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Reflectivity calculated for a three-dimensional silicon photonic band gap crystal with finite support
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We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic
band gap. We employ the finite element method to study crystals with the cubic diamondlike inverse woodpile
structure. The high-index backbone has a dielectric function similar to silicon. We study crystals with a range of
thicknesses up to ten unit cells (L � 10c). The crystals are surrounded by vacuum, and have a finite support as in
experiments. The polarization-resolved reflectivity spectra reveal Fabry-Pérot fringes related to standing waves in
the finite crystal, as well as broad stop bands with nearly 100% reflectivity, even for thin crystals. The frequency
ranges of the stop bands change little with angle of incidence, which is plausible since the stop bands are part
of the 3D band gap. Moreover, this result supports the previous assertion that intense reflection peaks measured
with a large numerical aperture provide a faithful signature of the 3D photonic band gap. For p-polarized waves,
we observe an intriguing hybridization between the Fabry-Pérot resonances and the Brewster angle that remains
to be observed in experiments. From the strong reflectivity peaks, it is inferred that the maximum reflectivity
observed in experiments is not limited by finite size. The frequency ranges of the stop bands agree very well
with stop gaps in the photonic band structure that pertain to infinite and perfect crystals. The angle-dependent
reflectivity spectra provide an improved interpretation of the reflectivity measurements performed with a certain
numerical aperture and a new insight in the crystal structure, namely unequal pore radii in X and Z directions.
The Bragg attenuation lengths LB are found to be smaller by a factor 6 to 9 than earlier estimates that are based
on the width of the stop band. Hence, crystals with a thickness of 12 unit cells studied in experiments are in the
thick crystal limit (L � LB ). Our reflectivity calculations suggest that the 3D silicon photonic band gap crystals
are interesting candidates for back reflectors in a solar cell in order to enhance the photovoltaic efficiency.
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I. INTRODUCTION

There is a worldwide interest in three-dimensional (3D)
photonic crystals that radically control both the propagation
and the emission of light [1–8]. Their application includes
controlling spontaneous emission of embedded quantum emit-
ters [9–12] and cavity quantum electrodynamics (QED) [13],
controlling thermal emission [14,15], realizing efficient minia-
ture lasers [16], efficient photoelectric conversion in solar
cells [17], and cloaking [18]. In photonic crystals the refractive
index varies spatially with a periodicity on length scales
comparable to the wavelength of light. Due to the long-range
periodic order, the photonic dispersion relations are organized
in bands, analogous to electron bands in a semiconductor [19].
Light cannot propagate in a certain direction when the
frequency is in a stop gap, as a result of Bragg diffraction [19].
Of prime significance to photonic crystals is the emergence of
a 3D photonic band gap, a frequency range for which light is
forbidden for all wave vectors and all polarizations [2,3,7]. A
3D photonic crystal is potentially a perfect back reflector in a
solar cell to enhance the distance light travels through internal
reflections [20].
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The experimental demonstration of a 3D photonic band
gap remains a major challenge. By definition, a 3D band gap
corresponds to a frequency range where the density of optical
states (DOS) vanishes. To probe the DOS, spectra or dynamics
are studied of emitters positioned inside the crystal [9–12].
Such experiments are difficult and require sources as well as
detection methods. On the other hand, a band gap is indicated
by the overlap of stop bands for all directions of incidence,
as shown by a peak in reflectivity or a trough in transmission
[21–27] for ideally all directions. A peak in reflectivity or a
trough in transmission may also occur, however, when incident
waves do not couple to a field mode inside the crystal [7,28,29].
Thus, experimentally observed stop bands are typically in-
terpreted by comparing to stop gaps calculated from band
structures. As band structures pertain only to infinite and
perfect crystals, features related to finite size or to unavoidable
deviations from perfect periodicity are not considered.

Recently, several experimental studies of powerful silicon
woodpile and silicon inverse woodpile photonic crystals
were reported [26,27,30]. In these three studies, a maximum
reflectivity was found in the range from 40% to 60%, and
the deviations from ideal 100% were attributed to various
reasons, mostly experimental ones. It was asserted that intense
reflection peaks measured with a large numerical aperture
provide a faithful signature of the 3D photonic band gap.
The limited reflectivity was attributed to the limited crystal
thickness in comparison to the Bragg attenuation length and
to surface roughness, although no theoretical or numerical
support was offered for these notions.
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Therefore, in the present article, we study numerically the
reflectivity of 3D photonic band gap crystals. We apply the
finite element method to calculate reflectivity of crystals with
the cubic diamondlike inverse woodpile structure that have
a broad 3D photonic band gap [31–33]. Inverse woodpile
photonic crystals have been realized in several different
backbone materials using various techniques [34–37]. Our
research group has fabricated 3D inverse woodpile photonic
crystals from silicon using several CMOS-compatible meth-
ods [38–40]. The high-index backbone of the crystals has a
dielectric function similar to silicon. We investigate crystals
with thicknesses up to ten unit cells. Since the crystals are
surrounded by vacuum, they have a finite support as in the
experiments. We assess previously invoked limitations to the
reflectivity, such as crystal thickness, angle of incidence,
and Bragg attenuation length. Consequently, our numerical
study provides an improved interpretation of reflectivity as a
signature of a complete 3D photonic band gap.

II. METHODS

The primitive unit cell of the cubic inverse woodpile
photonic structure is illustrated in Fig. 1. The crystal structure
consists of two 2D arrays of identical pores with radius r

running in two orthogonal directions X and Z [31]. Each 2D
array has a centered-rectangular lattice with lattice parameters
c and a. When the lattice parameters have a ratio a

c
= √

2, the
diamondlike structure is cubic. In terms of the conventional

FIG. 1. The tetragonal primitive unit cell of the cubic inverse
woodpile photonic crystal structure. (a) Perspective view of the unit
cell with the XYZ coordinate system. The two sets of pores are
parallel to the X and the Z axes. (b) View of the unit cell along the
Z axis with the lattice parameters a and c and the pore radius r .
(c) View of the unit cell along the X axis.

FIG. 2. (a) Photonic band structure for the 3D inverse woodpile
photonic crystal with r

a
= 0.245 and εSi = 11.68. The red bar marks

the 3D photonic band gap, and the yellow bars mark stop gaps in
the �X and �Z directions. (b) First Brillouin zone showing the high
symmetry points and the origin at �.

nonprimitive cubic unit cell of the diamond structure, the
(X,Y,Z) coordinate system shown in Fig. 1(a) has the X-
axis unit vector a1 = 1√

2
[101], the Y -axis a2 = [010], and

the Z-axis a3 = 1√
2
[1̄01] in the coordinate frame of the

conventional cubic unit cell [19]. Cubic inverse woodpile
photonic crystals with ε = 11.68 [41]—typical of silicon—
have a broad maximum band gap width �ω/ωc = 23.7%
relative to the central band gap frequency ωc for pores
with a relative radius r

a
= 0.245 [32,33]. To compare our

calculations with experimental results [39], we choose the
pore radius to be r

a
= 0.19 and the lattice parameter to be

a = 677 nm [42]. To compute the dispersion relations for
infinitely extended crystals, we employed the MPB plane-wave
expansion method [43]. Figures 2(a) and 2(b) show the band
structure and the first Brillouin zone for an inverse-woodpile
crystal with optimal pore size r

a
= 0.245. A broad photonic

band gap with a 23.7% relative width appears between reduced
frequency ω̃1 = 0.52 (bounded by the third and fourth bands)
and ω̃2 = 0.66 (fifth band) [44]. The band structure shows
two stop gaps in the �Z direction. Since the �X stop gap is
symmetry related to the �Z stop gap, we effectively consider
both stop gaps in the present study. The lowest-frequency
narrow stop gap appears between ω̃ = 0.421 and ω̃ = 0.433
and closes when moving in the ZU direction. The second stop
gap between ω̃ = 0.52 and ω̃ = 0.70 is part of the complete 3D
photonic band gap and has a broad 29.5% relative bandwidth.
In the low-frequency limit ω → 0, we derive from the slope
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FIG. 3. Illustration of the computational cell for a photonic crystal
with thickness L = 4c. (a) View along the X direction [101]. The
source of plane waves is at the left, and is separated by an air layer
from the crystal. The computational cell is bounded by absorbing
boundaries at −Z and +Z, and by periodic boundary conditions on
±X and ±Y . The blue color represents the high-index backbone of
the crystal having dielectric function similar to silicon. (b) Perspective
view of the computational cell.

of the bands the effective refractive index of the crystal to be
ne = 1.68.

To accurately model the reflectivity and transmission
spectra of photonic band gap crystals with finite support,
we employ the commercial COMSOL finite-element (FEM)
solver to solve for the time-harmonic Maxwell equations [45].
Figure 3(a) illustrates the computational cell along the X

direction. The incident fields emanate from a plane at the left
that is separated from the crystal by an air layer. The plane
rather represents a boundary condition than a true current
source since it also absorbs the reflected waves [46]. The
incident plane waves have either s polarization (electric field
normal to the plane of incidence) or p polarization (magnetic
field normal to the plane of incidence), and have an angle
of incidence between 0◦ and 80◦. To mimic infinite space
by minimizing the back reflections, absorbing boundaries are
employed in the −Z and +Z directions, where the crystal is
finite in size. We employ Bloch-Floquet periodic boundaries
in the ±X and the ±Y directions to describe a crystal
slab [7]. Figure 3(b) illustrates the finite element mesh used
to subdivide the 3D computational cell. We used tetrahedra as
basic elements in our finite element mesh. An upper limit of
�l � λ0

8
√

ε
is imposed to the edge length �l on any tetrahedron,

with λ0 the shortest wavelength of the incident plane waves in
vacuum, leading to a finite element mesh of 27 852 tetrahedra
per unit cell. A refined mesh is used at the interface between

the high-index material and the low-index material to reduce
dispersion errors. For computational efficiency, we apply the
MUMPS direct solver that is fast, multicore capable, and
cluster capable. For a single frequency and a single angle
of incidence, the computational time is 35 s on a Intel Core
i7 machine with a single processor of four cores. We found
that the computational time increases sublinearly with respect
to the number of frequency steps and the number of angle of
incidence steps.

III. RESULTS

A. Angle- and frequency-resolved reflectivity

Figure 4 shows the angle-resolved and frequency-resolved
reflectivity spectra for an inverse-woodpile crystal with a
thickness L = 4c for angles of incidence up to 80◦ off normal
and for optimal pore radius r

a
= 0.245. Near ω̃ = 0.6 we

observe broad stop bands with nearly 100% reflectivity for

FIG. 4. Calculated angle- and frequency- resolved reflectivity
spectra in the �Z direction for a crystal with thickness L = 4c for (a)
s polarization and (b) p polarization. The dark blue color represents
high reflectivity that occurs in the stop band at all angles. The white
color represents near 0% reflectivity that occurs in the Fabry-Pérot
fringes, at the Brewster angle, and in their hybridization in the range
54◦ � θ � 61◦. The brown double arrow represents the stop gap in
the �Z direction (from Fig. 2). The black box indicates the region of
high-resolution results shown in Fig. 5.
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FIG. 5. Hybridization of the Fabry-Pérot resonances and the
Brewster angle, shown by angle- and frequency- resolved calculated
reflectivity spectra in �Z direction for p polarization. The black
dashed line is a guide to the eye that connects the midpoints (circles) of
the bends in the fringes. The white dotted line indicates the Brewster
angle θB .

both polarizations. The stop bands agree very well with the stop
gaps for the infinite crystal [see Fig. 2(a)]. We observe that the
frequency range of the stop bands hardly changes with angle
of incidence, which is plausible since the stop bands are part of
the 3D band gap. This result supports the experimental notion
that intense reflectivity peaks collected with an objective with
a large numerical aperture give a bona fide signature of the 3D
band gap [30].

The spectra in Figs. 4(a) and 4(b) reveal Fabry-Pérot fringes
at frequencies below the band gap that correspond to standing
waves in the finite crystal slab. For p polarization, Fig. 4 reveals
an intriguing hybridization of the resonance condition (R = 0)
of the Fabry-Pérot fringes and of the Brewster angle, which has
not yet been observed in experiments. Moreover, reflectivity
inside the p-stop band is not affected by the Brewster angle,
unlike a 1D Bragg stack as shown in Ref. [52]. In order
to characterize this feature, we calculated reflectivity spectra
using a higher resolution in frequency and angle of incidence,
shown in Fig. 5. We note that the Fabry-Pérot fringes have
a constant frequency for angles of incidence up to θ = 54◦
before bending. Beyond θ = 61◦, the fringes have shifted
down in frequency to nearly the frequency of the lower order
one at θ � 54◦, e.g., the n = 2 fringe at ω̃ = 0.24 (θ � 54◦)
shifts to ω̃ = 0.15 (θ > 61◦), which is close to the frequency
of the n = 1 fringe at θ � 54◦. From the effective refractive
index (ne = 1.68), we derive the Brewster angle θB = 59.2◦,
which matches the range (54◦ � θ � 61◦) of the hybridization.
Therefore, we conclude that the hybridization occurs between
the Fabry-Pérot resonances and the Brewster angle.

Figure 5 shows that the midpoint of each bend in a fringe
increases with increasing frequency and fringe order. We
surmise that this shift is the result of an increasing effective
index with frequency as a result of increasing band flattening in
the approach of a stop gap or band gap, see Fig. 2. We note that
at the lowest frequency the midpoint occurs at a smaller angle
than θB obtained from ne in the limit ω → 0. This difference is
currently puzzling, since both angles are expected at the same

angle at low frequency where no band bending occurs. We
speculate that the hybridization probes another effective index
than the one derived from the bands at ω → 0. The radius of
curvature of a bend increases while approaching the stop band.
A possible cause may be the approach of the 3D photonic band
gap that prevents light from entering at a Brewster angle.

For comparison, we have analytically computed the angle-
and frequency-resolved reflectivity spectra of a thin film for
p polarization (see Appendix B). We find that the Brewster
angle is constant with frequency. We also observe that the
Fabry-Pérot fringes have a constant frequency at all angles
and do not bend near the Brewster angle. These observations
on a thin film also pertain to a 1D Bragg stack as shown in
Ref. [47]. Therefore, the hybridization between the Fabry-
Pérot resonances and the Brewster angle appears to be a
characteristic property of the 3D photonic crystal that remains
to be observed experimentally.

B. Frequency-resolved reflectivity at normal incidence

We have performed an extensive set of polarization-
resolved (s or p) reflectivity calculations at normal incidence
to the photonic crystal slab that corresponds to a typical
experimental geometry [14,15,22–25,27,30] and since this
high-symmetry geometry facilitates data interpretation. Since
similar inverse woodpile structures were studied in our
group [30], we tuned the parameters to this study, namely
a smaller pore radius ( r

a
= 0.19) and a dielectric permittivity

ε = 12.1, typical for silicon in the near infrared and telecom
ranges [30,33]. Figure 6 shows spectra for a thin crystal with
a thickness L = 4c. Fabry-Pérot fringes are visible for both
polarizations in Figs. 6(i) and 6(iii) corresponding to standing
waves in the finite crystal. The strong reflectivity peaks near
ω̃ = 0.45 indicate stop bands for both s and p polarizations.

FIG. 6. Calculated reflectivity spectra for a Si inverse woodpile
photonic band gap crystal along the �Z high symmetry direction in
wave vector space. The red curve in (i) and the green curve in (iii) are
reflectivity spectra calculated for s and p polarization, respectively.
The corresponding band structure for the �Z direction is shown in
(ii), where the 3D band gap is shown in orange. The wave vector is
expressed as k′ = (ka/2π ). The polarization character of bands near
the gap is assigned in Fig. 7. The frequency ranges of the s- and
p-stop bands agree excellently with corresponding stop gaps in the
photonic band structure.
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The stop bands at normal incidence appear at a lower frequency
than in Fig. 4 since the air fraction is less and hence the
average index of the crystal is greater. The p-stop band appears
between ω̃ = 0.395 and ω̃ = 0.488 with a broad relative
bandwidth 21%. The s-stop band appears between ω̃ = 0.385
and ω̃ = 0.526 and it is about 1.5× broader (relative bandwidth
31%) than the p-stop band. At frequencies beyond ω̃ = 0.55
several bands of high reflectivity appear. In these frequency
bands the band structures reveal extremely complex couplings
of multiple Bragg conditions [48] that lead to complex band
structures that are sometimes also referred to as spaghetti-like
behavior. Thus these apparent stop bands can be caused by
the uncoupled modes of plane waves outside crystals, or by
modes whose dispersion relation restricts impedance matching
to waves outside the crystal.

The frequency ranges of the s- and the p-stop bands agree
very well with corresponding stop gaps in the photonic band
structure. Such a comparison allows us to assign the polar-
ization character without need to compute eigenfunctions.
Since the third photonic band at the lower stop gap edge
(near ω̃ = 0.385) agrees with the lower boundary of the s-stop
band, we conclude that this band has dominantly s character.
Furthermore, the fourth band is located inside the s-stop
band and agrees with the lower edge of the p-stop band at
ω̃ = 0.395. Therefore, we conclude that this band must have
dominantly p character. Near the upper gap edge, the seventh
band near ω̃ = 0.526 agrees with the upper s-stop band edge
and is thus likely an s band. The fifth and sixth bands between
ω̃ = 0.49 and ω̃ = 0.526 are situated well inside the s-stop
band and can therefore only have p character; indeed, these
bands lie outside the p-stop band. This assignment of bands
5, 6, and 7 is further supported by the observation that band 7
crosses bands 5 and 6 at ω̃ = 0.526, without revealing avoided
crossings.

C. Frequency-resolved reflectivity through
a numerical aperture

A recent experimental study by our group reported the
signature of a 3D photonic band gap in silicon inverse woodpile
crystals [30]. The signature consists of observing overlapping
stop bands for a large solid angle of (1.76 ± 0.18)π . The
experiments were performed on crystals with an extent of
L3 = 123 unit cells on top of bulk silicon. Polarization-
resolved reflectivity spectra were measured using a reflecting
objective with NA = 0.65 and Obscuration = 13.3%. Thus,
the incident light has an angular spread from about 6◦ to 40◦
off normal. To accurately mimic the NA of a microscopic
objective in an experiment, calculations should be performed
for all wave vectors within the solid angle of the conical
incident beam. Moreover, one should calculate fields and add
these coherently to mimic the focusing by the objective, before
taking the absolute square to obtain the intensity as in the ex-
periments [30]. Since this procedure is currently prohibitively
computer expensive, we approximate this angular spread of
the incident and collected light without an attempt to average.
We calculated reflectivity spectra for angles of incidence from
6◦ to 40◦ off normal in the YZ plane for each polarization,
see Fig. 8. We observe strong angle-dependent reflectivity
variations near the lower and the upper edges of the stop

FIG. 7. Reflectivity near the stop band for (a) s- and (b) p-
polarized light for Si inverse woodpile crystals. In (i), red dashed-
dotted and green dashed curves are calculated results, as in Fig. 6.
(ii) The band structures for (a) s- and (b) p-polarized light, where
the 3D band gap is shown in orange. The wave vector is expressed
as k′ = (ka/2π ). The vertical black dashed lines indicate the edges
of the stop band (i) and the matching stop gap edges (ii). Near the
stop gap edges, we identify s bands (red dashed-dotted curves) and
p bands (green dashed curves).

band. The intense angle-independent reflectivity peaks near
ω̃ = 0.45 indicate the stop bands for both s and p polarizations.
A comparison between the angle-independent high reflectivity
ranges (Fig. 8) and the angle-resolved reflectivity spectra
centered at 0◦ (Fig. 7) shows that there are shifts and changes
in stop bandwidths. For s polarization, the stop band edge at
half height shifts from ω̃ = 0.385 to 0.383 (lower edge) and
from ω̃ = 0.526 to 0.48 (upper edge), hence the stop band
center shifts down from ω̃ = 0.455 to 0.432, and the width
narrows from �ω̃ = 0.141 to 0.097.

We now compare the measured spectra for the stop bands
in the �X and the �Z directions with the angle-independent
calculated intense reflectivity peak, as shown in Fig. 8. In
particular, we discuss the central frequency, the bandwidth, and
the maximum reflectivity. In the �X and the �Z directions, the
central frequencies for s polarization and p polarization in the
calculation and in the experiment agree well to nearly within
both error bars [49]. From the Bragg diffraction condition [19],
the central frequency ωc in terms of the effective index is

ωc = 1

ne

mπc

L
, (1)
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FIG. 8. Comparison between numerical calculations and exper-
imental results for the reflectivity peaks near the stop band for (a)
s- and (b) p-polarized light for Si inverse woodpile crystals. (i) The
calculated results, where red dashed-dotted and green dashed curves
are reflectivity spectra for angles of incidence from 6◦ to 40◦ off
normal in the �Z direction as well as in the equivalent �X direction.
In (ii), blue squares are measurements from Ref. [30] in the �Z

direction, and magenta circles in the equivalent �X direction. The
top ordinate shows the frequency in wave numbers (cm−1) for a lattice
parameter a = 677 nm as in the experiments.

with m the integer diffraction order. From the good agreement
of the central frequencies, we deduce from Eq. (1) that ne in the
calculations (ne = 2.28) is close to the one in the experiments.
Therefore, we conclude that the total volume fraction of the
high-index material (Si) in the calculations matches with the
experimental one.

Figure 8(a) shows that for s polarization, the bandwidths in
the calculation and in the experiment in the �X direction agree
well to nearly within both error bars. The comparison of the
bandwidths in the calculation and in the experiment in the �Z

direction exhibits a small difference for s polarization, which
is outside the specified error bars [50]. Figure 8(b) shows
that for p polarization, in the �X direction the calculated
bandwidth agrees well to the measured bandwidth to nearly
within both error bars. In the �Z direction, the comparison of
bandwidths in the calculation and in the experiment exhibits
a small difference for p polarization, outside the specified
error bars [51]. Therefore, the calculated bandwidth and the
measured bandwidth agree in �X direction, but disagree in �Z

direction for both polarizations. The experimental results in

Fig. 8 show that the bandwidth for the �Z direction is smaller
than the bandwidth for the �X direction. The bandwidth for
3D silicon inverse woodpile photonic crystals increases with
increasing pore radius to a maximum at pore radius r

a
= 0.245

in the gap map in Ref. [30]. Therefore, the bandwidth for the
�Z direction can be smaller than the bandwidth for the �X

direction if the pore radius in the �Z direction is smaller
than the one in the �X direction for these crystals. The
fabrication process could result in different pore radii r

a
in

the �Z and the �X directions. We surmise that the r�Z

a
ratio is

smaller than r
a

= 0.19, whereas the r�X

a
ratio is larger than r

a
=

0.19, but smaller than optimal optimal pore size r
a

= 0.245
[30]. Simultaneously, the total volume fraction is apparently
constant in view of the central frequencies above. Therefore,
we hypothesize that the difference in measured reflectivity
spectra for two symmetry-related directions �X and �Z is
due to the fabrication process resulting in different pore radii
for these directions. Hence, our calculations reveal that an
angle-independent strong reflectivity spectrum over an angular
spread of the incident light for a certain experiment provides
an improved interpretation of the reflectivity measurements
and an insight in the crystal structure.

Figure 8 shows marked differences between the maximum
reflectivity in calculations and in experiments. In the exper-
imental work, the limited maximum reflectivity (67%) was
attributed to the finite thickness of the crystal, to angle of
incidence, and to surface roughness, although no theoretical or
numerical support was offered for these notions. In reflectivity
spectra shown in Figs. 6 and 9 (explained below in Sec. III D),
we observe strong reflectivity peaks even for thin crystals. This
implies that the finite size is not a critical limiting factor for
reflectivity. Figures 4(a) and 4(b) show that the observed stop
bands hardly change with angle of incidence. This observation
supports the experimental assertion that intense reflectivity
peaks measured with an objective with a large numerical
aperture provide a faithful signature of the 3D photonic band

FIG. 9. Transmission versus thickness for a silicon inverse wood-
pile photonic crystal in the �Z direction for s (top) and p polarizations
(bottom). Red squares, black circles, and blue triangles pertain to
frequencies below, inside, and above the stop gap, respectively. The
green dashed lines are the exponential decay of transmission with
crystal thickness at frequencies in the stop gap [Eq. (2)]. The black
dashed line is a guide to the eye that shows modulations in the stop
band.
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gap. Extensive numerical studies are called for in order to
ascertain the impact of roughness of the crystal-air interface,
as well as roughness inside the pores.

D. Finite-size effects: Bragg attenuation length

To investigate the effect of finite thickness of the crystal, we
calculated the transmission for thicknesses between L = 1c

and 10c. Figure 9 shows that for a given frequency inside
the stop gap, the transmission decays exponentially for both
s and p polarizations. For frequencies below or above the
stop gap, the transmission is nearly constant, with some small
variations with crystal thickness as a result of the Fabry-Pérot
fringes that vary with crystal thickness, as is well known for
1D Bragg stacks [52,53].

Inside a stop gap the complex wave vector k has a nonzero
imaginary component Im(k) since the waves are damped by
Bragg diffraction interference [24,52,54]. Thus, we write the
transmission T in a stop band as [55–57]

T (ω,L) = exp

(
− L

LB(ω)

)
, (2)

with LB the Bragg attenuation length equal to

LB(ω) = 1

Im(k)(ω)
(3)

that gives the distance covered by incident light until it has
exponentially decayed to a fraction 1/e. Figure 9 reveals that
even inside the stop band the transmission shows modulations,
as was previously identified in 1D stacks [52,53]. The reason
is that transmission also contains the effects of both front and
back crystal surfaces.

The Bragg attenuation length is usually expressed in terms
of the distance between lattice planes dhkl . Therefore, we
reduce the Bragg length to the {hkl = 220} lattice spacing d220

that equals d220 = c/2. The s-polarized data in Fig. 9 agree
well with Eq. (2) with a slope that yields a Bragg attenuation
length LB = 0.74d220. For the p-polarized data in Fig. 9, we
obtain a Bragg attenuation length LB = 1.21d220 at the gap
center, which is about 1.5× larger than for s polarization at
the gap center. This observation agrees quantitatively with the
reflectivity spectrum where the s-polarized stop band is also
1.5× broader than the p-polarized stop band (see Fig. 6). This
behavior can be understood as follows: The Bragg attenuation
length at the center frequency of a stop gap of a Bragg stack
satisfies [13]

LB = 2d

πS
� 2d

π

ωc

�ω
. (4)

The photonic interaction strength S is defined as the polar-
izability per volume of a unit cell [58,59] and is estimated
from the relative frequency bandwidth of the stop band for
a dominant reciprocal lattice vector as S ≈ �ω

ωc
[13]. We find

that the Bragg lengths are shorter by a factor 6 to 9 than the
earlier experimental estimate in Ref. [30] that was derived from
the width of the stop bands. Hence, crystals with a thickness
of 12 unit cells studied in these experiments are effectively
in the thick crystal limit since L

LB
= 5 to 8. Regarding the

reason why the Bragg length obtained from the stop bandwidth
[Eq. (4)] differs from the Bragg length determined from the

thickness-dependent transmission [Eq. (2)], we speculate that
Eq. (4) pertains to a simple stop gap typical of a Bragg stack
with only one band below and one band above the gap whose
Bloch-state repulsion yields a gap at wave vectors equal to the
Brillouin zone boundary [19], in notable absence of multiple
Bragg diffraction [60]. In contrast, Figs. 7(a) and 7(b) show that
the dominant stop gap is bounded by multiple Bragg behavior,
as is apparent from the pertinent elevated Miller indices (see
Sec. IV A), and since the gap is bounded by bands at wave
vectors inside the Brillouin zone (not the zone boundary).
Since multiple Bragg diffraction is known to lead to frequency
and wave vector shifts of gaps, as well as changes of gap
widths, it is quite conceivable that in this situation Eq. (4) is
not equivalent anymore to Eq. (2).

IV. DISCUSSION

A. Role of geometrical structure factor

The polarization-resolved reflectivity spectra for the cubic
diamondlike inverse woodpile structure in Fig. 6 reveal
Fabry-Pérot fringes that correspond to standing waves in the
periodically layered finite crystal. There are three corollaries
based on theory for a periodic layered Bragg reflector with a
thickness of N unit cells [52]. First, a reflectivity peak occurs at
the center of the stop gap. Second, between any two stop gaps
there are exactly (N − 1) troughs in the reflectivity spectra.
Third, there are exactly (N − 2) side lobes to the reflectivity
peak.

The band structure in Fig. 6(ii) shows two stop gaps in the
�Z direction. A narrow stop gap appears near ω̃ = 0.311 and
the broad stop gap appears near ω̃ = 0.39. We now interpret
the spectra in Figs. 6(i) and 6(iii) for N = 4 unit cells in terms
of the three corollaries above. For s-polarization reflectivity in
Fig. 6(i), we observe a peak near ω̃ = 0.45, at the center of the
second stop gap. Surprisingly, there is no peak near the center
of the first stop gap at variance with the first corollary. This
spectrum reveals four troughs between zero frequency and the
first stop gap, the fifth trough near the center of the first stop
gap, and two troughs between the first and second order stop
gap; which seems mutually inconsistent and at variance with
the second corollary. For p-polarized reflectivity in Fig. 6(iii),
we observe a reflectivity peak near the ω̃ = 0.45, which
corresponds to the center of the second stop gap. Also, no
reflectivity peak appears near the center of the first stop gap, at
variance with the first corollary. In this spectrum, there are four
troughs between zero frequency and the first stop gap, and three
troughs between the first and second order stop gap; which
seems mutually inconsistent and at variance with the second
corollary. Therefore, the above observations for p polarization
do not agree with the observations for s polarization.

To remedy this seeming disagreement, we consider the
geometrical structure factor SK that indicates the degree to
which interference of waves scattered from identical ions
within the crystal basis inside the unit cell affect the intensity
of a Bragg peak associated with reciprocal lattice vector K
[19]. Since the intensity of the Bragg peak is proportional to
the square of the absolute value of SK, the Bragg peak vanishes
when SK vanishes. For a conventional cubic unit cell of the
monatomic diamond structure, SK = 0 if the sum of Miller
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indices equals twice an odd number n: h + k + l = 2n. In
Fig. 6 the stop gap near ω̃ = 0.31 in �Z direction corresponds
to a first-order stop gap for {hkl = 110} lattice planes in the
conventional diamond structure [19]. Since the sum of Miller
indices in {110} is twice the odd number 1, the first-order
stop gap in the cubic inverse woodpile photonic structure
has zero geometrical structure factor (SK = 0) and hence
zero associated Bragg reflection. If the sum of Miller indices
(h + k + l) is twice an even number, SK is maximum and
equals SK = 2. The stop gap near ω̃ = 0.4 in Fig. 6 is a
second-order stop gap for {hkl = 110} and corresponds to
{hkl = 220} defined using x-ray diffraction in a conventional
cubic diamond structure [19]. Since the sum of Miller indices
in {220} equals twice an even number, the second-order stop
gap has SK 	= 0. Therefore, the second-order stop gap has
a maximal structure factor. Hence, only the second-order
stop gap in a cubic diamondlike inverse woodpile structure
reveals appreciable Bragg reflection and should therefore be
considered for the analysis of the observed Fabry-Pérot fringes
in the reflectivity spectra.

The distance between lattice planes equals d220 = c/2
for the dominant second-order stop gap with Miller indices
{hkl = 220}. Therefore, the L = 4c crystal thickness used in
the computational cell in Fig. 6 corresponds to a thickness
L = Nd220 = 8d220 in terms of a periodic layered medium (a
Bragg stack) [52]. In Fig. 6 we observe reflectivity peaks near
ω̃ = 0.45 for s and p polarizations, which are at the center
of the s and p stop gaps. This satisfies the first corollary
for the periodic layered medium. Second, there are exactly
(N − 1) = 7 troughs in the reflectivity spectra between zero
frequency and the main stop gap corresponding to N = 8
lattice planes in the crystal, in agreement with the second
corollary above. Third, there are (N − 2) = 6 side lobes in the
reflectivity spectra, again agreeing with N = 8 lattice planes
by the third corollary. These three corollaries confirm that
the number of Fabry-Pérot fringes in our reflectivity spectra
agrees with the theory for a Bragg reflector [52]. Moreover,
this episode reminds us that it is the number of lattice planes
that is fundamental in the thickness of a finite crystal, rather
than the number of unit cells.

B. Comparison to other inverse woodpiles and woodpiles

The silicon inverse woodpile photonic crystal studied in
Ref. [26] has a 3D structure consisting of two interpenetrating
hexagonal pore sets that corresponds to an orthorhombic
symmetry. Therefore, the first Brillouin zone is distorted
compared to the Brillouin zone of an fcc lattice. This study
reported reflectivity spectra in one high-symmetry direction
using unpolarized light. The strong reflectivity peak denotes
the stop band along the z direction. The stop band is shown
to agree with the stop gap obtained from the band structure.
Since the crystal has orthorhombic symmetry, the �X stop
gap is not symmetry related in k space to the �Z stop gap.
Therefore, the stop band is representative for a limited range
of solid angles. The limited reflectivity was attributed to the
numerical aperture, to surface roughness, and to roughness at
the pore walls.

The silicon woodpile photonic crystals studied in Ref. [27]
has lattice parameters in a ratio c

a
= 1.15, hence the crystals are

not cubic but tetragonal. This study reports reflectivity spectra
in one high symmetry direction. To mimic the angular spread
of the incident light in the experiments, reflectivity spectra
were calculated for many incident angles in the relevant range
and averaged over the obtained results. It is unknown whether
this average includes the coherent field addition and the NA
filling that is needed to compare to experiments (see Sec. III C).
A qualitative agreement between the stop band observed in
experiment, the stop band identified from calculation, and the
stop gap calculated from the band structure is found. The
maximum observed reflectivity is accredited to measurement
limitations, to unspecified deviations from perfect periodicity,
and to surface roughness. Since the crystal is not cubic, the �X

stop gap is not symmetry related to the �Z stop gap. Therefore,
the stop band is representative for a limited range of solid
angles. The polarization of the light used in the calculation
of reflectivity spectra is unspecified, so polarization character
cannot be attributed to the bands by comparing reflectivity
spectra with the band structure. Nevertheless, the calculated
reflectivity spectra reveal Fabry-Pérot fringes at wavelengths
above the stop band that correspond to standing waves in the
finite-sized crystal, as also seen in Fig. 4. The number of unit
cells in the structure is unspecified, so it is not feasible to
verify the theory for a periodic layered Bragg reflector for the
number of Fabry-Pérot fringes. The calculations were reported
for a fixed crystal thickness, so the Bragg attenuation length
was not deduced. Since the calculated reflectivity spectra are
angle averaged, a possible Brewster angle is not visible. Our
calculations have shown that the finite size deviation from the
perfect periodicity is not responsible for the limited maximum
reflectivity. Thus, we conclude that the the maximum observed
reflectivity is likely limited by the invoked measurement
limitations and surface roughness.

C. Back reflector for solar cells

The efficiency of silicon photovoltaic cells critically de-
pends on efficient ways to trap and absorb light [61,62]. It
remains a challenge to have thin film c-Si solar cells trap a
significant part of solar energy [7]. Increasing wafer thick-
ness results in longer diffusion lengths, but increases costs.
Traditionally, light trapping in solar cells rest on controlling
light ray paths using geometrical optics, e.g., by scattering
incident light via surface texturing and back reflection into the
solar cells via a reflector. In practice, perfect scattering and
reflection are difficult to obtain, which limits the attainable
efficiency and power generation of solar cells. Recently, it
has been shown that the light trapping approaches based on
wave optics outperform all geometrical optics approaches for
a certain range of frequencies [20]. One can employ specially
nanodesigned structures, such as 3D photonic crystals, notably
those with a complete 3D photonic band gap.

The results in Fig. 9 reveal that a reflectivity in excess
of R > 99% (hence T < 1%) is found inside the stop band
already for thin 3D silicon photonic band gap crystals, with
a thickness as small as L � 2c for s polarization, and L �
3c for p polarization. In addition, by combining Figs. 4(a)
and 4(b), we note that an angle- and polarization-independent
range of high reflectivity appears between ω̃ = 0.4962 and
ω̃ = 0.6379 with a broad 25% relative bandwidth, much more
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than is predicted for (even thicker) 1D Bragg stacks [52].
Hence, our calculations support the assertion that a 3D silicon
photonic crystal could serve as an efficient back reflector in a
solar cell in order to enhance the efficiency.

V. CONCLUSIONS

We have studied by numerical simulation the reflectivity
of 3D photonic crystals with a 3D complete photonic band
gap, to interpret recent experiments. We employed the finite
element method to study crystals with the cubic diamondlike
inverse woodpile structure, with a dielectric function similar to
silicon. The crystals are surrounded by vacuum, and thus have
a finite support as in the experiments. We observe that the stop
band hardly changes with incident angle, which supports the
experimental notion that strong reflectivity peaks measured
with large numerical aperture gives a faithful signature of
the 3D band gap. We observe an intriguing hybridization
of the Fabry-Pérot resonances and the Brewster angle in
our calculations, which seems a characteristic property of
3D photonic band gap crystals. From the intense reflectivity
peaks, we infer that the maximum reflectivity observed in
the experiments is not limited by finite size of the crystal.
Our calculated polarization-resolved reflectivity spectra show
that the frequency ranges of the s and p stop bands agree
well with the corresponding stop gaps in the photonic band
structure. From the comparison we assign bands in the
band structure near these stop bands to have dominantly s

or p character. The comparison between angle-independent
numerical calculations and experimental results provides an
improved interpretation of the reflectivity measurements and
a new insight in the crystal structure (unequal pore sizes in
different directions). We find that the Bragg attenuation lengths
in the stop bands are smaller than the earlier estimates based
on the width of the stop band by a factor of 6 to 9. Our results
indicate that 3D silicon photonic band gap crystals merit study
as possible candidates for back reflectors in a solar cell in order
to enhance the photovoltaic efficiency.
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APPENDIX A: ANALYTICAL VALIDATION OF THE
NUMERICAL SCHEME WITH A SEMI-INFINITE

HOMOGENEOUS MEDIUM

To validate our numerical scheme, we calculate reflec-
tivity spectra of a system that can be analytically analyzed

FIG. 10. Analytical calculation versus numerical computation for
reflection and transmission spectra of semi-infinite dielectric medium
for p polarization. The medium has dielectric permittivity ε = 12.1.
The analytically calculated reflectivity (RA) and transmission (TA)
are shown in green and black lines, respectively. Blue circles and red
diamonds represent the numerically computed reflectivity (RN ) and
transmission (TN ), respectively. θB denotes the Brewster angle.

using Fresnel’s equations, namely a homogeneous dielectric
medium [63]. We consider p-polarized plane waves at a single
frequency with a range of angles of incidence. We replace the
photonic crystal and the air layer on the right in Fig. 3(a) with
a medium with dielectric permittivity ε = 12.1. This results in
a semi-infinite homogeneous medium that is separated from
the source by an air layer. The finite element mesh used in the
numerical calculation consists of 18 732 tetrahedra per crystal
unit cell (unit cell defined in terms of the lattice parameter
c), somewhat less than the number of tetrahedra in the finite
element mesh used for the 3D photonic crystal. The angular
resolution is 2◦.

In Fig. 10 we show the calculated reflectivity and transmis-
sion spectra of a semi-infinite homogeneous medium for the
above defined computational cell. We note that the numerical
calculation agrees very well with the analytical calculation.
We observe the Brewster angle at θB = 74◦, which matches the
value obtained from an analytical calculation [63]. To calculate
the relative error δTrel between the numerical calculation and

FIG. 11. Analytically calculated angle- and frequency-resolved
reflectivity spectra of a thin dielectric film for p polarization. The
film has a dielectric permittivity ε = 12.1. The Brewster angle at
θB = 73◦ is constant with frequency.
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the analytical result, we employ the definition

δTrel ≡ 1

n

√√√√[
n∑

i=1

(
(TA,i − TN,i)2

T 2
A,i

+ (RA,i − RN,i)2

R2
A,i

)]
,

(A1)

with (TN,i,RN,i) the numerical transmission and reflectivity,
and (TA,i,RA,i) the analytical transmission and reflectivity. For
the solution shown in Fig. 10, the error is only about δTrel =
6×10−4, hence we consider the calculation to be converged.

APPENDIX B: BREWSTER ANGLE FOR A THIN FILM

To find the dependence of the Brewster angle on fre-
quency, we have analytically calculated the angle-resolved and
frequency-resolved spectra for a thin film [64]. We consider
p-polarized incident waves for angles of incidence up to
89◦ off the normal. Figure 11 shows Fabry-Pérot fringes
corresponding to the standing waves in the thin dielectric film.
We note that the Fabry-Pérot fringes have a nearly constant
frequency for all angles of incidence. We observe a Brewster
angle at θB = 73◦ that is independent of frequency, as expected
for a dispersionless film.

[1] V. P. Bykov, Spontaneous emission in a periodic structure,
Sov. Phys. JETP 35, 269 (1972).

[2] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-
State Physics and Electronics, Phys. Rev. Lett. 58, 2059
(1987).

[3] S. John, Strong Localization of Photons in Certain Disordered
Dielectric Superlattices, Phys. Rev. Lett. 58, 2486 (1987).

[4] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic
crystals: Putting a new twist on light, Nature (London) 386,
143 (1997).

[5] C. Lopez, Materials aspect of photonic crystals, Adv. Mater. 15,
1679 (2003).

[6] J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre,
and A. Tchelnokov, Photonic Crystals: Towards Nanoscale
Photonic Devices (Springer, Heidelberg, 2005).

[7] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, Photonic Crystals: Molding the Flow of Light (Princeton
University Press, Princeton NJ, 2008).

[8] Edited by M. Ghulinyan and L. Pavesi, Light Localisation
and Lasing: Random and Pseudorandom Photonic Structures
(Cambridge University Press, Cambridge, 2015).

[9] A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk,
and W. L. Vos, Broadband Fivefold Reduction of Vacuum
Fluctuations Probed by Dyes in Photonic Crystals, Phys. Rev.
Lett. 88, 143903 (2002).

[10] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda,
Control of light emission by 3D photonic crystals, Science 305,
227 (2004).

[11] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag,
D. Vanmaekelbergh, and W. L. Vos, Controlling the dynamics of
spontaneous emission from quantum dots by photonic crystals,
Nature (London) 430, 654 (2004).

[12] M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A.
Lagendijk, and W. L. Vos, Inhibited Spontaneous Emission of
Quantum Dots Observed in a 3D Photonic Band Gap, Phys. Rev.
Lett. 107, 193903 (2011).

[13] W. L. Vos and L. A. Woldering, in Ref. [8], Chap. 8, pp. 180–214,
also available from http://arxiv.org/abs/1504.06803.

[14] J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho,
All-metallic three-dimensional photonic crystals with a large
infrared bandgap, Nature (London) 417, 52 (2002).

[15] S. E. Han, A. Stein, and D. J. Norris, Tailoring Self-Assembled
Metallic Photonic Crystals for Modified Thermal Emission,
Phys. Rev. Lett. 99, 053906 (2007).

[16] A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S.
Iwamoto, and Y. Arakawa, Lasing oscillation in a three-
dimensional photonic crystal nanocavity with a complete
bandgap, Nat. Photon. 5, 91 (2011).

[17] D. Zhou and R. Biswas, Photonic crystal enhanced light-trapping
in thin film solar cells, J. Appl. Phys. 103, 093102 (2008).

[18] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener,
Three-dimensional invisibility cloak at optical wavelengths,
Science 328, 337 (2010).

[19] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, New York, 1976).

[20] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D.
Joannopoulos, Improving thin-film crystalline silicon solar cell
efficiencies with photonic crystals, Opt. Express 15, 16986
(2007).

[21] J. G. Fleming and S.-Y. Lin, Three-dimensional photonic crystal
with a stop band from 1.35 to 1.95 μm, Opt. Lett. 24, 49 (1999).

[22] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.
Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A.
Ozin, O. Toader, and H. M. van Driel, Large-scale synthesis of
a silicon photonic crystal with a complete three-dimensional
bandgap near 1.5 micrometres, Nature (London) 405, 437
(2000).

[23] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full
three-dimensional photonic bandgap crystals at near-infrared
wavelengths, Science 289, 604 (2000).

[24] Y. A. Vlasov, X. Bo, J. C. Sturm, and D. J. Norris, On-
chip natural assembly of silicon photonic bandgap crystals,
Nature (London) 414, 289 (2000).

[25] G. Subramania and S.-Y. Lin, Fabrication of three-dimensional
photonic crystal with alignment based on electron beam lithog-
raphy, Appl. Phys. Lett. 85, 5037 (2004).

[26] J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, and
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Macroporous-silicon-based three-dimensional photonic crystal
with a large complete band gap, J. Appl. Phys. 94, 2758
(2003).

[33] L. A. Woldering, A. P. Mosk, R. W. Tjerkstra, and W. L. Vos,
The influence of fabrication deviations on the photonic band gap
of three-dimensional inverse woodpile nanostructures, J. Appl.
Phys. 105, 093108 (2009).

[34] F. Garcı́a-Santamarı́a, M. Xu, V. Lousse, S. Fan, P. V. Braun,
and J. A. Lewis, A germanium inverse woodpile structure with
a large photonic band gap, Adv. Mater. 19, 1567 (2007).

[35] A. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener,
and G. von Freymann, Fabrication of silicon inverse woodpile
photonic crystals, Adv. Funct. Mater. 17, 2273 (2007).

[36] B. Jia, S. Wu, J. Li, and M. Gu, Near-infrared high refractive-
index three-dimensional inverse woodpile photonic crystals
generated by a sol-gel process, J. Appl. Phys. 102, 096102
(2007).

[37] T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto,
and Y. Arakawa, Demonstration of a three-dimensional pho-
tonic crystal nanocavity in a 〈110〉-layered diamond structure,
Appl. Phys. Lett. 107, 071102 (2015).

[38] L. A. Woldering, R. W. Tjerkstra, H. V. Jansen, I. D. Setija,
and W. L. Vos, Periodic arrays of deep nanopores made in
silicon with reactive ion etching and deep UV lithography,
Nanotechnology 19, 145304 (2008).

[39] J. M. van den Broek, L. A. Woldering, R. W. Tjerkstra,
F. B. Segerink, I. D. Setija, and W. L. Vos, Inverse-woodpile
photonic band gap crystals with a cubic diamond-like structure
made from single-crystalline silicon, Adv. Funct. Mater. 22, 25
(2012).

[40] D. A. Grishina, C. A. M. Harteveld, L. A. Woldering, and W. L.
Vos, Method to make a single-step etch mask for 3D monolithic
nanostructure, Nanotechnology 26, 505302 (2015).

[41] H. H. Li, Refractive index of silicon and germanium and its
wavelength and temperature derivatives, J. Phys. Chem. Ref.
Data 9, 561 (1993).

[42] From scanning electron microscopy the lattice parameter was
found to be a = 693 ± 10 plus the error margin of the SEM
that amounts to 2% to 3% [39]. Therefore, we take a =
677 nm, which shows the best match of the central frequencies
in the calculations and in the experiments, see Fig. 8. Moreover,
for a = 677 nm, experimental stop bands agree best with the
calculated photonic band gap, see Fig. 8.

[43] S. G. Johnson and J. D. Joannopoulos, Block-iterative
frequency-domain methods for Maxwell’s equations in a
planewave basis, Opt. Express 8, 173 (2001).

[44] Throughout this paper, we express frequency as a reduced
frequency ω̃ = ωa/(2πc′), with ω the frequency, a the lattice
parameter, and c′ the speed of light that is not to be confused with

the lattice parameter c. In this definition, the reduced frequency
ω̃ is expressed in units of (a/λ).

[45] COMSOL Multiphysics R© v. 5.2. www.comsol.com, COMSOL
AB, Stockholm, Sweden.

[46] J. M. Jin, The Finite Element Method in Electromagnetics
(Wiley-IEEE, New York, 2000).

[47] Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos,
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