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a b s t r a c t 

This paper studies both output and state synchronization problems for multi-agent systems with agents 

that are identical and coupled through a network with unknown, nonuniform and arbitrarily large com- 

munication delay. We assume that agents are non-introspective (i.e. agents have no access to any of their 

own states) in the output synchronization problem. The network can be either undirected or directed. In 

the case of undirected network, exact knowledge of the network is not required and only a specific lower 

bound is needed. The objective is to design a decentralized protocol such that the multi-agent system 

achieves output synchronization or state synchronization for any unknown, nonuniform and arbitrarily 

large communication delay. 

© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

In the past few decades, synchronization problems for multi-

gent systems have received substantial attention, where the ob-

ective is to achieve asymptotic agreement on a common state

 state synchronization ) or output trajectory ( output synchronization )

mong agents of the network through decentralized control proto-

ols. Some early results can be found in, e.g., [4,9,11,15] , for state

ynchronization problems of homogeneous networks (i.e. agents

re identical), and in, e.g., [1,3,18,20,21] , for output synchronization

roblems for heterogeneous networks. 

Recently, synchronization in a network with time delay has at-

racted a great deal of interest. As clarified in [2] , we can identify

wo kinds of delay. Firstly there is communication delay , which re-

ults from limitations on the communication between agents. Sec-

ndly we have input delay which is due to computational limita-

ions of an individual agent. Many works have focused on dealing

ith input delay, progressing from single- and double-integrator

gent dynamics (see e.g. [10,13,14] to more general agent dynam-

cs (see e.g. [5,12,17,24] ). Their objective is often to investigate how

uch input delay can be present in the system while still being

ble to guarantee synchronization. The amount of input delay that
∗ Corresponding author. 
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an still be handled will depend on the agent dynamics and the

etwork properties. 

In the case of communication delay, only for a constant syn-

hronization trajectory do we preserve the diffusive nature of the

etwork. This diffusive nature is an intrinsic part of the currently

vailable design techniques and hence only this case has been

tudied. [13] and [19] consider single-integrator dynamics in the

etwork and it is demonstrated that the communication delay does

ot affect the synchronizability of the network. [7] and [8] give

he consensus conditions for networks with higher-order but SISO

ynamics. In [6] , second-order dynamics are investigated, but the

ommunication delays are assumed known. 

However, the above works on communication delay only con-

ider simple dynamics. In this paper, we deal with general higher-

rder agent dynamics. That is, we investigate the regulated out-

ut/state synchronization problem for directed or undirected,

eighted networks composed of general higher-order agent dy-

amics and with unknown, nonuniform and asymmetric commu-

ication delays. Regarding the output synchronization problem, we

tilize the low-gain theory to do the controller design. Thus, we

mpose a constraint that the agent dynamics have all poles in the

losed-left half complex plane. The results in this paper confirm

he conclusion of [2] that it is possible to achieve consensus un-

er a network with arbitrarily large communication delay. It is also

hown that for some general agent dynamics, not all synchroniza-

ion trajectories can be achieved. An explicit set of trajectories are

dentified and purely decentralized controllers are designed. 
rved. 

http://dx.doi.org/10.1016/j.ejcon.2017.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2017.08.005&domain=pdf
mailto:mzhang1@eecs.wsu.edu
mailto:meirong.zhang@wsu.edu
mailto:saberi@eecs.wsu.edu
mailto:A.A.Stoorvogel@utwente.nl
http://dx.doi.org/10.1016/j.ejcon.2017.08.005


64 M. Zhang et al. / European Journal of Control 38 (2017) 63–72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

c  

g  

t  

c  

T  

C  

p

A

A  

p

 

c  

t  

a  

t

ζ  

f  

a  

o  

a

 

L

 

c  

g  

w  

t  

t

D  

a  

p

 

 

R  

w  

i  

s  

β  

t

3

c

 

l  

c  

t

3

 

b

P  

m  

G  

l  

w  
Results from this paper were partially presented at the 2016

American Control Conference [25] . 

1.1. Notations and definitions 

Given a matrix A ∈ C 

m ×n , A 

′ denotes its conjugate trans-

pose while ‖ A ‖ denotes the induced 2-norm. We denote by

diag { a 1 , . . . , a N } , a diagonal matrix with a 1 , . . . , a N as the diagonal

elements, and by col { x 1 , . . . , x N } , a column vector with x 1 , . . . , x N 
stacked together. Let j indicate 

√ −1 . Moreover, A �B indicates the

Kronecker product between A and B . 

A weighted graph G is defined by a triple (V, E, A ) , where V =
{ 1 , . . . , N} is a node set, E ⊆ V × V is a set of pairs of nodes indicat-

ing connections among nodes, and A = [ a i j ] ∈ R 

N×N is the weight-

ing matrix, with a ij > 0 iff (i, j) ∈ E and a ii = 0 . If a i j = a ji for all

(i, j) ∈ E, the graph is called undirected ; otherwise directed . A path

from node i 1 to i k is a sequence of nodes { i 1 , . . . , i k } such that

(i j , i j+1 ) ∈ E for j = 1 , . . . , k − 1 . A graph is connected if there ex-

ists a path between every pair of nodes. A directed graph is bal-

anced if 
∑ N 

j=1 a i j = 

∑ N 
j=1 a ji for all i = 1 , . . . , N. A directed tree is a

subgraph (subset of nodes and edges) in which every node has ex-

actly one parent node except for one node, called the root , which

has no parent node. In this case, the root has a directed path to

every other node in the tree. A directed spanning tree is a subgraph

which is a directed tree containing all the nodes of the original

graph. An agent is called a root agent if it is the root of some di-

rected spanning tree of the associated graph. For a weighted graph

G, the matrix L = [ � i j ] with diagonal elements � ii = 

∑ N 
j=1 a i j and

non-diagonal elements � i j = −a i j is called the Laplacian matrix as-

sociated with the graph G. All eigenvalues of L are located in the

closed right-half complex plane with at least one eigenvalue at

zero which is associated with right eigenvector 1 . In case the graph

is strongly connected then the multiplicity of the eigenvalue at

zero is 1 and all other eigenvalues are in the open right-half com-

plex plane. When G is undirected, L is symmetric. If G is balanced

then x ′ Lx ≥ 0 for all x . 

Definition 1. A linear time-invariant dynamics ( A , B , C , D ) is right-

invertible if, given a smooth reference output y r , there exists an

initial condition x (0) and an input u that ensures y (t) = y r (t) for

all t ≥ 0. For single-input-single-output system, a system is right-

invertible if and only if its transfer function is nonzero. 

Definition 2. The invariant zeros of a linear dynamics ( A , B , C , D )

are those points λ ∈ C for which 

rank 

(
λI − A −B 

C D 

)
< normrank 

(
sI − A −B 

C D 

)
, 

where by “normrank” we mean the rank of a matrix with entries

in the field of rational functions. 

2. Multi-agent systems 

The multi-agent system (MAS) we will consider in this paper is

composed of N identical general agents, which are denoted by �i 

with i ∈ { 1 , . . . , N} , 

�i : 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ x i (t) = Ax i (t) + Bu i (t) , 

y i (t) = Cx i (t) , 

ζi (t) = 

N ∑ 

j=1 

a i j (y i (t) − y j (t − τi j )) , 

(1)

where x i ∈ R 

n , u i ∈ R 

m and y i ∈ R 

p are the state, input and out-

put of agent i , and τi j ∈ R 

+ ( i 	 = j ) represents an unknown constant

communication delays from agent j to agent i . The communication

delay implies that it takes τ ij seconds for agent j to transfer its
tate information to agent i . In the above a ij ≥ 0 and a ii = 0 . The

ommunication presented in (1) can be represented by a weighted

raph G with each node indicating an agent in the network and

he weight of an edge is given by the coefficient a ij . ζ i is a delayed

ollection of relative outputs of agent i and its neighboring agents.

his is referred to as partial-state coupling . In the special case of

 = I, we have y i = x i and this case is referred to as full-state cou-

ling . 

We need the following assumptions: 

ssumption 1. ( A , B ) is stabilizable and ( A , C ) is detectable. 

ssumption 2. All eigenvalues of A are in the closed left-half com-

lex plane. 

Our goal is to achieve output synchronization while the syn-

hronous trajectory should be equal to an, a priori given, constant

rajectory, denoted by y r ∈ R 

p . We assume that there is a set of

gents �G which have access to the constant trajectory informa-

ion. Agents have access to the following information: 

ī (t) = ζi (t) + ιi (y i (t) − y r (t)) , (2)

or i = 1 , . . . , N. If agent i is part of the set �G then ιi = 1 and the

gent has access to this relative information regarding y r . For the

ther agents, we have ιi = 0 and hence the agent does not have

ccess to this relative information regarding y r . 

Define �̄ ii = 

∑ N 
j=1 a i j + ιi and �̄ i j = −a i j for i 	 = j . Then, the matrix

¯
 = [ ̄� i j ] is referred to as the expanded Laplacian matrix . 

In the following sections, we will study output and state syn-

hronization for both undirected graphs and directed graphs. If the

raph is undirected, we do not need precise information of a net-

ork communication topology, but only some rough characteriza-

ion of the network. In this case, we only need a lower bound on

he smallest eigenvalue of the expanded Laplacian 

efinition 3. For given real number β > 0, the set G β,N consists of

ll weighted graphs composed of N nodes satisfying the following

roperties: 

• Each agent is part of a directed tree with a root which belongs

to the set �G . 
• The eigenvalues of the expanded Laplacian matrix L̄ , denoted

by λ1 , . . . , λN satisfy Re λi > β . 

emark 1. If each agent is part of a directed tree with a root

hich belongs to the set �G then all eigenvalues of L̄ have pos-

tive real part (see for instance [5] ). Hence the graph is in G β,N for

ome sufficiently small β > 0. Our protocol design will rely only on

for undirected graphs and will be independent of other informa-

ion about the network. 

. Output synchronization for agents with partial-state 

oupling 

In this section, we will consider output synchronization prob-

em for networks with unknown, nonuniform and arbitrarily large

ommunication delay. We will first study undirected graphs, and

hen extend the result to directed graphs. 

.1. Undirected graphs 

The output synchronization problem for undirected graphs can

e formulated as follows. 

roblem 1. Let β be a given positive real number. Consider a

ulti-agent system described by (1) associated with a graph G ∈
 β,N . Given a constant trajectory y r ∈ R p and let it be available to at

east one agent. The output synchronization problem for networks

ith unknown, nonuniform and arbitrarily large communication
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f⎧⎪⎪⎨
⎪⎪⎩
elay is to find a distributed linear time-invariant dynamic con-

roller of the form 

˙ x i,c = A c x i,c + B c ̄ζi , 

u i = C c x i,c , 
(i = 1 , . . . , N) (3)

or each agent such that, for any graph G ∈ G β,N and for any com-

unication delay τi j ∈ R 

+ , the output of each agent converges to

he given constant trajectory, i.e., 

lim 

→∞ 

(y i (t) − y r ) = 0 , (4)

or all i ∈ { 1 , . . . , N} . 
The main result will be presented in two theorems. The first

heorem deals with the case when the system is right-invertible

nd has no invariant zeros at the origin. The second theorem deals

ith the general case. 

heorem 1. Let β be a given positive real number. Consider a multi-

gent system with agents described by (1) and let Assumptions 1 and

 hold. Given any constant trajectory y r ∈ R 

p and let the relative in-

ormation regarding y r be available to at least one agent which is a

oot agent. Assume the above multi-agent system is associated with

n undirected graph G ∈ G β,N . Then, Problem 1 is solvable if the sys-

em presented by ( A , B , C ) is right-invertible and has no invariant zero

t the origin. More specifically, there exists a linear dynamic controller

f the type (3) such that output synchronization is achieved for any

ndirected graph G ∈ G β,N , for any communication delay τi j ∈ R 

+ ,
nd for any y r ∈ R 

p . 

In the general case, we have to restrict our choice of y r . Let 

 y = 

{
y ∈ R 

p 

∣∣∣∣
(

0 

y 

)
∈ Im 

(
A B 

C 0 

)}
= { y ∈ R 

p | ∃ x ∈ R 

n , u ∈ R 

m : Ax + Bu = 0 , Cx = y } . (5) 

ote that C y = R 

p if ( A , B , C ) is right-invertible and without invari-

nt zeros in the origin. 

heorem 2. Let β be a given positive real number. Consider a multi-

gent system with agents described by (1) and let Assumptions 1 and

 hold. Given any constant trajectory y r ∈ R 

p and let the relative in-

ormation regarding y r be available to at least one agent which is a

oot agent. Assume the above multi-agent system is associated with

n undirected graph G ∈ G β,N . Then, Problem 1 is solvable if and only

f y r ∈ C y . More specifically, given y r ∈ C y , there exists a linear dy-

amic controller of the type (3) such that output synchronization is

chieved for any undirected graph G ∈ G β,N and for any communica-

ion delay τi j ∈ R 

+ . 

In order to prove the above theorems we need the following

emma. 

emma 1. Let β be a lower bound for the eigenvalues of L̄ . Then, for

ll communication delays τi j ∈ R 

+ ( i, j = 1 , . . . , N) and all ω ∈ R , the

eal part of all eigenvalues of L̄ j ω (τ ) will be larger than or equal to

, where 

¯
 s (τ ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̄ 11 �̄ 12 e 
−τ12 s · · · �̄ 1 N e 

−τ1 N s 

. . . 
. . . 

. . . 
. . . 

�̄ k 1 e 
−τk 1 s �̄ kk · · · �̄ kN e 

−τkN s 

. . . 
. . . 

. . . 
. . . 

�̄ N1 e 
−τN1 s �̄ N2 e 

−τN2 s · · · �̄ NN 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

s the expanded Laplacian matrix in the frequency domain and τ de-

otes a vector consisting of all τ ij (i 	 = j) with i, j ∈ { 1 , . . . , N} . 
roof. All eigenvalues of L̄ j ω (τ ) are in the set 

 

v ′ L̄ j ω (τ ) v | v ∈ C 

N , ‖ v ‖ = 1 

} 

, 

nd therefore it is sufficient to establish that all elements in this

et have a real part larger than or equal to β . 

Since L̄ is symmetric and G ∈ G β,N , v ′ L̄ v is real and larger than

r equal to β , provided ‖ v ‖ = 1 . 

Next, consider an arbitrary vector v ∈ C 

N . We have 

 

′ L̄ j ω (τ ) v = 

N ∑ 

i =1 

| v i | 2 �̄ ii + 

N ∑ 

i =1 

N ∑ 

j, j 	 = i 
v ′ i v j ̄� i j e 

−τi j j ω . 

ince �̄ i j ( i 	 = j ) is negative or equal to zero, we get 

e 
(
v ′ L̄ j ω (τ ) v 

)
≥

N ∑ 

i =1 

| v i | 2 �̄ ii + 

N ∑ 

i =1 

N ∑ 

j, j 	 = i 
| v ′ i v j | ̄� i j 

= 

⎛ 

⎝ 

| v 1 | 
. . . 

| v N | 

⎞ 

⎠ 

′ 

L̄ 

⎛ 

⎝ 

| v 1 | 
. . . 

| v N | 

⎞ 

⎠ ≥ β, 

hich completes the proof. �

roof of Theorem 1. The design consists of two steps. In the first

tep we will design a precompensator for each agent. In the second

tep, we will design a dynamic protocol for compensated MAS to

chieve synchronization. 

Step 1 : Since ( A , B , C ) is right-invertible and has no invariant

eros at the origin, the matrix 

A B 

C 0 

)
as full row-rank. By detectability of ( C , A ) the first n columns of

his matrix are linearly independent. This implies that there exists

n injective matrix V such that 

A BV 

C 0 

)
(6) 

s square and invertible. Next consider the so-called regulator

quations 

A BV 

C 0 

)(
�
�

)
= 

(
0 

I 

)
. 

nvertibility of (6) trivially implies this equation has a unique solu-

ion. Next note that 

ank 

(
A BV �
C 0 

)
= n + rank �

y the invertibility of (6) . We design a precompensator for each

gent of our multi-agent system 

˙ p i = 

(
I 0 

)
v i , p i (t) ∈ R 

v 

u i = �1 p i + 

(
0 �2 

)
v i 

(7) 

here v i is the new input, �1 is injective and such that Im V � =
m �1 while v = rank �. On the other hand, �2 is chosen such that

�1 �2 

)
(8) 

s square and invertible. 

The interconnection of (1) and (7) (compensated MAS) is of the

orm 

 

 

 

 

 

 

 

˙ ˜ x i (t) = 

˜ A ̃

 x i (t) + 

˜ B v i (t) , 

y i (t) = 

˜ C ̃  x i (t) , 

ζi (t) = 

N ∑ 

j=1 

a i j (y i (t) − y j (t − τi j )) , 
(9) 
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where 

˜ x i = 

(
x i 
p i 

)
, ˜ A = 

(
A B �1 

0 0 

)
, ˜ B = 

(
0 B �2 

I 0 

)
, ˜ C = 

(
C 0 

)
. 

We need to verify a number of properties of this system. First note

that stabilizability follows immediately from (8) and the stabiliz-

ability of ( A , B ). Next, we show detectability. We need to verify

that 

rank 

( 

sI − A −B �1 

0 sI 
C 0 

) 

= n + v = n + rank �1 

for all s in the closed right-half complex plane. For s 	 = 0, this im-

mediately follows from the detectability of ( C , A ). For s = 0 , we

have: 

rank 

( −A −B �1 

0 0 

C 0 

) 

= rank 

(
−A −BV �
C 0 

)
= n + rank �1 . 

Step 2: The controller for multi-agent system (9) is designed as {
˙ χi = ( ̃  A + K ̃

 C ) χi − K ζ̄i , 

v i = −α ˜ B 

′ P ε χi , 
(10)

where K is such that ˜ A + K ̃

 C is Hurwitz stable and P ε is the unique

solution of the algebraic Riccati equation 

˜ A 

′ P ε + P ε ̃  A − P ε ̃  B ̃

 B 

′ P ε + εI = 0 , 

while α and ε are design parameters to be chosen later. 

Next, we will prove that with the above controllers, the output

of each agent converges to the constant trajectory y r . First we need

to show that there exists a ˜ � such that ˜ A ̃

 � = 0 and 

˜ C ̃  � = I. Let W

be such that �1 W = V �. In that case it is easy to verify that we

can choose 

˜ � = 

(
�
W 

)
. 

For i = 1 , . . . , N, define x̄ i = ˜ x i − ˜ �y r , and the output synchroniza-

tion error e i = y i − y r . Then, we get the error dynamics {
˙ x̄ i = 

˜ A ̄x i + 

˜ B v i , 
e i = 

˜ C ̄x i . 
(11)

Moreover, ζ̄i (t) can be rewritten as 

ζ̄i (t) = 

N ∑ 

j=1 

a i j ̃
 C ( ̄x i (t) − x̄ j (t − τi j )) + ιi ̃

 C ̄x i (t) . 

Let x̄ = col { ̄x 1 , . . . , ̄x N } and χ = col { χ1 , . . . , χN } . Then, the full

closed-loop system can be written in the frequency domain as (
s ̄x 
sχ

)
= 

(
I N � ˜ A −αI N � ˜ B ̃

 B 

′ P ε 
−L̄ s (τ ) � K ̃

 C I N � ( ̃  A + K ̃

 C ) 

)(
x̄ 
χ

)
, (12)

where L̄ s (τ ) is defined in Lemma 1 . 

Next, we will prove that (12) is asymptotically stable for all

communication delay τi j ∈ R 

+ . We will first prove stability without

communication delay and then prove stability for the case includ-

ing communication delay. 

When there is no communication delay in the network, accord-

ing to [22] , the stability of system (12) is equivalent to asymptotic

stability of the matrix (
˜ A −α ˜ B ̃

 B 

′ P ε 
−λi K ̃

 C ˜ A + K ̃

 C 

)
for all i ∈ { 1 , . . . , N} , where λi is the eigenvalue of the expanded

Laplacian matrix L̄ with its lower bound of β . Note that (
λi 0 

0 I 

)(
˜ A −α ˜ B ̃ B ′ P ε 

−λi K ̃  C ˜ A + K ̃  C 

)(
λ−1 

i 
0 

0 I 

)
= 

(
˜ A −αλi ̃

 B ̃ B ′ P ε 
−K ̃  C ˜ A + K ̃  C 

)
. 
y choosing 

> 

1 

β
, (13)

nd using the result of Lemma 4 in the appendix, we find that

here exists an ε∗ such that for any ε ∈ (0, ε∗] system (12) is

symptotically stable without any communication delay. 

In the case of communication delay, according to Lemma 3 in

he appendix, the closed-loop system (12) is asymptotically stable

or any communication delay τi j ∈ R 

+ , if 

et 

[
j ωI −

(
I N � ˜ A −αI N � ˜ B ̃

 B 

′ P ε 
−L̄ j ω (τ ) � K ̃

 C I N � ( ̃  A + K ̃

 C ) 

)]
	 = 0 (14)

or all ω ∈ R and any communication delay τi j ∈ R 

+ . Condition

14) is satisfied if the matrix 

I N � ˜ A −αI N � ˜ B ̃

 B 

′ P ε 
−L̄ j ω (τ ) � K ̃

 C I N � ( ̃  A + K ̃

 C ) 

)
(15)

as no eigenvalues on the imaginary axis for all ω ∈ R and all pos-

ible communication delays τi j ∈ R 

+ . 
According to Lemma 1 , all the eigenvalues of L̄ j ω (τ ) will be

arger than or equal to β . Hence, when α satisfies (13) , by

emma 4 in the appendix, there exists an ε∗ such that for any

∈ (0, ε∗], the matrix (15) has no eigenvalues on the imaginary

xis. As noted before, this implies that the closed-loop system

12) is asymptotically stable for any communication delay τi j ∈ R 

+ .
Finally, by combining the precompensator (7) and controller

10) , we get a linear dynamic controller of the type (3) with 

 c = 

(
˜ A + K ̃

 C 0 

−α
(
I 0 

)
˜ B 

′ P ε 0 

)
, B c = 

(
−K 

0 

)
, 

C c = 

(
−α

(
0 �2 

)
˜ B 

′ P ε �1 

)
. ( ∗)

�

roof of Theorem 2. We first show the necessity of the condition

 r ∈ C y . For any individual agent to be able to track a constant ref-

rence signal y r , there must exist x 0 and u 0 such that 

A B 

C 0 

)(
x 0 
u 0 

)
= 

(
0 

y r 

)
. (16)

learly, such x 0 and u 0 exist only if y r is in the set C y which is

herefore a necessary condition for the solvability of our problem. 

Next, we show that the condition y r ∈ C y guarantees the exis-

ence of a controller which achieves output synchronization. Let R

e an injective matrix such that C y = Im R . In that case we can

nd � and � such that: 

0 

R 

)
= 

(
A B 

C 0 

)(
�
�

)
(17)

nd 

ank 

(
A B �
C 0 

)
= n + rank �. (18)

o see that we can impose the above rank condition, we note that

 C , A ) detectable implies that the first n columns are linearly inde-

endent. If the above the rank condition is not satisfied, then there

xist x and v such that 

A B �
C 0 

)(
x 
v 

)
= 0 

ith B �v 	 = 0 and v ′ v = 1 . But then 

A B 

C 0 

)(
� − x v ′ 

�(I − vv ′ ) 

)
= 0 
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hich shows that �̄ = � − x v ′ and �̄ = �(I − vv ′ ) also satisfy the

bove equation but with rank �̄ < rank �. Recursively, we can find

 solution of (17) which also satisfies the extra rank condition (18) .

We design a precompensator 

˙ p i = 

(
I 0 

)
v i , p i (t) ∈ R 

u i = �1 p i + 

(
0 �2 

)
v i 

(19) 

here �1 and �2 are chosen such that Im �1 = Im � and 

�1 �2 

)
(20) 

s square and invertible. 

The interconnection of (1) and (19) is of the form 

 

 

 

 

 

 

 

 

 

 

 

˙ ˜ x i (t) = 

˜ A ̃

 x i (t) + 

˜ B v i (t) , 

y i (t) = 

˜ C ̃  x i (t) , 

ζi (t) = 

N ∑ 

j=1 

a i j (y i (t) − y j (t − τi j )) , 

(21) 

here 

˜ 
 i = 

(
x i 
p i 

)
, ˜ A = 

(
A B �1 

0 0 

)
, ˜ B = 

(
0 B �2 

1 0 

)
, ˜ C = 

(
C 0 

)
. 

e need to verify that the system remains stabilizable and de-

ectable if we use a precompensator. The stabilizability of this sys-

em follows immediately from (20) and the stabilizability of ( A , B ).

To show the detectability of (21) , we need to verify that 

ank 

( 

sI − A −B �1 

0 sI 
C 0 

) 

= n + v 

ith v such that �1 ∈ R 

n ×v for all s in the closed right-half com-

lex plane. For s 	 = 0, this is achieved immediately from the de-

ectability of ( C , A ). For s = 0 , we have 

ank 

( −A −B �1 

0 0 

C 0 

) 

= rank 

(
−A −B �
C 0 

)
= n + rank �1 . 

e obtain the required detectability when we note that rank � =
ank �1 and rank �1 = v (since �1 is injective). The protocol for the

ulti-agent system, obtained after applying the precompensators,

ill be designed exactly as (10) and the remaining proof is sim-

lar to the proof of Theorem 1 except for the choice of ˜ � and x̄ .

n this case, we choose x̄ i = ˜ x i − ˜ �z where z is such that y r = Rz.

oreover, we set 

˜ = 

(
�
W 

)
, 

here W is such that �1 W = �. It is then easily seen that ˜ A ̃

 � = 0

nd 

˜ C ̃  � = R . �

.2. Directed graphs 

In this section, we will study a variation of Problem 1 for a

ulti-agent system with a directed graph G. The associated Lapla-

ian matrix L is then in general nonsymmetric, and the expanded

aplacian matrix L̄ , as defined in Section 2 , will then be nonsym-

etric as well. 

We note that if our directed graph is balanced then the results

f Theorem 1 still hold if we define β as the smallest eigenvalue

f L̄ + ̄L ′ . However, if the graph is not balanced the derivation pre-

ented before might not be valid. In that case, we design a protocol

or one individual graph (instead of for a set), i.e. we assume that

he graph G is given. 

We formulate the output synchronization problem for a given

irected graphs as follows. 
roblem 2. Consider a multi-agent system described by (1) asso-

iated with a given graph G which has a directed spanning tree.

iven a constant trajectory y r ∈ R p and let it be available to at least

ne agent which is a root agent. The output synchronization prob-

em for networks with unknown, nonuniform and arbitrarily large

ommunication delay is to find a distributed linear dynamic con-

roller of the form (3) for each agent such that, for the given di-

ected graph G and for any communication delay τi j ∈ R 

+ , the out-

ut of each agent converges to the constant trajectory, i.e., 

lim 

→∞ 

(y i (t) − y r ) = 0 , (22)

or all i ∈ { 1 , . . . , N} . 
Similar to the case of undirected graphs, the main result in this

ection is also presented in two theorems. The first theorem deals

ith the case when the system is right-invertible and has no in-

ariant zeros at the origin. The second theorem deals with the gen-

ral case. 

heorem 3. Consider a multi-agent system described by (1) associ-

ted with a given directed graph G which has a directed spanning

ree. Let Assumptions 1 and 2 hold. Given any constant trajectory

 r ∈ R 

p and let the relative information regarding y r be available to

t least one agent which is a root agent. Then, Problem 2 is solv-

ble if the system presented by ( A , B , C ) is right-invertible and has

o invariant zero at the origin. Specifically, given a directed graph G,

here exists a linear dynamic controller of the type (3) such that out-

ut synchronization is achieved for any communication delay τi j ∈ R 

+ 

nd for any y r ∈ R 

p . 

In the general case (not right-invertible or with zeros in the ori-

in) the choice of the constant trajectory y r needs to be restricted

o the set given by (5) . 

heorem 4. Consider a multi-agent system described by (1) associ-

ted with a given directed graph G which has a directed spanning

ree. Let Assumptions 1 and 2 hold. Given any constant trajectory

 r ∈ R 

p and let the relative information regarding y r be available to

t least one agent which is a root agent Then, Problem 2 is solvable if

nd only if y r ∈ C y . Specifically, given a directed graph G, there exists

 linear dynamic controller of the type (3) such that output synchro-

ization is achieved for any communication delay τi j ∈ R 

+ . 

emark 2. In the previous section for undirected graphs, we only

sed limited information about the network to design our dis-

ributed protocol. For directed graphs, we will make explicit use of

ur knowledge of the network to design our protocol (more specif-

cally, to find a lower bound for our design parameter α). If we

ave a finite set of possible graphs, then we can still find a pro-

ocol that works for every graph in this finite set (use as a lower

ound for α, the maximum of the lower bounds for each individual

raph in the set). 

roof of Theorem 3. The proof follows the proof of Theorem 1 ,

xcept for the choice of the parameter α given in (13) . 

Here, the parameter α should be designed in such a way that

he eigenvalues of 

L̄ j ω (τ ) (23) 

ave a real part larger than 1 for any communication delay τi j ∈
 

+ and for all ω ∈ R . 

Since k corresponds to a root of a spanning tree, we know the

xpanded Laplacian matrix L̄ is invertible and has its eigenvalues in

he open right-half complex plane. Given that L̄ is an invertible M -

atrix, there exists a diagonal positive matrix D = diag { d 1 , . . . , d N }
uch that 

 ̄L + L̄ ′ D > 0 (24)
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(in the case of an undirected or balanced graph we can simply

choose D = I). Since this matrix (24) is positive definite, we find

that 

Re (v ′ D ̄L v ) = 

1 

2 

v ′ (D ̄L + ̄L ′ D ) v 

is larger or equal to some positive constant β for all v with ‖ v ‖ =
1 . Following the same arguments as in the proof of Lemma 1 we

then obtain that 

Re 
(
v ′ D ̄L j ω (τ ) v 

)
≥

N ∑ 

i =1 

| v i | 2 d i ̄� ii + 

N ∑ 

i =1 

N ∑ 

j, j 	 = i 
| v ′ i v j | d i ̄� i j 

= 

⎛ 

⎝ 

| v 1 | 
. . . 

| v N | 

⎞ 

⎠ 

′ 

D ̄L 

⎛ 

⎝ 

| v 1 | 
. . . 

| v N | 

⎞ 

⎠ ≥ β, 

which implies: 

Re (v ′ D ̄L j ω (τ ) v ) ≥ β. (25)

Let λ be an eigenvalue of L̄ j ω (τ ) with eigenvector v . In other

words, L̄ j ω (τ ) v = λv . Combining with inequality (25) , we get 

Re (λ( max d i ) v ′ v ) ≥ Re (λv ′ D v ) = Re v ′ D ̄L j ω (τ ) v ≥ β ⇒ 

Re (λ) ≥ β

max d i 
. 

Thus, when choosing 

α > 

max d i 
β

, 

there exist an ε∗ such that for any ε ∈ (0, ε∗], condition (23) is sat-

isfied for any communication delay τi j ∈ R 

+ . �

Proof of Theorem 4. The proof follows the proof of Theorem 2 ,

but with the choice of parameter α given in Theorem 3 . �

4. State synchronization for agents with full-state coupling 

State synchronization for multi-agent systems is a special case

of the previous section when setting C = I. In this special case,

agents are not right-invertible and we can obtain results from

Theorems 2 and 4 for undirected and directed graphs, respectively.

We find in the state synchronization case that, when the agents

are allowed to be introspective, we can achieve several major im-

provements over the previous results: 

• We can use a static protocol instead of a dynamic protocol 

• We do not need the assumption that all eigenvalues of matrix

A are in the closed left-half complex plane. 

These results will be derived in the subsections below. 

4.1. Undirected graphs 

The state synchronization problem for undirected graphs can be

formulated as follows. 

Problem 3. Let β be a given positive real number. Consider a

multi-agent system described by 

�i : 

⎧ ⎨ 

⎩ 

˙ x i (t) = Ax i (t) + Bu i (t) , 

ζi (t) = 

N ∑ 

j=1 

a i j (x i (t) − x j (t − τi j )) , 
(26)

associated with an undirected graph G ∈ G β,N and assume that ( A ,

B ) is stabilizable. Let a constant trajectory x r ∈ R n be given and let it

be available to at least one agent. The state synchronization problem
 A
or networks with unknown, nonuniform, arbitrarily large commu-

ication delay is to find a distributed controller of the type 

 i = F x i + H ζ̄i (27)

or each agent such that, for any undirected graph G ∈ G β,N and

or any communication delay τi j ∈ R 

+ , the state of each agent con-

erges to the constant trajectory, i.e., 

lim 

→∞ 

(x i (t) − x r ) = 0 , (28)

or all i ∈ { 1 , . . . , N} . 
Before giving our result, we need to define a set 

 = 

{ 

x ∈ R 

n | Ax ∈ Im B 

} 

= 

{ 

x ∈ R 

n | ∃ u ∈ R 

m such that Ax + Bu = 0 

} 

. (29)

ote that C = C y for the case C = I. 

The main result in this section is presented in the following

heorem. 

heorem 5. Let β be a given positive real number. Consider a multi-

gent system described by (26) with ( A , B ) stabilizable. Given a con-

tant trajectory x r ∈ R 

n and let it be available to any agent, say agent

. Assume that the above multi-agent system is associated with an

ndirected graph G ∈ G β,N . Then, Problem 3 is solvable if and only

f the constant trajectory x r ∈ C . More specifically, there exists a dis-

ributed protocol of the type (27) for each agent such that state syn-

hronization is achieved for any undirected graph G ∈ G β,N and for

ny communication delay τi j ∈ R 

+ . 

roof. We first note that for an agent to be able to track a refer-

nce signal x r , we need the existence of a u 0 such that 

 = Ax r + Bu 0 . (30)

his implies that x r must be in the set C . 

For each agent i ∈ { 1 , . . . , N} , a preliminary state feedback law

 i = F x i + v i , (31)

s used such that 

er (A + BF ) = C . (32)

or the construction of such a matrix F , we note that there exists

 state transformation T such that 

 AT −1 = 

(
A 11 A 12 

A 21 A 22 

)
, T B = 

(
0 

B 1 

)
, 

here B 1 has full column rank. Then, we can choose F =
B � 

1 

(
A 21 A 22 

)
T where B � 

1 
denotes a left-inverse of B 1 . Note that

 0 in (30) is then given by u 0 = F x r . 

Combining each agent dynamics (26) and the state feedback

aw (31) , the agent dynamics can be written as 

˙ 
 i = Ā x i + B v i , (33)

here Ā = A + BF . For the resulting multi-agent system after ap-

lying these local state feedbacks, we develop a distributed local

ontroller 

 i = −αB 

′ P ζ̄i , (34)

here α is a design parameter that will be chosen later and P is

he positive definite solution of the algebraic Riccati equation, 

¯
 

′ P + P Ā − P BB 

′ P + I = 0 . (35)

t is worth noting that low gain is not needed here and hence no

ssumption needs to be made on the location of the eigenvalues of

 . 
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If x r is in the set C , we will prove that the state of each agent

onverges to the constant trajectory x r . Define x̄ i = x i − x r for every

 ∈ { 1 , . . . , N} . Then we have 

˙ ¯
 i = Ā ̄x i + B v i , 

nd 

ī (t) = 

N ∑ 

j=1 

a i j ( ̄x i (t) − x̄ j (t − τi j ) + ιi ̄x i (t) , 

here ιi is defined as the above. 

Let x̄ = col { ̄x 1 , . . . , ̄x N } . Then, the interconnection of the agents

nd their distributed protocols can be written in the frequency do-

ain as 

 ̄x = (I N � Ā ) ̄x − α( ̄L s (τ ) � BB 

′ P ) ̄x , (36)

here L̄ s (τ ) is the expanded Laplacian matrix in the frequency do-

ain as defined in (12) . To prove our result, we need to prove that

his system is asymptotically stable for any communication delay

i j ∈ R 

+ . The remaining proof will be done in two steps. 

tep 1: In this step, we will first prove that the system without any

ommunication delay is asymptotically stable. This is equivalent to

howing that the matrix 

(I N � Ā ) − α( ̄L � BB 

′ P ) (37)

s Hurwitz stable. As in Definition 3 , λi ( i = 1 , . . . , N) denote the

igenvalues of L̄ . Then, from [22] , the stability of (37) is equivalent

o the Hurwitz stability of 

¯
 − αλi BB 

′ P 

or all i = 1 , . . . , N. From Lemma 2 in the appendix, we conclude

hat these matrices are Hurwitz stable provided 

> 

1 

2 λi 

or all i . Since G ∈ G β,N , it is sufficient to choose α such that

> 

1 
2 β

. 

tep 2: In this step, we need to prove that the closed-loop system

s asymptotically stable in the presence of communication delays.

ince the system without delays is asymptotically stable, according

o Lemma 3 in the appendix, the closed-loop system is asymptoti-

ally stable for any communication delay τi j ∈ R 

+ , if 

et [ j ωI − (I N � Ā ) + αL̄ j ω (τ ) � BB 

′ P ] 	 = 0 (38)

or all ω ∈ R and any communication delay τi j ∈ R 

+ . 
For Condition (38) , it is clearly sufficient to show that 

(I N � Ā ) − αL̄ j ω (τ ) � BB 

′ P (39)

oes not have eigenvalues on the imaginary axis for all ω ∈ R and

or any communication delay τi j ∈ R 

+ . 
From Lemma 1 , we know that all eigenvalues of L̄ j ω (τ ) have

eal part larger than or equal to β . This implies that for α > 

1 
2 β

,

e know that all eigenvalues of 

L̄ j ω (τ ) 

ave a real part greater than 

1 
2 . According to Lemma 2 in the ap-

endix, this implies that (39) is Hurwitz stable for any communica-

ion delay τi j ∈ R 

+ . As noted before, this implies that the condition

38) is satisfied. Hence, the closed-loop system is asymptotically

table for any communication delay τi j ∈ R 

+ . �

.2. Directed graphs 

Next, we will modify Problem 3 to allow for multi-agent sys-

ems with a given directed graph G which has a spanning tree. 
We formulate the state synchronization problem for directed

raphs as follows. 

roblem 4. Consider a multi-agent system described by (26) as-

ociated with a directed graph G which has a directed spanning

ree. Given a constant trajectory x r ∈ R n and let it be available to

t least one agent. Then the state synchronization problem for net-

orks with unknown, nonuniform, and arbitrarily large communi-

ation delay is to find a distributed controller of the type (27) for

ach agent such that, for the given directed graph G and for any

ommunication delay τi j ∈ R 

+ , the state of each agent converges

o the constant trajectory, i.e., 

lim 

→∞ 

(x i (t) − x r ) = 0 , (40)

or all i ∈ { 1 , . . . , N} . 
We present the result in the following theorem. 

heorem 6. Consider a multi-agent system described by (26) with ( A ,

 ) stabilizable and associated with a given directed graph G which has

 directed spanning tree. Let a constant trajectory x r ∈ R 

n be given

nd let it be available to at least one agent which is a root agent.

hen, Problem 3 for a multi-agent system with a given directed graph

is solvable if and only if the constant trajectory x r is in the set C .

ore specifically, given a directed graph G, there exists a distributed

rotocol of the type (27) for each agent such that state synchroniza-

ion is achieved for any communication delay τi j ∈ R 

+ . 

roof. For each i = 1 , . . . , N, a distributed protocol will be designed

f the form 

 i = F x i − αB 

′ P ζ̄i , (41)

here F and P are chosen exactly as in Section 4.1 , while α is a

esign parameter which we will choose differently in this section.

ollowing the proof of Theorem 5 , we need to design parameter α
uch that the eigenvalues of 

L̄ j ω (τ ) (42) 

ave a real part larger than 

1 
2 for any communication delay τi j ∈

 

+ , ( i, j = 1 , . . . , N). 

Similar to the proof of Theorem 3 , there exists a diagonal posi-

ive matrix D = diag { d 1 , . . . , d N } such that 

 ̄L + L̄ ′ D > 0 , 

nd 

e (λ) ≥ β

max d i 
, 

here λ is an eigenvalue of L̄ j ω (τ ) . 

Thus, when choosing 

> 

max d i 
2 β

, 

ondition (42) is satisfied for any communication delay τi j ∈ R 

+ ,
 i, j = 1 , . . . , N). Hence, our result is proved. �

. Examples 

In this section, we will give two examples to illustrate our re-

ults on output synchronization for a MAS with N = 10 agents with

artial-state coupling. One is for an undirected network; and the

ther for a directed network, illustrated in Fig. 1 a and b, respec-

ively. Agents are chosen to be right-invertible and have no invari-

nt zeros at the origin. 
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Fig. 1. Network topologies of N = 10 agents. 
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Undirected graph The Laplacian matrix corresponding to the

undirected graph shown in Fig. 1 a is written as 

L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −1 0 0 0 0 0 0 0 0 

−1 6 0 0 0 0 0 −2 −1 −2 

0 0 5 −4 0 0 0 −1 0 0 

0 0 −4 14 −2 −3 −5 0 0 0 

0 0 0 −2 2 0 0 0 0 0 

0 0 0 −3 0 3 0 0 0 0 

0 0 0 −5 0 0 7 −2 0 0 

0 −2 −1 0 0 0 −2 5 0 0 

0 −1 0 0 0 0 0 0 4 −3 

0 −2 0 0 0 0 0 0 −3 5 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

We allow any nonuniform arbitrarily large communication delays

in the network communication. The linear agent model is de-
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Fig. 2. The output trajectories of N = 10 
cribed by the matrices 

 = 

( 

0 1 2 

−1 0 0 

0 0 −1 

) 

, B = 

( 

1 0 

0 1 

1 1 

) 

, C = 

(
1 0 1 

)
. 

ur target is to regulate all agents’ outputs to a constant trajec-

ory given by y r = 1 which is available to agent 2. Then, the lower-

ound on the real part of all eigenvalues of the expanded Laplacian

atrix L̄ is 0.07. Select β = 0 . 06 . Then, the undirected graph Fig. 1 a

s included in a set of graphs G β,N . 

According to Theorem 1 , the precompensator for each agent is

esigned as, 

˙ p i = v i , 

u i = 

(
0 

1 

)
p i . 

(43)

ow choose α = 17 , which satisfies α > 

1 

β
= 16 . 67 . By selecting 

 = 

(
−20 −40 15 −1 . 5 

)′ 

nd the low-gain ε = 10 −7 , the protocol is designed as 

˙ χi = 

⎛ 

⎜ ⎝ 

−20 1 −18 0 

−41 0 −40 1 

15 0 14 1 

−1 . 5 0 −1 . 5 0 

⎞ 

⎟ ⎠ 

χi −

⎛ 

⎜ ⎝ 

−20 

−40 

15 

−1 . 5 

⎞ 

⎟ ⎠ ̄

ζi , 

v i = 

(
0 −0 . 0067 −0 . 0067 −0 . 0192 

)
χi . 

ur simulation shows that the above protocol can tolerate any

onuniform and asymmetric communication delay. When set-

ing τ21 = τ64 = 2 , τ28 = τ29 = τ34 = τ38 = 3 , τ2 , 10 = 5 , τ43 = τ45 =
46 = τ47 = 3 , τ54 = 5 and other τi j = 1 if it exists, we obtain Fig. 2 ,

hich shows that the outputs of all agents converge to the con-

tant trajectory y r = 1 asymptotically. 
1000 1200 1400 1600 1800
cond)

agents under an undirected graph. 
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Fig. 3. The output trajectories of N = 10 agents under a directed graph. 
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Directed graph The Laplacian matrix corresponding to the di-

ected graph shown in Fig. 1 b is written as 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −1 0 0 0 0 0 0 0 0 

−1 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 −1 0 0 

0 0 −2 5 0 0 −3 0 0 0 

0 0 0 −4 4 0 0 0 0 0 

0 0 0 −5 0 5 0 0 0 0 

0 0 0 −2 0 0 4 −2 0 0 

0 −2 −2 0 0 0 0 4 0 0 

0 −1 0 0 0 0 0 0 2 −1 

0 −2 0 0 0 0 0 0 −3 5 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

We use the same linear agent model and reference trajectory as

n the case of undirected graph. Hence we have the same precom-

ensator, that is given in (43) . 

In this case, we also make the constant trajectory y r = 1 avail-

ble to root agent 2. Now we choose the diagonal matrix 

 = diag { 1 . 3781 , 1 . 4997 , 1 . 7023 , 0 . 4046 , 0 . 2745 , 0 . 2208 , 

0 . 3915 , 0 . 6259 , 0 . 7497 , 0 . 3230 } 
uch that D ̄L + ̄L ′ D > 0 . We find that the real part of all eigenval-

es of D ̄L is greater than 0.53. Therefore, setting β = 0 . 55 , we can

hoose α = 10 which satisfies α > 

max d i 
β

= 

1 . 7023 

0 . 55 
= 3 . 09 . By se-

ecting the same K and the low-gain ε, the protocol is designed

s, 

˙ χi = 

⎛ 

⎜ ⎝ 

−20 1 −18 0 

−41 0 −40 1 

15 0 14 1 

−1 . 5 0 −1 . 5 0 

⎞ 

⎟ ⎠ 

χi −

⎛ 

⎜ ⎝ 

−20 

−40 

15 

−1 . 5 

⎞ 

⎟ ⎠ ̄

ζi , 

v i = 

(
−0 . 0 0 0 0 −0 . 0134 −0 . 0134 −0 . 0385 

)
χi . 
With the same communication delay, we obtain Fig. 3 , which

hows that the output of all agents converge to the constant tra-

ectory y r = 1 asymptotically. 

ppendix A. Useful lemmas 

The problem of synchronization is connected to a robust stabi-

ization problem as presented in the following lemma which can

e found in [22] . 

emma 2. Consider a linear uncertain system 

˙ 
 = Ax + λBu, 

here ( A , B ) is stabilizable with λ ∈ C unknown. Consider, the state

eedback u = αF x where F = −B ′ P, and P is the unique positive defi-

ite solution of the algebraic Riccati equation 

 

′ P + PA − P B 

′ BP + I = 0 . 

hen, we have that A − αλBB ′ P is Hurwitz stable for any 

∈ 

{ 

s ∈ C | Re (s ) ≥ 1 

2 α

} 

. 

The following lemma is a useful tool to check the stability of a

elay system and can be found in [23] . 

emma 3. Consider a linear time-delay system 

˙ 
 = Ax + 

N ∑ 

i =1 

A d,i x (t − τi ) . (44)

ssume that 

 d + 

N ∑ 

i =1 

A d,i 
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is Hurwitz stable. In that case, the delay system (44) is globally

asymptotically stable for any τ1 , . . . , τN ∈ [0 , τ̄ ] if 

det 

[ 

j ωI − A −
N ∑ 

i =1 

e −j ωτi A d,i 

] 

	 = 0 , 

for all ω ∈ R and τ1 , . . . , τN ∈ [0 , τ̄ ] . 

The following lemma can be found in [16 , Lemma C .2]. 

Lemma 4. There exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], we have

that ( 

˜ A −λ ˜ B ̃

 B 

′ P ε 
−K ̃

 C ˜ A + K ̃

 C 

) 

(45)

is asymptotically stable for all λ with Re (λ) ≥ 1 . 
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