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1. Introduction

In the past few decades, synchronization problems for multi-
agent systems have received substantial attention, where the ob-
jective is to achieve asymptotic agreement on a common state
(state synchronization) or output trajectory (output synchronization)
among agents of the network through decentralized control proto-
cols. Some early results can be found in, e.g., [4,9,11,15], for state
synchronization problems of homogeneous networks (i.e. agents
are identical), and in, e.g., [1,3,18,20,21], for output synchronization
problems for heterogeneous networks.

Recently, synchronization in a network with time delay has at-
tracted a great deal of interest. As clarified in [2], we can identify
two kinds of delay. Firstly there is communication delay, which re-
sults from limitations on the communication between agents. Sec-
ondly we have input delay which is due to computational limita-
tions of an individual agent. Many works have focused on dealing
with input delay, progressing from single- and double-integrator
agent dynamics (see e.g. [10,13,14] to more general agent dynam-
ics (see e.g. [5,12,17,24]). Their objective is often to investigate how
much input delay can be present in the system while still being
able to guarantee synchronization. The amount of input delay that

* Corresponding author.
E-mail addresses: mzhangl@eecs.wsu.edu, meirong.zhang@wsu.edu (M. Zhang),
saberi@eecs.wsu.edu (A. Saberi), A.A.Stoorvogel@utwente.nl (A.A. Stoorvogel).

http://dx.doi.org/10.1016/j.ejcon.2017.08.005

can still be handled will depend on the agent dynamics and the
network properties.

In the case of communication delay, only for a constant syn-
chronization trajectory do we preserve the diffusive nature of the
network. This diffusive nature is an intrinsic part of the currently
available design techniques and hence only this case has been
studied. [13] and [19] consider single-integrator dynamics in the
network and it is demonstrated that the communication delay does
not affect the synchronizability of the network. [7] and [8] give
the consensus conditions for networks with higher-order but SISO
dynamics. In [6], second-order dynamics are investigated, but the
communication delays are assumed known.

However, the above works on communication delay only con-
sider simple dynamics. In this paper, we deal with general higher-
order agent dynamics. That is, we investigate the regulated out-
put/state synchronization problem for directed or undirected,
weighted networks composed of general higher-order agent dy-
namics and with unknown, nonuniform and asymmetric commu-
nication delays. Regarding the output synchronization problem, we
utilize the low-gain theory to do the controller design. Thus, we
impose a constraint that the agent dynamics have all poles in the
closed-left half complex plane. The results in this paper confirm
the conclusion of [2] that it is possible to achieve consensus un-
der a network with arbitrarily large communication delay. It is also
shown that for some general agent dynamics, not all synchroniza-
tion trajectories can be achieved. An explicit set of trajectories are
identified and purely decentralized controllers are designed.

0947-3580/© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved.
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Results from this paper were partially presented at the 2016
American Control Conference [25].

1.1. Notations and definitions

Given a matrix Ae C™", A" denotes its conjugate trans-
pose while ||A|| denotes the induced 2-norm. We denote by
diag{a,,...,ay}, a diagonal matrix with aq, ..., ay as the diagonal
elements, and by col{xq,...,xy}, a column vector with xq,...,xy
stacked together. Let j indicate v/—1. Moreover, A®B indicates the
Kronecker product between A and B.

A weighted graph G is defined by a triple (V, &, A), where V =
{1,..., N} is a node set, £ €V x V is a set of pairs of nodes indicat-
ing connections among nodes, and A = [q;;] € RN*N s the weight-
ing matrix, with a;; >0 iff (i, j) € £ and a; = 0. If a;; = aj; for all
(i, j) € &, the graph is called undirected; otherwise directed. A path
from node i; to i, is a sequence of nodes {iy,...,i} such that
(ij,ijp1)e& for j=1,..., k—1. A graph is connected if there ex-
ists a path between every pair of nodes. A directed graph is bal-
anced if Z?':l ajj = Z?’ﬂ aj foralli=1,..., N. A directed tree is a
subgraph (subset of nodes and edges) in which every node has ex-
actly one parent node except for one node, called the root, which
has no parent node. In this case, the root has a directed path to
every other node in the tree. A directed spanning tree is a subgraph
which is a directed tree containing all the nodes of the original
graph. An agent is called a root agent if it is the root of some di-
rected spanning tree of the associated graph. For a weighted graph
G, the matrix L= [¢;;] with diagonal elements ¢; = Z'}’:l a;; and
non-diagonal elements ¢;; = —a;; is called the Laplacian matrix as-
sociated with the graph G. All eigenvalues of L are located in the
closed right-half complex plane with at least one eigenvalue at
zero which is associated with right eigenvector 1. In case the graph
is strongly connected then the multiplicity of the eigenvalue at
zero is 1 and all other eigenvalues are in the open right-half com-
plex plane. When ¢ is undirected, L is symmetric. If G is balanced
then x'Lx > 0 for all x.

Definition 1. A linear time-invariant dynamics (A, B, C, D) is right-
invertible if, given a smooth reference output y;, there exists an
initial condition x(0) and an input u that ensures y(t) = y,(t) for
all t>0. For single-input-single-output system, a system is right-
invertible if and only if its transfer function is nonzero.

Definition 2. The invariant zeros of a linear dynamics (A, B, C, D)
are those points A € C for which

rank M-A -B < normrank sl-A B
C D C D )

where by “normrank” we mean the rank of a matrix with entries
in the field of rational functions.

2. Multi-agent systems

The multi-agent system (MAS) we will consider in this paper is
composed of N identical general agents, which are denoted by X;
withie {1,...,N},

xi(t) = Ax; (£) + Bu;(t),
yi(t) = Cx; ().,

N
Gi(t) =) ay i) —y;(t — 7)),

j=1

(1)

where x; e R", u; e R™ and y; € RP are the state, input and out-
put of agent i, and t;; € R* (i#j) represents an unknown constant
communication delays from agent j to agent i. The communication
delay implies that it takes t; seconds for agent j to transfer its

state information to agent i. In the above g;>0 and a; = 0. The
communication presented in (1) can be represented by a weighted
graph G with each node indicating an agent in the network and
the weight of an edge is given by the coefficient a;. ¢; is a delayed
collection of relative outputs of agent i and its neighboring agents.
This is referred to as partial-state coupling. In the special case of
C =1, we have y; = x; and this case is referred to as full-state cou-
pling.
We need the following assumptions:

Assumption 1. (A, B) is stabilizable and (A, C) is detectable.

Assumption 2. All eigenvalues of A are in the closed left-half com-
plex plane.

Our goal is to achieve output synchronization while the syn-
chronous trajectory should be equal to an, a priori given, constant
trajectory, denoted by y, € RP. We assume that there is a set of
agents I1g which have access to the constant trajectory informa-
tion. Agents have access to the following information:

Gi(t) = &) + 4(i(©) — yr (D)), )

fori=1,...,N. If agent i is part of the set Il then ¢; = 1 and the
agent has access to this relative information regarding y,. For the
other agents, we have (; =0 and hence the agent does not have
access to this relative information regarding y.

Define ¢; = Z’}’:] a;j +1; and &;; = —a;; for i#j. Then, the matrix
L= [Zij] is referred to as the expanded Laplacian matrix.

In the following sections, we will study output and state syn-
chronization for both undirected graphs and directed graphs. If the
graph is undirected, we do not need precise information of a net-
work communication topology, but only some rough characteriza-
tion of the network. In this case, we only need a lower bound on
the smallest eigenvalue of the expanded Laplacian

Definition 3. For given real number 8 >0, the set Gg y consists of
all weighted graphs composed of N nodes satisfying the following
properties:

 Each agent is part of a directed tree with a root which belongs
to the set Ig.

- The eigenvalues of the expanded Laplacian matrix L, denoted
by Aq,..., Ay satisfy Re); > B.

Remark 1. If each agent is part of a directed tree with a root
which belongs to the set Il then all eigenvalues of L have pos-
itive real part (see for instance [5]). Hence the graph is in Gg y for
some sufficiently small 8 > 0. Our protocol design will rely only on
B for undirected graphs and will be independent of other informa-
tion about the network.

3. Output synchronization for agents with partial-state
coupling

In this section, we will consider output synchronization prob-
lem for networks with unknown, nonuniform and arbitrarily large
communication delay. We will first study undirected graphs, and
then extend the result to directed graphs.

3.1. Undirected graphs

The output synchronization problem for undirected graphs can
be formulated as follows.

Problem 1. Let 8 be a given positive real number. Consider a
multi-agent system described by (1) associated with a graph G €
Gg,n- Given a constant trajectory yr € RP and let it be available to at
least one agent. The output synchronization problem for networks
with unknown, nonuniform and arbitrarily large communication
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delay is to find a distributed linear time-invariant dynamic con-
troller of the form

Xic = AcXic + BZ;. i=1 N 3
{ui:chi.c, ( T ) ( )

for each agent such that, for any graph G € Gg y and for any com-
munication delay 7;; € R*, the output of each agent converges to
the given constant trajectory, i.e.,

Him (yi(&) —yr) =0, (4)
forallie{1,...,N}.

The main result will be presented in two theorems. The first
theorem deals with the case when the system is right-invertible
and has no invariant zeros at the origin. The second theorem deals
with the general case.

Theorem 1. Let 8 be a given positive real number. Consider a multi-
agent system with agents described by (1) and let Assumptions 1 and
2 hold. Given any constant trajectory yr € RP and let the relative in-
formation regarding y, be available to at least one agent which is a
root agent. Assume the above multi-agent system is associated with
an undirected graph G € Gg y. Then, Problem 1 is solvable if the sys-
tem presented by (A, B, C) is right-invertible and has no invariant zero
at the origin. More specifically, there exists a linear dynamic controller
of the type (3) such that output synchronization is achieved for any
undirected graph G € Ggy, for any communication delay t;; € R,
and for any y, € RP.

In the general case, we have to restrict our choice of y;. Let

() em 3]

={yeRP|Ax e R, uecR™":Ax+Bu=0,Cx=y}. (5)

%y:{yeR”

Note that 4, = RP if (A, B, C) is right-invertible and without invari-
ant zeros in the origin.

Theorem 2. Let 8 be a given positive real number. Consider a multi-
agent system with agents described by (1) and let Assumptions 1 and
2 hold. Given any constant trajectory yr € RP and let the relative in-
formation regarding y, be available to at least one agent which is a
root agent. Assume the above multi-agent system is associated with
an undirected graph G € Gg y. Then, Problem 1 is solvable if and only
if yr € 6y. More specifically, given y; € ¢, there exists a linear dy-
namic controller of the type (3) such that output synchronization is
achieved for any undirected graph G € Gg y and for any communica-
tion delay t;; € R™.

In order to prove the above theorems we need the following
lemma.

Lemma 1. Let B be a lower bound for the eigenvalues of L. Then, for
all communication delays 7;; e R* (i, j=1,..., N) and all w € R, the
real part of all eigenvalues of ijw(r) will be larger than or equal to
B, where

1 fppe s Zyye s
- fq e s 17 Ly TS
Ls(f) — k1 kk kN
ZN1 e~ ™S [Nze*Tst .. ZNN

is the expanded Laplacian matrix in the frequency domain and t de-
notes a vector consisting of all T (i#j) withi,j e {1,...,N}.

Proof. All eigenvalues of ij(r) are in the set
{vL@vivec vl =1},

and therefore it is sufficient to establish that all elements in this
set have a real part larger than or equal to 8.

Since L is symmetric and G € Gg N> VLv is real and larger than
or equal to S, provided |v|| = 1.

Next, consider an arbitrary vector v € CN. We have

N N N
U/ij(l')v = Z |Ui|2€,',' + Z Z v§vje,-je*fiﬂ“’.

i=1 i=1 j j#i
Since Z,-j (i#j) is negative or equal to zero, we get

N N N
Re (VL (D)) = Y [il?8i+ > > [vjvjlEy
i1

i=1 j j#i
[v1] ' [v1]
=| : |l : | =8
[un| [un|
which completes the proof. O

Proof of Theorem 1. The design consists of two steps. In the first
step we will design a precompensator for each agent. In the second
step, we will design a dynamic protocol for compensated MAS to
achieve synchronization.

Step 1: Since (A, B, C) is right-invertible and has no invariant
zeros at the origin, the matrix

(€ %)

has full row-rank. By detectability of (C, A) the first n columns of
this matrix are linearly independent. This implies that there exists
an injective matrix V such that

A BV
()

is square and invertible. Next consider the so-called regulator
equations

¢ 9)F)-0)

Invertibility of (6) trivially implies this equation has a unique solu-
tion. Next note that

A BVI
rank (C 0 ) =n+rankl’

by the invertibility of (6). We design a precompensator for each
agent of our multi-agent system
pi= (I 0)u, pi(t) eRY
up=I1p;i+ (0 FZ)Ui
where v; is the new input, Iy is injective and such that ImVT =
ImI'; while v =rankI". On the other hand, I'; is chosen such that

(7)

(T T3) ®)
is square and invertible.

The interconnection of (1) and (7) (compensated MAS) is of the
form

X(t) = A%;(t) + Bui(b),

yi(t) = Cxi(t).

N 9)
Gi(t) =Y a;yi(t) —yjt — Tj).

=1
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5 _ Xi o A Bl"l 5 0 BFZ A
x,_(pl),A_(O o ) B=; o°) C¢=(C 0).

We need to verify a number of properties of this system. First note
that stabilizability follows immediately from (8) and the stabiliz-
ability of (A, B). Next, we show detectability. We need to verify
that

sI—-A —Bl"l
rank 0 sl =n+v=n+rankIl
C 0

for all s in the closed right-half complex plane. For s#0, this im-
mediately follows from the detectability of (C, A). For s =0, we
have:

-A —-BI'4
rank| O 0 = rank —A BV n+rankTl;.
c 0 C 0

Step 2: The controller for multi-agent system (9) is designed as

%i=A+KCO)xi —Kg;.
{v,» =—aBP.x;, (10)

where K is such that A + KC is Hurwitz stable and P; is the unique
solution of the algebraic Riccati equation

AP, + P,A—P.BBP, +¢l=0,

while o and ¢ are design parameters to be chosen later.

Next, we will prove that with the above controllers, the output
of each agent converges to the constant trajectory y;. First we need
to show that there exists a IT such that AIT =0 and CIT1 =1 Let W
be such that I'yW = VT. In that case it is easy to verify that we
can choose

ﬁ:@)

For i=1,...,N, define %; = % — I1y,, and the output synchroniza-
tion error e; = y; — yr. Then, we get the error dynamics

{)éi = Aj’zi + By,

e = C}Z, (11)

Moreover, £;(t) can be rewritten as

N
Git) = Zaijc()zi(t) —Xj(t — 73j)) + 1:Cx; (1).

j=1
Let X=col{k;,....Xy} and x =col{xq..... xny}. Then, the full
closed-loop system can be written in the frequency domain as

K\ _( In® A —aly ® BBP.\ [ x (12)
sx )] \-L(t)oKkC Iy®@ A+KC))\x )
where Lg(7) is defined in Lemma 1.

Next, we will prove that (12) is asymptotically stable for all
communication delay 7;; € R*. We will first prove stability without
communication delay and then prove stability for the case includ-
ing communication delay.

When there is no communication delay in the network, accord-
ing to [22], the stability of system (12) is equivalent to asymptotic
stability of the matrix

A —aBB'P.
—MKE A4 KC
for all i e{1,...,N}, where ; is the eigenvalue of the expanded

Laplacian matrix L with its lower bound of 8. Note that

Ao 0 A —aBBP\(AY O\_( A —aXBBP
0 I)\-xkC A+KC 0 1)~ \-k¢

A+KC

By choosing

1

-
a B (13)
and using the result of Lemma 4 in the appendix, we find that
there exists an &* such that for any €e(0, £*] system (12) is
asymptotically stable without any communication delay.

In the case of communication delay, according to Lemma 3 in
the appendix, the closed-loop system (12) is asymptotically stable
for any communication delay 7;; € R*, if

—aly @ BB'P,
Ive (A+ 1<€))] #0 (14)

. Iy ®A~
det [’wl - (-i,-w(r) o KC

for all ® eR and any communication delay 7;; € R*. Condition
(14) is satisfied if the matrix

Iv®A —aly ® BB'P.
~Li,(t)®KC Iye (A+KC)
has no eigenvalues on the imaginary axis for all w € R and all pos-
sible communication delays t;; € R*.

According to Lemma 1, all the eigenvalues of [jw(t) will be
larger than or equal to B. Hence, when « satisfies (13), by
Lemma 4 in the appendix, there exists an &* such that for any
£e(0, &*], the matrix (15) has no eigenvalues on the imaginary
axis. As noted before, this implies that the closed-loop system
(12) is asymptotically stable for any communication delay 7;; € R,

Finally, by combining the precompensator (7) and controller
(10), we get a linear dynamic controller of the type (3) with

A+KC 0 K
Ae = (—a(l 0)B'P. o)’ Be= ( 0 )
C=(-a(0 T)BP. Ty). )
U

(15)

Proof of Theorem 2. We first show the necessity of the condition
Yr € 6y. For any individual agent to be able to track a constant ref-
erence signal y,, there must exist X and ug such that

¢ 9)-6) 5

Clearly, such Xy and ug exist only if y, is in the set 4, which is
therefore a necessary condition for the solvability of our problem.

Next, we show that the condition y, € 6, guarantees the exis-
tence of a controller which achieves output synchronization. Let R
be an injective matrix such that %, =Im R. In that case we can
find IT and I' such that:

(1) 5)(F) v

and

A BT
rank(C 0)=n+rankr‘. (18)

To see that we can impose the above rank condition, we note that
(C, A) detectable implies that the first n columns are linearly inde-
pendent. If the above the rank condition is not satisfied, then there
exist x and v such that

£ %))

with BI'v # 0 and v'v = 1. But then

A B IT—xv -0
cC o)\ra-w)J]—
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which shows that [T =TT —xv and I' = '(I — w/) also satisfy the

above equation but with rank " < rankI". Recursively, we can find

a solution of (17) which also satisfies the extra rank condition (18).
We design a precompensator

pi=(I 0)u, pi(t) eR
u=Tipi+ (0 )y
where I'1 and I', are chosen such that ImI'y = ImT" and
(I TI3) (20)

is square and invertible.
The interconnection of (1) and (19) is of the form

%(t) = A%;(t) + Bui(v),
yi(t) = Cx(t),

(19)

N
Gi(t) = Zaij()’i(f) -yt —1;)),

j=1
where

s _ Xi i A Bl"l 5 0 BF2 A
x,_<pi>,A_<0 0),B_<1 o ) €=(c o).

We need to verify that the system remains stabilizable and de-

tectable if we use a precompensator. The stabilizability of this sys-

tem follows immediately from (20) and the stabilizability of (A, B).
To show the detectability of (21), we need to verify that

sI—A —Bl"l
rank 0 sl =n+v

C 0

with v such that I'y e R™ for all s in the closed right-half com-
plex plane. For s#0, this is achieved immediately from the de-
tectability of (C, A). For s = 0, we have

-A —BI';
rank | O 0 = rank —A Bl _ n+rankT;.
C 0 C 0

We obtain the required detectability when we note that rankI" =
rank 'y and rankI"y = v (since I'; is injective). The protocol for the
multi-agent system, obtained after applying the precompensators,
will be designed exactly as (10) and the remaining proof is sim-
ilar to the proof of Theorem 1 except for the choice of IT and X.
In this case, we choose X; = &; — [1z where z is such that y, = Rz.
Moreover, we set

= (VT,)

where W is such that ItW =T. It is then easily seen that ATT =0
and CIT=R. O

3.2. Directed graphs

In this section, we will study a variation of Problem 1 for a
multi-agent system with a directed graph G. The associated Lapla-
cian matrix L is then in general nonsymmetric, and the expanded
Laplacian matrix L, as defined in Section 2, will then be nonsym-
metric as well.

We note that if our directed graph is balanced then the results
of Theorem 1 still hold if we define 8 as the smallest eigenvalue
of L+ I'. However, if the graph is not balanced the derivation pre-
sented before might not be valid. In that case, we design a protocol
for one individual graph (instead of for a set), i.e. we assume that
the graph G is given.

We formulate the output synchronization problem for a given
directed graphs as follows.

Problem 2. Consider a multi-agent system described by (1) asso-
ciated with a given graph ¢ which has a directed spanning tree.
Given a constant trajectory yr € RP and let it be available to at least
one agent which is a root agent. The output synchronization prob-
lem for networks with unknown, nonuniform and arbitrarily large
communication delay is to find a distributed linear dynamic con-
troller of the form (3) for each agent such that, for the given di-
rected graph G and for any communication delay t;; € R*, the out-
put of each agent converges to the constant trajectory, i.e.,

lim ((®) - 1) =0, (22)
forallie{1,..., N}.

Similar to the case of undirected graphs, the main result in this
section is also presented in two theorems. The first theorem deals
with the case when the system is right-invertible and has no in-
variant zeros at the origin. The second theorem deals with the gen-
eral case.

Theorem 3. Consider a multi-agent system described by (1) associ-
ated with a given directed graph G which has a directed spanning
tree. Let Assumptions 1 and 2 hold. Given any constant trajectory
yr € RP and let the relative information regarding y, be available to
at least one agent which is a root agent. Then, Problem 2 is solv-
able if the system presented by (A, B, C) is right-invertible and has
no invariant zero at the origin. Specifically, given a directed graph g,
there exists a linear dynamic controller of the type (3) such that out-
put synchronization is achieved for any communication delay t;; € R*
and for any yr € RP.

In the general case (not right-invertible or with zeros in the ori-
gin) the choice of the constant trajectory y, needs to be restricted
to the set given by (5).

Theorem 4. Consider a multi-agent system described by (1) associ-
ated with a given directed graph G which has a directed spanning
tree. Let Assumptions 1 and 2 hold. Given any constant trajectory
yr € RP and let the relative information regarding y, be available to
at least one agent which is a root agent Then, Problem 2 is solvable if
and only if yr € 6. Specifically, given a directed graph G, there exists
a linear dynamic controller of the type (3) such that output synchro-
nization is achieved for any communication delay t;; € R*.

Remark 2. In the previous section for undirected graphs, we only
used limited information about the network to design our dis-
tributed protocol. For directed graphs, we will make explicit use of
our knowledge of the network to design our protocol (more specif-
ically, to find a lower bound for our design parameter «). If we
have a finite set of possible graphs, then we can still find a pro-
tocol that works for every graph in this finite set (use as a lower
bound for «, the maximum of the lower bounds for each individual
graph in the set).

Proof of Theorem 3. The proof follows the proof of Theorem 1,
except for the choice of the parameter « given in (13).

Here, the parameter o should be designed in such a way that
the eigenvalues of

al, (1) (23)

have a real part larger than 1 for any communication delay t;; €
R* and for all w € R.

Since k corresponds to a root of a spanning tree, we know the
expanded Laplacian matrix I is invertible and has its eigenvalues in
the open right-half complex plane. Given that L is an invertible M-
matrix, there exists a diagonal positive matrix D = diag{d;, ..., dy}
such that

DL+I'D>0 (24)
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(in the case of an undirected or balanced graph we can simply
choose D =1I). Since this matrix (24) is positive definite, we find
that

Re(v'DLv) = %1/ (DL + I'D)v

is larger or equal to some positive constant g for all v with |[v|| =
1. Following the same arguments as in the proof of Lemma 1 we
then obtain that

N N N
Re (U,Dij(‘L')V) > Z |Ui|2di(_ii + Z Z |1/,{Uj|d,‘€_,‘j
i=1 i=1 j j#i
[v1] ' [
- DLl : | =8

[un] [un|
which implies:
Re(v' DL, (T)v) = B. (25)

Let A be an eigenvalue of I:jw(r) with eigenvector v. In other
words, ij(t)u = Av. Combining with inequality (25), we get

Re(A(maxd;)v'v) > Re(Av'Dv) = Rev/' DL, (1)v = B =

B
Re(%) = maxd;’

Thus, when choosing

o max d;
> s
B
there exist an ¢* such that for any ¢ € (0, ¢*], condition (23) is sat-
isfied for any communication delay 7;; € R¥. O

Proof of Theorem 4. The proof follows the proof of Theorem 2,
but with the choice of parameter o given in Theorem 3. O

4. State synchronization for agents with full-state coupling

State synchronization for multi-agent systems is a special case
of the previous section when setting C=1. In this special case,
agents are not right-invertible and we can obtain results from
Theorems 2 and 4 for undirected and directed graphs, respectively.

We find in the state synchronization case that, when the agents
are allowed to be introspective, we can achieve several major im-
provements over the previous results:

» We can use a static protocol instead of a dynamic protocol
« We do not need the assumption that all eigenvalues of matrix
A are in the closed left-half complex plane.

These results will be derived in the subsections below.

4.1. Undirected graphs

The state synchronization problem for undirected graphs can be
formulated as follows.

Problem 3. Let 8 be a given positive real number. Consider a
multi-agent system described by

xi(t) = Ax;(t) + Bu;(t),
N
Gi(t) =) a;(xi(t) — x;(t — ),

j=1

E,’ . (26)

associated with an undirected graph G € Gg y and assume that (A,
B) is stabilizable. Let a constant trajectory x, € R" be given and let it
be available to at least one agent. The state synchronization problem

for networks with unknown, nonuniform, arbitrarily large commu-
nication delay is to find a distributed controller of the type

u; = Fx; + HG; (27)

for each agent such that, for any undirected graph G € Ggy and
for any communication delay 7;; € R*, the state of each agent con-
verges to the constant trajectory, i.e.,

tlim (x;(t) —x;) =0, (28)
forallie{1,...,N}.

Before giving our result, we need to define a set

‘@”:{xelR”H\ermB}

={xeR”|3ueRm such thatAx+Bu=O}, (29)

Note that ¢ = 4 for the case C =1.
The main result in this section is presented in the following
theorem.

Theorem 5. Let B be a given positive real number. Consider a multi-
agent system described by (26) with (A, B) stabilizable. Given a con-
stant trajectory xr € R" and let it be available to any agent, say agent
k. Assume that the above multi-agent system is associated with an
undirected graph G € Gg y. Then, Problem 3 is solvable if and only
if the constant trajectory x; € <. More specifically, there exists a dis-
tributed protocol of the type (27) for each agent such that state syn-
chronization is achieved for any undirected graph G € Ggy and for
any communication delay t;; € R*.

Proof. We first note that for an agent to be able to track a refer-
ence signal x;, we need the existence of a ug such that

0 = Ax; + Buy. (30)
This implies that x, must be in the set ¥.

For each agent i € {1,...,N}, a preliminary state feedback law
u; = Fx; +v;, (31)

is used such that
ker(A+ BF) = %. (32)

For the construction of such a matrix F, we note that there exists
a state transformation T such that

A A 0
TAT—] — 1 12 , TB = ,
(AZl Ap By

where B; has full column rank. Then, we can choose F =
—B{(Ay1  Ag)T where B! denotes a left-inverse of By. Note that
ug in (30) is then given by ug = Fx;.

Combining each agent dynamics (26) and the state feedback
law (31), the agent dynamics can be written as

Xi = /_\x,- + By, (33)

where A = A+ BF. For the resulting multi-agent system after ap-
plying these local state feedbacks, we develop a distributed local
controller

v = —aBPg;, (34)

where o is a design parameter that will be chosen later and P is
the positive definite solution of the algebraic Riccati equation,

A'P+PA-PBBP+1=0. (35)

It is worth noting that low gain is not needed here and hence no
assumption needs to be made on the location of the eigenvalues of
A.
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If x; is in the set ¥, we will prove that the state of each agent
converges to the constant trajectory x,. Define X; = x; — x, for every
ie{l,...,N}. Then we have

)éi = A)Zi + By;,

and

N
Git) = Zaij()zi(t) —X;(t — 7;j) + 4% (D),
j=1
where (; is defined as the above.
Let X = col{xq, ..., Xy}. Then, the interconnection of the agents
and their distributed protocols can be written in the frequency do-
main as

sx = (Ily® A)X — a(Ls(t) ® BB'P)X, (36)

where Ls(7) is the expanded Laplacian matrix in the frequency do-
main as defined in (12). To prove our result, we need to prove that
this system is asymptotically stable for any communication delay
7;j € R*. The remaining proof will be done in two steps.

Step 1: In this step, we will first prove that the system without any
communication delay is asymptotically stable. This is equivalent to
showing that the matrix

(In®A) — (L ® BB'P) (37)

is Hurwitz stable. As in Definition 3, 4; (i=1,...,N) denote the
eigenvalues of L. Then, from [22], the stability of (37) is equivalent
to the Hurwitz stability of

A —aABBP

for all i=1,...,N. From Lemma 2 in the appendix, we conclude
that these matrices are Hurwitz stable provided

o > 2)”
for all i. Since G e Ggy, it is sufficient to choose « such that
o> ﬁ
Step 2: In this step, we need to prove that the closed-loop system
is asymptotically stable in the presence of communication delays.
Since the system without delays is asymptotically stable, according
to Lemma 3 in the appendix, the closed-loop system is asymptoti-
cally stable for any communication delay 7;; € R*, if

det[jwl — (Iy® A) + aLj, (t) ® BBP] # 0 (38)

for all w € R and any communication delay T;; € R*.
For Condition (38), it is clearly sufficient to show that

(Iy ® A) — aLj, (t) ® BB'P (39)
does not have eigenvalues on the imaginary axis for all w € R and
for any communication delay t;; € R*.

From Lemma 1, we know that all eigenvalues of L, (t) have
real part larger than or equal to S. This implies that for o > ﬁ
we know that all eigenvalues of

al—‘ja}(f)

have a real part greater than % According to Lemma 2 in the ap-

pendix, this implies that (39) is Hurwitz stable for any communica-
tion delay 7;; € R*. As noted before, this implies that the condition
(38) is satisfied. Hence, the closed-loop system is asymptotically
stable for any communication delay 7;; € R, O

4.2. Directed graphs

Next, we will modify Problem 3 to allow for multi-agent sys-
tems with a given directed graph G which has a spanning tree.

We formulate the state synchronization problem for directed
graphs as follows.

Problem 4. Consider a multi-agent system described by (26) as-
sociated with a directed graph ¢ which has a directed spanning
tree. Given a constant trajectory x;€R" and let it be available to
at least one agent. Then the state synchronization problem for net-
works with unknown, nonuniform, and arbitrarily large communi-
cation delay is to find a distributed controller of the type (27) for
each agent such that, for the given directed graph ¢ and for any
communication delay 7;; € R*, the state of each agent converges
to the constant trajectory, i.e.,

lim (x;(t) —x) = 0. (40)
forallie{1,...,N}.
We present the result in the following theorem.

Theorem 6. Consider a multi-agent system described by (26) with (A,
B) stabilizable and associated with a given directed graph G which has
a directed spanning tree. Let a constant trajectory x, € R" be given
and let it be available to at least one agent which is a root agent.
Then, Problem 3 for a multi-agent system with a given directed graph
G is solvable if and only if the constant trajectory x; is in the set €.
More specifically, given a directed graph G, there exists a distributed
protocol of the type (27) for each agent such that state synchroniza-
tion is achieved for any communication delay t;; € R™.

Proof. For eachi=1,...,N, a distributed protocol will be designed
of the form

u; = Fx; — OlB/Pé:i, (41)

where F and P are chosen exactly as in Section 4.1, while « is a
design parameter which we will choose differently in this section.
Following the proof of Theorem 5, we need to design parameter «
such that the eigenvalues of

al, (1) (42)

have a real part larger than % for any communication delay t;; €
RY, (i,j=1,..., N).

Similar to the proof of Theorem 3, there exists a diagonal posi-
tive matrix D = diag{d;, ..., dy} such that

DL+1I'D > 0,

and

B
Re(A) = m,

where A is an eigenvalue of l:jw(r).
Thus, when choosing

o max d;
>

28
condition (42) is satisfied for any communication delay t;; € R*,
(i,j=1,..., N). Hence, our result is proved. O
5. Examples

In this section, we will give two examples to illustrate our re-
sults on output synchronization for a MAS with N = 10 agents with
partial-state coupling. One is for an undirected network; and the
other for a directed network, illustrated in Fig. 1a and b, respec-
tively. Agents are chosen to be right-invertible and have no invari-
ant zeros at the origin.
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(b) A directed graph

Fig. 1. Network topologies of N = 10 agents.

Undirected graph The Laplacian matrix corresponding to the
undirected graph shown in Fig. 1a is written as

1 -1 O 0 0 0 0 0 0 O

-1 6 0 0 0 0 0o -2 -1 -2

0 O 5 -4 0 0 o -1 0 O

o 0 -4 14 -2 -3 -5 0 0 O
L— 0 0 0o -2 2 0 0 0 0 O
“]10 0 0o -3 0 3 0 0 0 O
0 0 0 -5 0 0 7 -2 0 O

0o -2 -1 O 0 0 -2 5 0 O

0 -1 O 0 0 0 0 0 4 -3

0 -2 0 0 0 0 0 0 -3 5

We allow any nonuniform arbitrarily large communication delays
in the network communication. The linear agent model is de-

scribed by the matrices

0o 1 2 1 0
A=(-1 0 0], B=[(0 1), C=(1 0 1)
0 0 -1 11

Our target is to regulate all agents’ outputs to a constant trajec-
tory given by y, = 1 which is available to agent 2. Then, the lower-
bound on the real part of all eigenvalues of the expanded Laplacian
matrix L is 0.07. Select 8 = 0.06. Then, the undirected graph Fig. 1a
is included in a set of graphs Gg y.

According to Theorem 1, the precompensator for each agent is
designed as,

pi=1v;

U = (?) Di. (43)

Now choose « = 17, which satisfies o > l

B = 16.67. By selecting

K=(-20 -40 15 -15)

and the low-gain ¢ = 10~7, the protocol is designed as

20 1 -18 0 -20
. _ |- 0o -4 1) ~[-40];
i=l1s o 1 1)|0T| s[5
-15 0 -15 0 -15
vi=(0 -0.0067 —0.0067 —0.0192)x;.

Our simulation shows that the above protocol can tolerate any
nonuniform and asymmetric communication delay. When set-
ting 7p1 = T4 =2, T)g =Tp9 =T34 =T33 =3, Tp10 =D, Tg3 = g5 =
T46 = T47 = 3, Ts4 = 5 and other 7;; = 1 if it exists, we obtain Fig. 2,
which shows that the outputs of all agents converge to the con-
stant trajectory y, = 1 asymptotically.

10 agents

The outputs of N

2 I I I I

0 200 400 600 800

1 1
1000 1200 1400 1600 1800

Time (second)

Fig. 2. The output trajectories of N = 10 agents under an undirected graph.
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10 agents

|

L

il
AR
AL
i

The outputs of N
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Fig. 3. The output trajectories of N = 10 agents under a directed graph.

Directed graph The Laplacian matrix corresponding to the di-
rected graph shown in Fig. 1b is written as

1 -1 0 o 0 o0 o0 0 0 0

-1 1 0 0O 0 0 O 0 0 0

0 0 1 o 0 o o0 -1 O 0

0 o -2 5 0 0 -3 0 0 0
L= 0 0 0 -4 4 0 O 0 0 0
~ 10 0 0 -5 0 5 O 0 0 0
0 0 o -2 0 0 4 -2 0 0

o -2 -2 0 0 0 O 4 0 0

0o -1 0 0o 0 o0 O 0 2 -1

0o -2 0 0 0 0 O 0 -3 5

We use the same linear agent model and reference trajectory as
in the case of undirected graph. Hence we have the same precom-
pensator, that is given in (43).

In this case, we also make the constant trajectory y, = 1 avail-
able to root agent 2. Now we choose the diagonal matrix

D = diag{1.3781, 1.4997, 1.7023, 0.4046, 0.2745, 0.2208,
0.3915, 0.6259, 0.7497, 0.3230}

such that DL +L'D > 0. We find that the real part of all eigenval-
ues of DL is greater than 0.53. Therefore, setting = 0.55, we can
maxd; 1.7023

=055 = 3.09. By se-
lecting the same K and the low-gain ¢, the protocol is designed
as,

choose a = 10 which satisfies o >

-20 1 -18 0 -20
| -41 0o -4 1] [-40];:
Xi=l 15 0o 14 1% 15 |%
-15 0 -15 0 -15
v;=(-0.0000 —-00134 -0.0134 —0.0385)y;.

With the same communication delay, we obtain Fig. 3, which
shows that the output of all agents converge to the constant tra-
jectory yr = 1 asymptotically.

Appendix A. Useful lemmas

The problem of synchronization is connected to a robust stabi-
lization problem as presented in the following lemma which can
be found in [22].

Lemma 2. Consider a linear uncertain system
X = Ax + ABu,

where (A, B) is stabilizable with A € C unknown. Consider, the state
feedback u = aFx where F = —B'P, and P is the unique positive defi-
nite solution of the algebraic Riccati equation

A'P+PA—PB'BP+1=0.

Then, we have that A — aABB'P is Hurwitz stable for any
1
A seC|Re(s) > — .
€ { €ClRe(s) = 5 }

The following lemma is a useful tool to check the stability of a
delay system and can be found in [23].
Lemma 3. Consider a linear time-delay system

N
X=Ax+ ZAd,ix(t - T).

i=1

(44)

Assume that

N
Ad+ ) Adi
i=1
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is Hurwitz stable. In that case, the delay system (44) is globally
asymptotically stable for any ty,...,ty € [0, T] if

N
det [ jol —A =) e @TiA;; | #0,
i=1

forall we R and tq,..., 7y €0, T].

The following lemma can be found in [16, Lemma C.2].

Lemma 4. There exists an ¢* > 0 such that for all ¢ (0, £*], we have
that

A —\BBP

. (45)
—-KC  A+KC

is asymptotically stable for all ). with Re(A) > 1.
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