt, A. 22
Nisimura, H. 26
Nivre, Joakim 27
Noisukaviriya, P. 39
Norcio, A. F. 41
Norman, D. A. 7, 17, 18
Norman, Donald A. 13
Nukuzuma, A. 20
Nwana, H. S. 13

Oerder, Martin 15
Olson, Gary M. 39
Olson, Judith Reitman 39
Onken, R. 22
Overveld, Kees van 12
Oviatt, S. L. 22, 23, 25
Oviatt, Sharon L. 25

Palanque, P. 13, 32, 33
Panaget, F. 22
Paris, Cecile L. 27
Pasquini, Alberto 6, 7, 8, 29
Passoneau, Rebecca J. 27
Peirce, Charles Sanders 8
Philips 33
Pieraccini, Roberto 38, 40, 41
Pittman, J. A. 22, 23, 25
Polifroni, J. 41
Popowich, Fred 20

Ramshaw, Lance A. 26
Rauterberg, M. 26
Reeves, B. 20
Reiner, M. 20
Reiner, Miriam 20, 25
Reithinger, N. 38

Rekimoto, Jun 25
Rist, Thomas 25
Ritchie, G. D. 20, 21, 23, 24
Rizzo, Antonio 6, 7, 8, 29
Robert, J. M. 11
Roe 15
Rullent, C. 22, 41

Sadek, David 22
Sadek, M. D. 22
Schafer, R. 21
Schäfer, R. 20
Schmeier, Sven 22
Schooten, B. W. van 28
Schulman, Robert S. 35
Searle, John R. 7
Seneff, S. 41
Shannon, Claude E. 10
Shneiderman, B. 15, 23, 39
Sikorski, Teresa 20, 22, 41
Simon, Herbert A. 14, 37
Simons, J. 20, 21
Smith, I. 22, 23, 25
Smith, Ronnie W. 12, 21, 22, 23, 26, 27
Sonneck, Gerald 6, 7, 8, 29
Steele, R. A. 35
Stein, A. 24
Stent, Amanda J. 20, 22, 41
Strigini, Lorenzo 6, 7, 8, 29
Stroup, Janet 22, 23, 35
Stuart, Rory 39
Sutcliffe, A. G. 25
Sutcliffe, Alistair 26

Takeuchi, Akikazu 25
Taylor, Martin M. 17
Thanisch, P. 20, 21, 23, 24
Thompson, H. 40
Tillmann, H. G. 27
Tischer, B. 27
Trabelsi, Z. 26
Trafton, J. Gregory 22, 23, 35
Traum, David 22
Treur, J. 14
Tullis, Thomas S. 29

Uhl, J. 17
Uzilevsky, G. 18

Veer, G. C. van der 15, 16, 39
Veer, G. C. van der 30
Veer, Gerrit C. van der 6, 15, 23

60

Veer, Gerrit van der 6, 7, 8, 29
Vera, A. H. 39
Vliet, J. C. van 15, 16, 39
von Rüden, Malte 20

Walker, M. A. 38, 40
Walker, Marilyn 20, 27, 28, 41
Walker, Marilyn A. 26, 28, 41
Warren, C. P. 30
Watt, S. N. K. 13
Wauchope, Kenneth 22, 23, 35
Waugh, David A. 17
Weaver, Warren 10
Weis, T. 20, 21, 27
Welsch, M. 17
White, L. S. 38
Whittaker, Steve 20, 27, 28
Wijngaards, N. J. E. 14
Winski, R. 29
Winterhalder, Christian 33
Wolf, C. 21
Wood, Scott D. 39
Wooldridge, M. 13
Wright, P. 32

Yamada, K. 20

Zhang, J. 7
Zimmermann, D. 21
Zoest, Aart van 8, 9

61

