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The optical memory effect is a well-known type of tilt/tilt wave correlation that is observed in coherent fields, allowing
control over scattered light through thin and diffusive materials. Here we show that the optical memory effect is a
special case of a more general class of combined shift/tilt correlations occurring in media of arbitrary geometry. We
experimentally demonstrate the existence of these correlations, and provide an analytical framework that allows us to
predict and understand this class of scattering correlations. This “generalized optical memory effect” can be utilized
for maximizing the imaging field-of-view of deep tissue imaging techniques such as phase conjugation and adaptive

optics.  © 2017 Optical Society of America
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1. INTRODUCTION

It is challenging to record clear images from deep within biological
tissue. As an optical field passes through tissue, its spatial profile
becomes randomly perturbed, resulting in a blurry image of the
features that lie underneath. Luckily, even highly scattered
optical fields still maintain a certain degree of correlation.
Such scattering-based correlations have recently enabled new
“hidden imaging” approaches [1—4], which reconstruct clear im-
ages from behind diffusive materials. These prior investigations
have primarily exploited what is traditionally referred to as the
optical memory effect [5,6]. This effect predicts that a scattered
wavefront will tilt, but otherwise not change, when the beam in-
cident upon a scattering material is also tilted by the same amount
[see Fig. 1(a)]. These correlations have been observed through
thin isotropically scattering screens [7] as well as thick forward-
scattering tissue [8].

Recently, we reported a new type of “shift” memory effect,
illustrated in Fig. 1(b), that occurs primarily in anisotropically
scattering media [9]. This form of correlation is especially impor-
tant in biomedical imaging, as it offers the ability to physically
shift (as opposed to tilt) a focal spot formed deep within scattering
tissue by translating an incident optical beam. However, neither
of the two reported types of correlation could fully explain the
observations seen in thick biological tissue [8].

Here, we show how the optical “tilt” and “shift” memory
effects are nontrivially intertwined. In fact, the two effects are
manifestations of one and the same general source of correlation
within a scattering process, which depends upon how an incident
wavefront is both tilted and shifted [see Fig. 1(c)]. Our new
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“generalized memory effect” model offers a complete description
of these combined shift/tilt correlations present within scattering
media. With our model, we are able to explain the unexpectedly
large optical memory effect observed within biological tissue,
estimate the size of the isoplanatic patch in microscopy, and opti-
mize the design of adaptive optics microscopes [10]. Additionally,
we develop and verify a Fokker—Planck light propagation model
that predicts an optimal imaging/scanning strategy for a given
forward-scattering sample based on its scattering response.
While our model applies to coherent waves in general, we limit
our attention to the optical regime.

We start out by presenting our model for the generalized
memory effect. We describe how to predict the amount of ex-
pected correlation through a given slab of scattering material
as function of both position and wave vector. Then, we discuss
the direct applications of our findings to adaptive optics before
presenting experimental memory effect measurements.

2. MODEL

In our model, we consider propagation of monochromatic and
coherent light from an “input” plane z to a “target” plane 4. We
limit ourselves to scalar waves. The forward-propagating field at
the “input” surface, £, and at the “target” plane, £, are coupled

through

Ey(ry) = / Tty 1) E,(r)dr, ()

It should be noted here that our model is completely general
and does not make any assumptions about the location or
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Fig. 1. Three different types of spatial correlations in disordered
media. (a) The optical “tilt” memory effect [6], where an input wavefront
tilt leads to a tilt at the target plane. (b) The anisotropic “shift” memory
effect [9], where an input wavefront shift also shifts the target plane wave-
front. (c) Our new generalized memory effect, relying on both tilts and
shifts, can maximize correlations along the target plane for a maximum
imaging/focus scanning area.

orientation of the two planes, nor about the symmetry, shape, or
other properties of the scattering sample. For example, for trans-
mission through a slab of scattering material, the target plane is
located at the back surface of the sample, and 7'(r), r,) is the
sample’s transmission matrix. Conversely, in a biomedical micro-
scope setup, the target plane is typically located inside a scattering
sample, like tissue, and 7" is a field propagator connecting
position I, to a position I, located inside the tissue.

At this point let us define exactly what type of correlations we
are interested in. Suppose that an input field £, results in a target
field £,. We hypothesize that when we shift/tilt the incident field
with respect to the medium, the new target field will also expe-
rience a shift/tlt and also remain similar to the original target
field. This similarity can be expressed as a correlation function
involving the original matrix 7', and a new matrix 7" associated
with the shift/tlted field. We describe “tilting” the incident wave
as a multiplication with a phase ramp, exp(iAK, - r,), resulting in
a wavefront that is tilted by Ak, with respect to plane a. Likewise,
we describe the corresponding tilt at the target plane via a multi-
plication with exp(-iAk, - ;).

We may now describe the new shifted/tilted situation by
writing the corresponding shift/tilt matrix as T(r,r,) =
exp(-iAKk, -1,) T (v, + Ary, r, + Ar,) exp(iAK, - 1,),  where
T is shifted by Ar, and Ar, at the input and target plane,
respectively. By calculating the ensemble averaged value (7°7°*),
we can find the corresponding shift/tilt correlation coefficient.
However, we found that the problem is expressed more
naturally if we first introduce the center-difference coordinates
rf =r,+ Ar,/2, r;=r,-Ar,/2 (and the same for r;).
Using the same reasoning as above, we now find a symmetric
expression for our generalized shift/tilt correlation function,

C(Al’b, Akb; Al‘ﬂ, Akﬂ)
= // ( T(I‘Z_, r;&-) T* (I'Z» r;))gi(Ak,r,,—Akb»r;,) dzl‘ddzl‘/,. (2)

In the special case that Ak, = Ak, and Ar, = Ar, = 0, Eq. (2)
reduces to the optical “tilt” memory effect [6], whereas for Ar, =
Ar, and Ak, = Ak, = 0, the correlation function corresponds
to the anisotropic “shift” memory effect described in Ref. [9].
Later we will show that the generalized correlation function is
not simply a trivial combination of the separate shift and tilt
memory effects.

Before proceeding to calculate C in terms of the sample prop-
erties, we introduce the Wigner distribution function (WDEF),
which describes the optical field as distribution in a joint phase
space of two Fourier-conjugate variables [11,12]. In our case, the
variables of interest are space (r) and wave vector (k):

W(r k) = / E(r)E*(r)e AT d2 Ar. @)

We choose to work with the WDF because it will allow us to
convert Eq. (1) into a function of both space and wave vector,
which we may easily connect to our new correlation function
C of similar variables. In the paraxial approximation, the
Wigner distribution function is effectively equivalent to the light
field [13], which describes the amount of optical power at point r
that is propagating in direction K, like a spatio-angular plot of
light rays at various locations propagating in different directions.

To describe the scattering of incident light over space and wave
vector, we introduce the “light field transmission function,” P.
This function maps the incident light field W ,(r,, Kk,) to the
transmitted light field W, (r,, k;) at the target plane:

1
Wil k) = oo // Py ity k) W, k) d2r,dk,,

4
Equation (4) is the phase-space equivalent of Eq. (1). In
Supplement 1A, we show that P takes the form of a double-
Wigner distribution of the transmission matrix,

P(r, kyr, K,)
= // T(xf, rf)T*(xy, r,)eArekabnk) 2 Ar dAr,. ()

Informally, we may think of P(r;, k,;r,, k,) as the scattering re-
sponse across space and wave vector at the output plane of optical
rays at the input plane. For instance, if the single ray enters the
system at T, = 0 with k, = 0, then the spatio-angular response at
the target plane is given by W, (r;, k,) = P(r;, k;; 0, 0). Since it
is not possible to form a single-ray input WDF, this remains an
informal interpretation [11]. Although P is a function of four var-
iables, it only depends upon the scattering system’s two-variable
transmission matrix, 7°, and obeys the same properties as a WDF
(e.g., realness).

In Eq. (5), we recognize a Fourier transform from Ar, to k,
and an inverse Fourier transform from Ar, to k,. Performing the
reversed transforms on both sides of Eq. (5) yields

T(rf,r))T*(r), ;)
1 )
= 4 “// P(rb’ kb; r, ka)el(iArﬂ-kﬂJrArb.kb)dzkadzkb’ (6)
(2m)

which can be inserted into Eq. (2) to arrive at our central result,

C(Ar, Aky; Ar,, AK,)

1 .
= _(27[)4 ff/f (P(r,, K1, K,)) AT kAT, K+ Ak o1, -Ak, Ty

X dzkﬂdzrﬂdzk;,dzrb, (7)

In short, C and the ensemble averaged P are connected through
two forward and two inverse 2D Fourier transforms. The corre-
lation function in Eq. (7) is the formulation of our new gener-
alized memory effect, generalizing the well-known “tilt” memory
effect into a full class of interrelated shift and tilt correlations.
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If (P) were to be separable in r and k coordinates, Eq. (7) would
reduce to a simple multiplication of the “tilt” and “shift” memory
effects. However, as we will show below, () is generally not sepa-
rable, and the interaction between shift and tilt effects is nontri-
vial. At this point, we want to emphasize that Eq. (7) is still valid
for any scattering medium or geometry. Also, these spatio-angular
correlations are an intrinsic property of the scattering medium,
and will thus be present regardless of the form of the input field.

3. APPROXIMATE SOLUTION FOR FORWARD
SCATTERING

We are now left with the challenge of calculating (). Although
we could use the radiative transfer equation in the most general
case, we prefer an approximate solution that gives a simple
analytical form for (P) under the condition that light is mainly
scattered in the forward direction.

The model is based on the notion that the WDF’s joint de-
scription of light across r and K is very closely related to the light
field description of rays [13]. Similar to the approach presented in
Ref. [14], light propagation in the sample is modeled as a series of
scattering events, where each scattering event slightly changes the
propagation direction of the rays while maintaining the position.
Between the scattering events, light propagates along straight rays
and maintains its directionality.

In the continuous limit of infinitely small steps between the
scattering events, this picture translates to a Fokker—Planck
equation with the following solution (full derivation in
Supplement 1B):

L1242 6, [It]* k-& |k
PFP A,k — tr _ Lo el Bl Ll I ) 8
(k) =7 o ( i [1;2 R 3/egD (®)

Here, k=k, -k, t =1, -1, - LK,/ k¢, ky is the wavenumber,
¢ is the transport mean free path, and L is the separation be-
tween the input and target plane (that is, the target plane depth).
It can be seen that the variance in the direction of the light
increases linearly with L. Interestingly, in this forward-scattering
regime, the variance in the spatial distribution increases as 3.

Note that P is only a function of two variables. The reduc-
tion of r, and r, to a single difference coordinate T is possible
because the Fokker—Planck equation is shift invariant. A similar
simplification was used in the original derivation of the “tlt”
optical memory effect [6]. By assuming the average scattered
intensity envelope only depended upon relative position, the re-
sulting memory effect correlation reduced to a function of only
one tilt variable, which is now a commonly applied simplification
in many experiments [1-4]. Note that in this paraxial model the
target intensity distribution is additionally offset by Lk,/kq,
which is exactly what is expected from pure ballistic propagation
through a transparent medium of thickness L. Moreover, the
Fokker—Planck model is also invariant to a tilt in the incident
wave. This symmetry allows for the reduction of coordinates
k; and K, to k. Of course, this approximation neglects the fact
that rays at a high incident angle propagate a larger distance inside
the sample.

We can now find an expression for the generalized memory
effect in a forward-scattering material by substituting (P) =
P into Eq. (7) (see Supplement 1B for the details), arriving at
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C(Ar, Aky; Ar, Ak,)
= (27)? C'P(Ar,, Ak,)S(Ak, - Ak,)S(Ar, - Ar, - AK,L/ky).
©)

Here the 2D correlation function C*" is given by
L3k} [|AK,|> Ak, -Ar, |Ar,)?
20, { 3k, koL T D
(10)

As is clear from Eq. (10), shift and tilt correlations along the target
plane are not independent, but show a combined effect, repre-
sented by the AK, - Ar, cross term. The two delta functions in
Eq. (9) are a direct result of the shift and tilt invariance of the
Fokker-Planck model. As we show in Supplement 1C, in an
actual experiment the delta functions will be replaced by the
ambiguity function of the incident field, which is ideally a
well-behaved sharp function.

CFP(Arb, Akb) = exp (—

4. MAXIMIZING THE ISOPLANATIC PATCH

We now examine the application of the generalized memory effect
to adaptive optics (AO) systems. AO allows light to be focused
inside scattering media by correcting for the induced wavefront
distortions by means of a deformable mirror or spatial light
modulator. Generally, AO systems are limited to a single plane
of wavefront correction. However, a single correction plane cannot
correct for a full scattering volume, and therefore, the focus scan
range is limited to a small area termed the isoplanatic patch. A cen-
tral question in AO is where to conjugate the correction plane to
maximize the isoplanatic patch [10]. In the case of conjugate AO,
this correction plane is located at the sample’s top (input) surface,
whereas in pupil AO, it is effectively located at an infinite distance
from the sample. In Fig. 2, we diagram how conjugate AO and
pupil AO are analogous to experiments that utilize the “tlt”
[Fig. 2(a)] and “shift” memory effects [Fig. 2(b)], respectively.

To maximize the isoplanatic patch, one should simultaneously
tilt and shift the incident field to maximize C*" for a desired shift
distance Ar,, while using AK,, as a free parameter. From Eq. (10),
we find that the optimal scan range is achieved when

3/@0Arb
2L

Likewise, C*" can also be expressed as a function of the transla-
tion Ar, and rotation Ak, of the incident field. Using the
delta function relations from Eq. (9), we can substitute

AR = (11)

(a) Ak, (b) () Ak,
- RAENE - V=~
4
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Fig. 2. AO focus scanning/imaging inside a scattering medium uses
different memory effects. (a) The “tilt” effect arises with the AO tilt plane
(dashed line) conjugated to the input surface. (b) The “shift” effect arises
with the AO tilt plane at infinity. (c) The optimal joint tilt/shift scheme
requires the AO tdilt plane to be located at a depth of L/3 inside
the sample.
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Table 1. Comparison of the Performance of the Three
Different Memory Effects in Terms of Adaptive Optics Scan
Range

Correlation Adaptive Optics Tilt Plane Scan Range
Shift Pupil -00 V26 R
Tile Surface Conjugate 0 V6l R
Optimal Sample Conjugate L/3 \/m

Ar, = Ar, + LAK,/ky and Ak, = AK, in Eq. (11) to find the
optimal dlt/shift combination at the input plane for a given
amount of target shift Ary:

3/€0Ar5
2L

Hence, to scan a focus by a distance of Ar, the optimal strategy is
to shift the incident field by Ar,/2 in the opposite direction, and
then tilt until the desired Ar, is reached. In other words, the op-
timal scanning mechanism is achieved by conjugating the AO cor-
rection plane inside the scattering sample at a depth of L/3, which
geometrically corresponds to the ideal tilt plane. We illustrate this
mechanism for optimized focus scanning in Fig. 2(c).

In Table 1, we compare the isoplanatism provided by the three
different memory effects. Here, we define isoplanatism as the
maximum allowed scan distance r; at the target plane that main-
tains 1/e correlation, which we solve for with appropriately
defined input variables in Eq. (10). Interestingly, all memory
effects decrease at the same rate of 1/, /k3L as the target plane
is placed deeper inside the medium. However, the scan range of
the tilt/tile memory effect is always a factor of /3 larger than the
shift/shift memory effect. By exploiting the optimal tilt/shift com-
bination, as given in Eq. (12), the scanning improvement is
increased to a factor of 2.

For some applications, such as imaging a structure hidden far
behind a forward-scattering material [1-3,15], one may be inter-
ested in maximizing the angular memory effect instead. In this case,
the goal is to maximize C™" for a desired tilt Ak, while using Ary as
a free parameter. For this scenario, we find a maximum scan range

of Ak, = /242, /> for Ax, = Ak,L/2k,. This translates to a
1 /e memory effectangle of Ak, / ko ~ 0.78 \/%% . Of course, these

Ak = and Ar)’" = -Ar,/2. (12)

results are based on the Fokker—Planck model, which is only valid
in the forward-scattering regime L < ;. In this regime, however,
the memory effect angle is significantly larger than the 1/¢ angle of
0.434/L that follows from the tilt/tilt memory effect [6] alone.
This enhanced angular memory effect is in line with recent
observations in forward-scattering tissue [8].

5. EXPERIMENTAL VALIDATION

We now measure C and P for a forward-scattering medium in
two separate experiments. These experiments will verify the 2 - C
relation predicted in Eq. (7) and the Fokker—Planck model in
Eq. (8). For simplicity, we consider C and P only along the hori-
zontal dimension, with x, and #, as the horizontal components of
the position and the wave vector at the sample back surface,
respectively. We created our scattering samples using uniform
3.17 £ 0.32 pm diameter silica microspheres immersed in 1%
agarose gel with a concentration of 1.50 + 0.01 - 1074 spheres
per pm?. The refractive index of the microspheres and the agarose
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gel are 1.45 £ 0.02 and 1.33 = 0.005, respectively. Using Mie
theory, we find an anisotropy factor of g = 0.980 £ 0.007,
and a scattering mean free path of Z,, = 0.296 £ 0.016 mm at
a wavelength of 632.8 nm. This results in a transport mean free
path of ¢, = 14.8 £5.2 mm. We then cast this scattering
mixture into layers of two thicknesses: L =258 & 3 pm and
520 £ 5 pm.

The experimental setup is illustrated in Fig. 3. Light from a
632.8 nm He—Ne laser is expanded and split into a reference path
and the sample path. Light is focused onto the scattering sample
using a microscope objective (Zeiss A-Plan 100 x /0.8), and we
image the sample back surface (target plane) with a charge-
coupled device (AVT Stingray F-145) through a second identical
objective and tube lens (f = 150 mm). The phase of light trans-
mitted through the sample is determined by means of off-axis
holography. The sample is placed on a translation stage for lateral
movement. Additionally, a pinhole or diffuser is placed directly in
front of the first microscope objective to either create a pencil
beam or a random speckle pattern as the input field.

A. Measurements of the Light Field Transmission
Function

From Eq. (4), we know that a finite input beam £, will result in a
WDF at the target plane, W, that is a convolution between the
desired light field transmission function P and the WDF of the
input field, W,. We are thus able to determine P by using a
pencil beam for sample illumination (size = 2.0 pm) at x, = 0
and k, =0, which approximately forms the input WDF
W (x, k) & 6(x,)6(k,). P is then found by measuring the scat-
tered light at the target plane across both space and angle. The
pencil beam is formed by placing a 500 pm wide pinhole close to
the back aperture of the first objective. After measuring the scat-
tered field, we numerically calculate the WDF W, (x;, #,) using
Eq. (3) to find the scattered intensity as a function of both x; and
k. We average the WDF over 300 measurements, translating the
sample over a distance of 10 pm in between each measurement to
obtain (P). To facilitate comparison of our measurements with
the Fokker—Planck model, which does not include ballistic light,
we chose to remove the contribution of ballistic light by sub-
tracting the average transmitted field from every measured field
before calculating its WDF. Following prior work, it is possible to
modify our model to also include ballistic light at the expense of
some added complexity [16,17].

Reference path O,

&
— — 2.
s

Diffuser Pinhole

$
|§ OR

Sample path

He-Ne laser

L .

Polarizer CCD

s $
i 100x/0.8] H [100)(/0.8 < E —|:|

f=150 mm

Sample

Fig. 3. Schematic of the experimental setup used for measuring both
the light field transmission function and generalized correlation func-
tions. The pinhole and diffuser are used in the P and C experiments,
respectively. Both the diffuser and the sample holder are placed on a
translation stage.
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Fig. 4. Results of the light field transmission function (P) experiment.
We compare our measurements, %, to the Fokker—Planck model pre-
diction [PF?, from Eq. (8)] for samples with (a), (b) LZ = 258 pm and (c),
(d) L=520 pm. Color bar indicates the normalized transmitted
intensity as function of x, and 4.

In Fig. 4, we compare our measured light field transmission
functions, P, to those computed with the Fokker—Plank model
(P'P) in Eq. (8). The effect of the cross term between x;, and k;, as
predicted in P!P, is clearly visible in our measurements from the
fact that the distributions are sheared. This shear implies that the
light at the edges of the diffuse spot (large x;) continues to propa-
gate, on average, in a radially outward manner (large £;) after
scattering. The P measurements are less spread out than the
Fokker—Planck model, which might be a result of the limited

optical sensitivity at the edges of the objective lenses. Both a large
field of view and a large numerical aperture of the microscope
objective are required to measure the full extent of the light field
transmission function.

B. Measurements of the Generalized Correlation
Function

Next, we experimentally measure the generalized correlation
function C**. We will directly compare these measurements to
our correlation model for C** in Eq. (10). Additionally, we will
verify our main result in Eq. (7) by comparing the C** measure-
ments to C™V, the 2D Fourier transform of the light field
transmission function measurements. For the correlation mea-
surements, we replace the pinhole in front of the first objective
with a diffuser that forms a randomized input field (average
speckle size = 400 nm) at the sample surface. We use a diffuser
to minimize correlations within the input field, which manifest
themselves as a convolution in our measurement of C* (see
Supplement 1C). We tilt the random input field by translating
the diffuser at the objective back aperture. We record a total
of 625 scattered fields by illuminating the sample at 25 unique
spatial locations and under 25 unique angles of incidence. From
this 252 data cube, we compute C** by taking the ensemble aver-
age of all the absolute values of the correlation coefficients
between two fields separated by the same amount of shift Ax,
and tilt Ak,. Finally, we normalize C® after subtracting the
correlation value at the maximum shift, corresponding with
the correlations in the ballistic light.

Figure 5 presents the results of our C experiments. For the two
different sample thicknesses of L = 258 pm and L = 520 pm,
the measured 2D correlation functions in (a,d) are compared
to C™V, the Fourier transform of P** in (b,e), and the Fokker—
Planck model C** in (c,f). The dashed line indicates the optimal
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Fig. 5. Results of the generalized correlation function (C) experiments. Measurements of C™ are compared to C*Y and the Fokker—Planck correlation
model C™ from Eq. (10) for samples with (a)—(c) L = 258 pm and (d)~(f) Z = 520 pm. Dashed lines indicate the optimal scanning condition in
Eq. (11). (g)—(1) Cross sections of the 2D correlation functions in (a)—(c); evaluated (g) along the horizontal axis at Ak, = 0, (h) along vertical axis at
Ax;, = 0, and (i) along the optimal scan line for the 258 pm thick sample. (j)—(I) Same cross sections for the 520 pm thick sample. The black dashed line
denotes the C™” model, while red and blue stars denote the measured C** and C*V, respectively.
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tilt/scan condition as predicted in Eq. (11). We also show cross
sections through C* (red stars), C PW (blue stars), and CTP
(dashed black) on the right. These cross sections are given along
the Ak, = 0 line (g,j), the Ax;, = 0 line (h,k), and the optimal
target plane scan condition (i,1). These last two plots demonstrate
how jointly considered tilts and shifts can increase correlations
along Ax, to increase the scan range (i.e., isoplanatic patch) at
the target plane. For instance, for the L = 258 pm sample,
the standard deviation increases from 1.30 to 2.66 pm when
comparing the correlation function along Ax, and A/ezp ‘ which
corresponds to the predicted doubling of the scan range. Even
though the Fokker—Planck model is a simplified paraxial descrip-
tion that neglects backscattering and interference, it provides an
accurate prediction of the measured correlations. The cross sec-
tions for C* and CPV are also in good agreement, except for
Fig. 5(k). This data corresponds to the thickest sample, for which
the limited field of view of the objective lens prevented us from
fully measuring P along x,. The truncation of P, already
observed in Fig. 4(c), results in a broadening of its Fourier
transform CTV.

6. DISCUSSION

The optical memory effect as reported in Ref. [6] has paved the
way for several new imaging techniques that can “see through”
thin scattering layers [1—4]. These techniques require the object
of interest to be positioned at a distance behind the thin layer, and
are thus not immediately applicable to situations in biomedical
imaging where the object of interest is embedded in scattering
tissue. The anisotropic memory effect [9] showed that transla-
tional spatial correlations also exists within the scattering sample,
and they have been demonstrated to be suitable for imaging or
focus scanning inside biological tissue [15,18]. Our new gener-
alized memory effect model offers a new theoretical framework
that encompasses the two known memory effects as special cases.
Moreover, our model offers a means to optimize the field of view
of adaptive optics and hidden imaging approaches.

Using the Fokker—Planck light propagation model, we have
shown that the “tilt” memory effect is not only present behind,
but also inside scattering layers, proving to be a factor v/3 more
effective as a scanning technique than the “shift” memory effect
alone. This finding supports the field-of-view (FOV) advantage of
conjugate AO over pupil AO, discussed in Ref. [10], as the “dl¢”
and “shift” memory effects are utilized by conjugate AO and pupil
AO, respectively. Our optimal joint tilt/shift scheme, which cor-
responds to an optimal AO conjugation tilt plane, maximizes the
corrected FOV beyond what is predicted independently by only
the “til” memory effect and only the “shift” memory effect. The
scan ranges given in Table 1 are strictly the correlations that result
from the transmission matrix. Correlations in the input beam may
further extend the scan range of the different memory effects (see
Supplement 1C). The Fokker—Planck model assumes continuous
scattering throughout the sample and neglects backscattered light,
an assumption that may not hold in strong isotropic scattering
media. However, in this case the Fourier relation between P
and C is still valid. The generalized correlation function is the
phase-space equivalent of the C intensity correlations introduced
by Feng et al. [6]. We envisage that there also exist phase-space
equivalents of C, and Cj correlations. These higher-order corre-
lations have recently been exploited to focus light through scat-
tering media with an unexpectedly high efficiency [19], and
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investigating their phase-space equivalents may prove equally
useful.

Concluding, our new generalized memory effect model gen-
eralizes the known optical memory effects without making any
assumptions about the geometry or scattering properties of the
scattering system. The predicted Fourier relation between the
light field transmission function and generalized correlation func-
tion has been experimentally verified in forward-scattering media.
Furthermore, we found that the simple Fokker—Planck model for
light propagation is surprisingly accurate in describing the full set
of first-order spatial correlations inside forward-scattering media.
Our new generalized memory effect model predicts the maximum
distance that a scattered field can be scanned while remaining
correlated to its unshifted form. In other words, the generalized
memory effect provides the optimal scan mechanism for deep-
tissue focusing techniques.
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