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Abstract Partial least squares (PLS) path modeling is a variance-based structural
equation modeling technique that is widely applied in business and social sciences.
It is the method of choice if a structural equation model contains both factors
and composites. This chapter aggregates new insights and offers a fresh look at
PLS path modeling. It presents the newest developments, such as consistent PLS,
confirmatory composite analysis, and the heterotrait-monotrait ratio of correlations
(HTMT). PLS path modeling can be regarded as an instantiation of generalized
canonical correlation analysis. It aims at modeling relationships between compos-
ites, i.e., linear combinations of observed variables. A recent extension, consistent
PLS, makes it possible to also include factors in a PLS path model. The chapter
illustrates how to specify a PLS path model consisting of construct measurement
and structural relationships. It also shows how to integrate categorical variables.
A particularly important consideration is model identification: Every construct
measured by multiple indicators must be embedded into a nomological net, which
means that there must be at least one other construct with which it is related. PLS
path modeling results are useful for exploratory and confirmatory research. The
chapter provides guidelines for assessing the fit of the overall model, the reliability
and validity of the measurement model, and the relationships between constructs.
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Moreover, it provides a glimpse on various extensions of PLS, many of which will
be described in more detail in later chapters of the book.

2.1 Introduction

Structural equation modeling (SEM) is a family of statistical techniques that have
become very popular in business and social sciences. Its ability to model latent
variables, to take into account various forms of measurement error, and to test entire
theories makes it useful for a plethora of research questions.

Two types of SEM can be distinguished: covariance- and variance-based SEM.
Covariance-based SEM estimates model parameters using the empirical variance-
covariance matrix, and it is the method of choice if the hypothesized model consists
of one or more common factors. In contrast, variance-based SEM first creates
proxies as linear combinations of observed variables and then estimates the model
parameters using these proxies. Variance-based SEM is the method of choice if the
hypothesized model contains composites.

Among variance-based SEM methods, partial least squares (PLS) path modeling
is regarded as the “most fully developed and general system” (McDonald 1996,
p. 240) and has been called a “silver bullet” (Hair et al. 2011). PLS is widely
used in information systems research (Marcoulides and Saunders 2006), strategic
management (Hair et al. 2012a), marketing (Hair et al. 2012b), and beyond. Its
ability to model both factors and composites is appreciated by researchers across
disciplines and makes it a promising method particularly for new technology
research and information systems research. Whereas factors can be used to model
latent variables of behavioral research such as attitudes or personality traits,
composites can be applied to model strong concepts (Höök and Löwgren 2012),
i.e., the abstraction of artifacts such as management instruments, innovations, or
information systems. A particularly interesting class of artifacts is success factors
for businesses. Consequently, PLS path modeling is a preferred statistical tool for
success factor studies (Albers 2010).

Not only has PLS and its use been subject of various reviews (c.f. Hair et al.
2012a, b), but just recently it has also undergone a series of serious examinations
and has been the target of heated scientific debates. Scholars have discussed
the conceptual underpinnings (Rigdon 2012, 2014; Sarstedt et al. 2014) and the
strengths and weaknesses (Henseler et al. 2014; Rigdon et al. 2014) of PLS. As a
fruitful outcome of these debates, substantial contributions to PLS emerged, such as
bootstrap-based tests of overall model fit (Dijkstra and Henseler 2015a), consistent
PLS to estimate factor models (PLSc, see Dijkstra and Henseler 2015b), and the
heterotrait-monotrait ratio of correlations as a new criterion for discriminant validity
(HTMT, see Henseler et al. 2015). All these changes render the extant guidelines
on PLS path modeling outdated, if not even invalid. Consequently, Rigdon (2014)
recommends breaking the chains and forging ahead, which implies an urgent need
for updated guidelines on why, when, and how to use PLS.
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The purpose of this chapter is manifold. First, it provides an updated view on
what PLS actually is and which algorithmic steps it includes since the invention
of consistent PLS. Second, it explains how to specify PLS path models, taking
into account the nature of the measurement models (composite vs. factor), model
identification, sign indeterminacy, special treatments for categorical variables, and
determination of sample size. Third, it explains how to assess and report PLS results,
including the novel bootstrap-based tests of model fit, the SRMR as a measure of
approximate model fit, the new reliability coefficient rhoA, and the HTMT. Fourth,
it sketches several ways of how to extend PLS analyses. Finally, it contrasts the
understanding of PLS as presented in this chapter with the traditional view and
discusses avenues for future developments.

2.2 The Nature of PLS Path Modeling

The core of PLS is a family of alternating least squares algorithms that emulate
and extend principal component analysis as well as canonical correlation analysis.
The method was invented by Herman Wold (c.f. 1974, 1982) for the analysis of
high-dimensional data in a low-structure environment and has undergone various
extensions and modifications. In its most modern appearance (c.f. Dijkstra and
Henseler 2015a, b), PLS path modeling can be understood as a full-fledged struc-
tural equation modeling method that can handle both factor models and composite
models for construct measurement, estimate recursive and non-recursive structural
models, and conduct tests of model fit.

PLS path models are formally defined by two sets of linear equations: the
measurement model (also called outer model) and the structural model (also called
inner model). The measurement model specifies the relations between a construct
and its observed indicators (also called manifest variables), whereas the structural
model specifies the relationships between the constructs. Figure 2.1 depicts an
example of a PLS path model.

PLS path models can contain two different forms of construct measurement:
factor models or composite models (see Rigdon 2012, for a nice comparison of both
types of measurement models). The factor model hypothesizes that the variance of
a set of indicators can be perfectly explained by the existence of one unobserved
variable (the common factor) and individual random error. It is the standard model
of behavioral research. In Fig. 2.1, the exogenous construct Ÿ and the endogenous
construct �2 are modeled as factors. In contrast, composites are formed as linear
combinations of their respective indicators. The composite model does not impose
any restrictions on the covariances between indicators of the same construct, i.e.,
it relaxes the assumption that all the covariation between a block of indicators is
explained by a common factor. The composites serve as proxies for the scientific
concept under investigation (Ketterlinus et al. 1989; Maraun and Halpin 2008;
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Fig. 2.1 PLS path model example

Rigdon 2012; M. Tenenhaus 2008).1 The fact that composite models are less
restrictive than factor models makes it likely that they have a higher overall model
fit (Landis et al. 2000).

The structural model consists of exogenous and endogenous constructs as well
as the relationships between them. The values of exogenous constructs are assumed
to be given from outside the model. Thus, exogenous variables are not explained
by other constructs in the model, and there must not be any arrows in the structural
model that point to exogenous constructs. In contrast, endogenous constructs are
at least partially explained by other constructs in the model. Each endogenous
construct must have at least one arrow of the structural model pointing to it. The
relationships between the constructs are usually assumed to be linear. The size and
significance of path relationships are typically the focus of the scientific endeavors
pursued in empirical research.

The estimation of PLS path model parameters happens in four steps: (1) an
iterative algorithm that determines composite scores for each construct, (2) a
correction for attenuation for those constructs that are modeled as factors (Dijkstra
and Henseler 2015b), (3) parameter estimation, and (4) bootstrapping for inference
testing.

1Note that also factors are nothing else than proxies (Rigdon 2012).
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Step 1 For each construct, the iterative PLS algorithm creates a proxy as a linear
combination of the observed indicators. The indicator weights are determined such
that each proxy shares as much variance as possible with the proxies of causally
related constructs. The PLS algorithm can be viewed at as an approach to extend
canonical correlation analysis to more than two sets of variables; it can emulate
several of Kettenring’s (1971) techniques for the canonical analysis of several sets
of variables (M. Tenenhaus et al. 2005). For a more detailed description of the
algorithm, see Henseler (2010). The major outputs of the first step are the proxies
(i.e., composite scores), the proxy correlation matrix, and the indicator weights.

Step 2 Correcting for attenuation is a necessary step if a model involves factors. As
long as the indicators contain random measurement error, so will the proxies. Con-
sequently, proxy correlations are typically underestimations of factor correlations.
Consistent PLS (PLSc) corrects for this tendency (Dijkstra and Henseler 2015a, b)
by dividing a proxy’s correlations by the square root of its reliability (the so-called
correction for attenuation). PLSc addresses the issue of what the correlation between
constructs would be if there were no random measurement error. The major output
of this second step is a consistent construct correlation matrix.

Step 3 Once a consistent construct correlation matrix is available, it is possible to
estimate the model parameters. If the structural model is recursive (i.e., there are
no feedback loops), ordinary least squares (OLS) regression can be used to obtain
consistent parameter estimates for the structural paths. In the case of non-recursive
models, instrumental variable techniques such as two-stage least squares (2SLS)
should be employed. In addition to the path coefficient estimates, this third step can
also provide estimates for loadings, indirect effects, total effects, and several model
assessment criteria.

Step 4 Finally, the bootstrap is applied in order to obtain inference statistics for
all model parameters. The bootstrap is a nonparametric inferential technique which
rests on the assumption that the sample distribution conveys information about the
population distribution. Bootstrapping is the process of drawing a large number of
resamples with replacement from the original sample and then estimating the model
parameters for each bootstrap resample. The standard error of an estimate is inferred
from the standard deviation of the bootstrap estimates.

The PLS path modeling algorithm has favorable convergence properties
(Henseler 2010). However, as soon as PLS path models involve common factors,
there is the possibility of so-called Heywood cases (Krijnen et al. 1998), meaning
that one or more variances implied by the model would be negative. The occurrence
of Heywood cases may be caused by an atypical or too-small sample, or the common
factor structure may not hold for a particular set of indicators.

PLS path modeling is not as efficient as maximum likelihood covariance-
based SEM. One possibility is to further minimize the discrepancy between the
empirical and the model-implied correlation matrix, an approach followed by
efficient PLS (PLSe, see Bentler and Huang 2014). Alternatively, one could embrace
the notion that PLS is a limited-information estimator and is less affected by model
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misspecification in some subparts of a model (Antonakis et al. 2010). Ultimately,
there is no clear-cut resolution of the issues on this trade-off between efficiency and
robustness with respect to model misspecification.

2.3 Model Specification

The analysts must take care that the specified statistical model complies with the
conceptual model to be tested and further that the model complies with technical
requirements such as identification and with the data conforming to the required
format and statistical power.

Typically, the structural model is theory-based and is the prime focus of the
research question and/or research hypotheses. The specification of the structural
model addresses two questions: Which constructs should be included in the model?
And how are they hypothesized to be interrelated? That is, what are the directions
and strengths of the causal influences between and among the latent constructs? In
general, analysts should keep in mind that the constructs specified in a model are
only proxies and that there will always be a validity gap between these proxies and
the theoretical concepts that are the intended modeling target (Rigdon 2012). The
paths, specified as arrows in a PLS model, represent directional linear relationships
between proxies. The structural model, and the indicated relationships among the
latent constructs, is regarded as separate from the measurement model.

The specification of the measurement model entails decisions for composite or
factor models and the assignment of indicators to constructs. Factor models are
the predominant measurement model for behavioral constructs such as attitudes or
personality traits. Factor models are strongly linked to true score theory (McDonald
1999), the most important measurement paradigm in behavioral sciences. If a
construct has this background and random measurement error is likely to be an
issue, analysts should choose the factor model. Composites help model emergent
constructs, for which elements are combined to form a new entity. Composites
can be applied to model strong concepts (Höök and Löwgren 2012), i.e., the
abstraction of artifacts (man-made objects). Typical artifacts in new technology
research would include innovations, technologies, systems, processes, strategies,
management instruments, or portfolios. Whenever a model contains this type of
construct, it is preferable to use a composite model.

Measurement models of PLS path models may appear less detailed than those
of covariance-based structural equation modeling, but in fact some specifications
are implicit and are not visualized. For instance, neither the unique indicator errors
(nor their correlations) of factor models nor the correlations between indicators
of composite models are drawn. Because PLS currently does not allow to either
constrain these parameters or to free the error correlations of factor models,
by convention these model elements are not drawn. No matter which type of
measurement is chosen to measure a construct, PLS requires that there is at least
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one indicator available. Constructs without indicators, so-called phantom variables
(Rindskopf 1984), cannot be included in PLS path models.

In some PLS path modeling software (e.g., SmartPLS and PLS-Graph), the
direction of arrows depicted in the measurement model does not indicate whether
a factor or composite model is estimated but whether correlation weights (Mode
A, represented by arrows pointing from a construct to its indicators) or regression
weights (Mode B, represented by arrows pointing from indicators to their construct)
shall be used to create the proxy. In both cases PLS will estimate a composite model.
Indicator weights estimated by Mode B are consistent (Dijkstra 2010), whereas
indicator weights estimated by Mode A are not, but the latter excel in out-of-sample
prediction (Rigdon 2012).

Some model specifications are made automatically and cannot be manually
changed: Measurement errors are assumed to be uncorrelated with all other variables
and errors in the model; structural disturbance terms are assumed to be orthogonal
to their predictor variables as well as to each other2; correlations between exogenous
variables are free. Because these specifications hold across models, it has become
customary not to draw them in PLS path models.

Identification has always been an important issue for SEM, although it has been
neglected in the realm of PLS path modeling in the past. It refers to the necessity to
specify a model such that only one set of estimates exists that yields the same model-
implied correlation matrix. It is possible that a complete model is unidentified, but
also only parts of a model can be unidentified. In general, it is not possible to
derive useful conclusions from unidentified (parts of) models. In order to achieve
identification, PLS fixes the variance of factors and composites to one. An important
requirement of composite models is a so-called nomological net. It means that
composites cannot be estimated in isolation but need at least one other variable
(either observed or latent) to have a relation with. Since PLS also estimates factor
models via composites, this requirement extends to all factor models estimated
using PLS. If a factor model has exactly two indicators, it does not matter which
form of SEM is used—a nomological net is then required to achieve identification.
If a construct is only measured by one indicator, one speaks of single-indicator
measurement (Diamantopoulos et al. 2012). The construct scores are then identical
to the standardized indicator values. In this case it is not possible to determine the
amount of random measurement error in this indicator. If an indicator is error-prone,
the only possibility to account for the error is to utilize external knowledge about
the reliability of this indicator to manually define the indicator’s reliability.

A typical characteristic of SEM and factor-analytical tools in general is sign
indeterminacy, in which the weight or loading estimates for a factor or a composite
can only be determined jointly for their value but not for their sign. For example,
if a factor is extracted from the strongly negatively correlated customer satisfaction
indicators “How satisfied are you with provider X?” and “How much does provider
X differ from an ideal provider?” the method cannot “know” whether the extracted

2This assumption should be relaxed in case of non-recursive models (Dijkstra and Henseler 2015a).
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factor should correlate positively with the first or with the second indicator.
Depending on the sign of the loadings, the meaning of the factor would either be
“customer satisfaction” or “customer non-satisfaction.” To avoid this ambiguity, it
has become practice in SEM to determine one particular indicator per construct with
which the construct scores are forced to correlate positively. Since this indicator
dictates the orientation of the construct, it is called the “dominant indicator.”
While in covariance-based structural equation modeling this dominant indicator also
dictates the construct’s variance, in PLS path modeling, the construct variance is
simply set to one.

Like multiple regression, PLS path modeling requires metric data for the
dependent variables. Dependent variables are the indicators of the factor model(s)
as well as the endogenous constructs. Quasi-metric data stemming from multipoint
scales such as Likert scales or semantic differential scales are also acceptable as long
as the scale points can be assumed to be equidistant and the number of scale points
is sufficiently high (Rhemtulla et al. 2012). If these assumptions are not fulfilled,
but the data are ordinal, researchers should rely on dedicated PLS-based approaches
such as OrdPLSc (Schuberth et al. 2016; see also Chap. 6 of this book). To some
extent it is also possible to include categorical variables in a model. Categorical
variables (which are not necessarily ordinal) are particularly relevant for analyzing
experiments (c.f. Streukens et al. 2010) or for control variables such as industry
(Braojos-Gomez et al. 2015) or ownership structure (Chen et al. 2015). Figure 2.2
illustrates how a categorical variable “marital status” would be included in a PLS
path model. If a categorical variable has only two levels (i.e., it is dichotomous), it
can serve immediately as a construct indicator. If a categorical variable has more
than two levels, it should be transformed into as many dummy variables as there
are levels. A composite model is formed out of all but one dummy variable. The
remaining dummy variable characterizes the reference level. Preferably, categorical
variables should only play the role of exogenous variables in a structural model.

Sample size plays a dual role, namely, technically and in terms of inference
statistics. Technically, the number of observations must be high enough that the
regressions that form part of the PLS algorithm do not evoke singularities. It can

Fig. 2.2 Including a
categorical control variable in
a PLS path model (here
marital status with the four
categories “unmarried,”
“married,” “divorcee,”
“widower”; the reference
category is “unmarried”)

… η
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http://dx.doi.org/10.1007/978-3-319-64069-3_6
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thus be that the number of parameters or the number of variables in a model
exceeds the number of observations. Inference statistics become relevant if an
analyst wants to generalize from a sample to a population. The larger the sample
size, the smaller the confidence intervals of the model’s parameter estimates, and
the smaller the chance that a parameter estimate’s deviation from zero are due to
sampling variation. Moreover, a larger sample size increases the likelihood to detect
model misspecification (see Sect. 2.4 for PLS’ tests of model fit). Hence, a larger
sample size increases the rigor to falsify the model in the Popperian sense, but at
the same time, the likelihood increases that a model gets rejected due to minor
and hardly relevant aspects. The statistical power of PLS should not be expected
to supersede that of covariance-based SEM.3 Consequently, there is no reason to
prefer PLS over other forms of SEM with regard to inference statistics. In research
practice, there are typically many issues that have an impact on the final sample
size. One important consideration should be the statistical power, i.e., the likelihood
to find an effect in the sample if it indeed exists in the population. Optimally,
researchers make use of Monte Carlo simulations to quantify the statistical power
achieved at a certain sample size (for a tutorial, see Aguirre-Urreta and Rönkkö
2015).

2.4 Assessing and Reporting PLS Analyses

PLS path modeling can be used both for explanatory and predictive research.
Depending on the analyst’s aim—either explanation or prediction—the model
assessment will be different. If the analyst’s aim is to predict, the assessment should
focus on blindfolding (M. Tenenhaus et al. 2005) and the model’s performance
with regard to holdout samples (Cepeda Carrión et al. 2016; Lancelot-Miltgen et
al. 2016). However, since prediction-orientation still tends to be scarce in business
research (Shmueli and Koppius 2011), in the remainder we will focus on model
assessment if the analyst’s aim is explanation.

PLS path modeling results can be assessed globally (i.e., for the overall model)
and locally (for the measurement models and the structural model). For a long time,
it was said that PLS path modeling did not optimize any global scalar and therefore
did not allow for global model assessment. However, because PLS in the form as
described above provides consistent estimates for factor and composite models, it
is possible to meaningfully compare the model-implied correlation matrix with the
empirical correlation matrix, which opens up the possibility for the assessment of
global model fit.

3An allegedly higher statistical power of PLS (Reinartz et al. 2009) can be traced back to model
misspecification, namely, making use of a composite model although the factor model would have
been true (Goodhue et al. 2011).
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The overall goodness of fit of the model should be the starting point of model
assessment. If the model does not fit the data, the data contains more information
than the model conveys. The obtained estimates may be meaningless, and the
conclusions drawn from them become questionable. The global model fit can be
assessed in two non-exclusive ways: by means of inference statistics, i.e., so-called
tests of model fit, or through the use of fit indices, i.e., an assessment of approximate
model fit. In order to have some frame of reference, it has become customary to
determine the model fit both for the estimated model and for the saturated model.
Saturation refers to the structural model, which means that in the saturated model
all constructs correlate freely.

PLS path modeling’s tests of model fit rely on the bootstrap to determine
the likelihood of obtaining a discrepancy between the empirical and the model-
implied correlation matrix that is as high as the one obtained for the sample at
hand if the hypothesized model was indeed correct (Dijkstra and Henseler 2015a).
Bootstrap samples are drawn from modified sample data. This modification entails
an orthogonalization of all variables and a subsequent imposition of the model-
implied correlation matrix. In covariance-based SEM, this approach is known as
Bollen-Stine bootstrap (Bollen and Stine 1992). If more than 5% (or a different
percentage if an alpha-level different from 0.05 is chosen) of the bootstrap samples
yield discrepancy values above the ones of the actual model, it is not that unlikely
that the sample data stems from a population that functions according to the
hypothesized model. The model thus cannot be rejected. There is more than one
way to quantify the discrepancy between two matrices, for instance, the maximum
likelihood discrepancy, the geodesic discrepancy dG, or the unweighted least squares
discrepancy dULS (Dijkstra and Henseler 2015a), and so there are several tests of
model fit. Monte Carlo simulations confirm that the tests of model fit can indeed
discriminate between well-fitting and ill-fitting models (Henseler et al. 2014).
More precisely, both measurement model misspecification and structural model
misspecification can be detected through the tests of model fit (Dijkstra and Henseler
2014). Because it is possible that different tests have different results, a transparent
reporting practice would always include several tests.

In addition to conducting the tests of model fit, it is also possible to determine the
approximate model fit. Approximate model fit criteria help answer the question how
substantial the discrepancy between the model-implied and the empirical correlation
matrix is. This question is particularly relevant if this discrepancy is significant.
Currently, the only approximate model fit criterion implemented for PLS path
modeling is the standardized root mean square residual (SRMR, Hu and Bentler
1998, 1999). As can be derived from its name, the SRMR is the square root of
the sum of the squared differences between the model-implied and the empirical
correlation matrix, i.e., the Euclidean distance between the two matrices. A value of
0 for SRMR would indicate a perfect fit, and generally, an SRMR value less than
0.05 indicates an acceptable fit (Byrne 2013). A recent simulation study shows that
even entirely correctly specified model can yield SRMR values of 0.06 and higher
(Henseler et al. 2014). Therefore, a cutoff value of 0.08 as proposed by Hu and
Bentler (1999) appears to be more adequate for PLS path models. Another useful
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approximate model fit criterion could be the Bentler-Bonett index or normed fit
index (NFI, Bentler and Bonett 1980). The suggestion to use the NFI in connection
with PLS path modeling can be attributed to Lohmöller (1989). For factor models,
NFI values above 0.90 are considered as acceptable (Byrne 2013). For composite
models, thresholds for the NFI are still to be determined. Because the NFI does
not penalize for adding parameters, it should be used with caution for model
comparisons. In general, the usage of the NFI is still rare.4 Another promising
approximate model fit criterion is the root mean square error correlation (RMStheta,
see Lohmöller 1989). A recent simulation study (Henseler et al. 2014) provides
evidence that the RMStheta can indeed distinguish well-specified from ill-specified
models. However, thresholds for the RMStheta are yet to be determined, and PLS
software still needs to implement this approximate model fit criterion. Note that
early suggestions for PLS-based goodness-of-fit measures such as the “goodness-
of-fit” (GoF, see M. Tenenhaus et al. 2004) or the “relative goodness-of-fit” [GoFrel,
proposed by Esposito Vinzi et al. (2010)] are—contrary to what their name might
suggest—not informative about the goodness of model fit (Henseler et al. 2014;
Henseler and Sarstedt 2013). Consequently, there is no reason to evaluate and report
them if the analyst’s aim is to test or to compare models.

If the specified measurement (or outer) model does not possess minimum
required properties of acceptable reliability and validity, then the structural (inner)
model estimates become meaningless. That is, a necessary condition to even proceed
to assess the “goodness” of the inner structural model is that the outer measurement
model has already demonstrated acceptable levels of reliability and validity. There
must be a sound measurement model before one can begin to assess the “goodness”
of the inner structural model or to rely on the magnitude, direction, and/or statistical
strength of the structural model’s estimated parameters. Factor and composite
models are assessed in a different way.

Factor models can be assessed in various ways. The bootstrap-based tests of
overall model fit can indicate whether the data is coherent with a factor model, i.e.,
it represents a confirmatory factor analysis. In essence, the test of model fit provides
an answer to the question “Does empirical evidence speak against the existence
of the factor?” This quest for truth illustrates that testing factor models is rooted
in the positivist research paradigm. If the test of overall model fit has not provided
evidence against the existence of a factor,5 several questions with regard to the factor
structure emerge: Does the data support a factor structure at all? Is it clear that a
factor can be extracted? How well has this factor been measured? Note that tests of
overall model fit cannot answer these questions; in particular, entirely uncorrelated
empirical variables do not necessarily lead to the rejection of the factor model. To

4For an application of the NFI, see Ziggers and Henseler (2016).
5Interestingly, the methodological literature on factor models is quite silent about what to do if
the test speaks against a factor model. Some researchers suggest considering the alternative of
a composite model, because it is less restrictive (Henseler et al. 2014) and not subject to factor
indeterminacy (Rigdon 2012).
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answer these questions, one should rather rely on several local assessment criteria
with regard to the reliability and validity of measurement.

The amount of random error in construct scores should be acceptable, or in other
words, the reliability of construct scores should be sufficiently high. Nunnally and
Bernstein (1994) recommend a minimum reliability of 0.7. The most important
reliability measure for PLS is rhoA (Dijkstra and Henseler 2015b); it currently is
the only consistent reliability measure for PLS construct scores. Most PLS software
also provides a measure of composite reliability (also called Dillon-Goldstein’s rho,
factor reliability, Jöreskog’s rho, omega, or rhoc) as well as Cronbach’s alpha. Both
refer to sum scores, not construct scores. In particular, Cronbach’s alpha typically
underestimates the true reliability and should therefore only be regarded as a lower
boundary to the reliability (Sijtsma 2009).

The measurement of factors should also be free from systematic measurement
error. This quest for validity can be fulfilled in several non-exclusive ways. First,
a factor should be unidimensional, a characteristic examined through convergent
validity. The dominant measure of convergent validity is the average variance
extracted (AVE, Fornell and Larcker 1981).6 If the first factor extracted from a set
of indicators explains more than one half of their variance, there cannot be any
second, equally important factor. An AVE of 0.5 or higher is therefore regarded
as acceptable. A somewhat more liberal criterion was proposed by Sahmer et al.
(2006): They find evidence for unidimensionality as long as a factor explains sig-
nificantly more variance than the second factor extracted from the same indicators.
Second, each pair of factors that stand in for theoretically different concepts should
also statistically be different, which raises the question of discriminant validity. Two
criteria have been shown to be informative about discriminant validity (Voorhees et
al. 2016): the Fornell-Larcker criterion (proposed by Fornell and Larcker 1981) and
the heterotrait-monotrait ratio of correlations (HTMT, developed by Henseler et al.
2015). The Fornell-Larcker criterion says that a factor’s AVE should be higher than
its squared correlations with all other factors in the model. The HTMT is an estimate
for the factor correlation (more precisely, an upper boundary). In order to clearly
discriminate between two factors, the HTMT should be significantly smaller than
one. Third, the cross-loadings should be assessed to make sure that no indicator is
incorrectly assigned to a wrong factor.

The assessment of composite models is somewhat less developed. Again, the
major point of departure should be the tests of model fit. The tests of model fit for
the saturated model provide evidence for the external validity of the composites.
Henseler et al. (2014) call this step a “confirmatory composite analysis.” For
composite models, the major research question is “Does it make sense to create
this composite?” This different question shows that testing composite models

6The AVE must be calculated based on consistent loadings; otherwise, the assessment of
convergent and discriminant validity based on the AVE is meaningless.
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follows a different research paradigm, namely, pragmatism (Henseler 2015). Once
confirmatory composite analysis has provided support for the composite, it can be
analyzed further. One follow-up suggests itself: How is the composite made? Do all
the ingredients contribute significantly and substantially? To answer these questions,
an analyst should assess the sign and the magnitude of the indicator weights as well
as their significance. Particularly if indicators weights have unexpected signs or are
insignificant, this can be due to multicollinearity. It is therefore recommendable to
assess the variance inflation factor (VIF) of the indicators. VIF values much higher
than one indicate that multicollinearity might play a role.

Once the measurement model is deemed to be of sufficient quality, the analyst can
proceed and assess the structural model. If OLS is used for the structural model, the
endogenous constructs’ R2 values would be the point of departure. They indicate the
% of variability accounted for by the precursor constructs in the model. The adjusted
R2 values take into account model complexity and sample size and are thus helpful
to compare different models or the explanatory power of a model across different
datasets.

If the analyst’s aim is to generalize from a sample to a population, the path
coefficients should be evaluated for significance. Inference statistics include the
empirical bootstrap confidence intervals as well as one-sided or two-sided p-values.
We recommend to use 4999 bootstrap samples. This number is sufficiently close to
infinity for usual situations, is tractable with regard to computation time, and allows
for an unambiguous determination of empirical bootstrap confidence intervals (for
instance, the 2.5% [97.5%] quantile would be the 125th [4875th] element of the
sorted list of bootstrap values). A path coefficient is regarded as significant (i.e.,
unlikely to purely result from sampling error) if its confidence interval does not
include the value of zero or if the p-value is below the predefined alpha-level.
Despite strong pleas for the use of confidence intervals (Cohen 1994), reporting
p-values still seems to be more common in business research.

For the significant effects, it makes sense to quantify how substantial they are,
which can be accomplished by assessing their effect size f2. Values for f2 above 0.35,
0.15, and 0.02 can be regarded as strong, moderate, and weak, respectively (Cohen
1988). The path coefficients are essentially standardized regression coefficients,
which can be assessed with regard to their sign and their absolute size. They should
be interpreted as the change in the dependent variable if the independent variable
is increased by one and all other independent variables remain constant. Indirect
effects and their inference statistics are important for mediation analysis (Zhao et
al. 2010), and total effects are useful for success factor analysis (Albers 2010).
Table 2.1 sums up the discussed criteria for model assessment.
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Table 2.1 Assessment of PLS path modeling results in explanatory research settings

Assessment Criterion

Overall model

Test of model fit (estimated model) SRMR < 95% bootstrap quantile (HI95 of SRMR)
dULS < 95% bootstrap quantile (HI95 of dULS)
dG < 95% bootstrap quantile (HI95 of dG)

Approximate model fit (estimated
model)

SRMR < 0.08

Measurement model

Confirmatory composite and/or
factor analysis (saturated model)

SRMR < 95% bootstrap quantile (HI95 of SRMR)
dULS < 95% bootstrap quantile (HI95 of dULS)
dG < 95% bootstrap quantile (HI95 of dG)

Approximate model fit (saturated
model)

SRMR < 0.08

Internal consistency reliability Dijkstra-Henseler’s �A > 0.7
Dillon-Goldstein’s �c > 0.7
Cronbach’s ˛ > 0.7

Convergent validity AVE > 0.5
Discriminant validity HTMT significantly smaller than 1

Fornell-Larcker criterion
Loadings exceed cross-loadings

Structural model

Endogenous variables R2, adjusted R2

Direct effects Path coefficient (absolute size, sign)
Significance (p-value, confidence interval)
Effect size

Indirect effects Coefficient (absolute size, sign)
Significance (p-value, confidence interval)

Total effects Coefficient (absolute size, sign)
Significance (p-value, confidence interval)

2.5 Extensions

PLS path modeling as described so far analyzes linear relationships between factors
or composites of observed indicator variables. There are many ways how this rather
basic model can be extended.

A first extension is to depart from the assumption of linearity. Researchers have
developed approaches to include nonlinear relationships into the structural model. In
particular, interaction effects and quadratic effects can be easily analyzed by means
of some rudimentary extensions to the standard PLS path modeling setup (Dijkstra
and Henseler 2011; Dijkstra and Schermelleh-Engel 2014; Henseler and Chin 2010;
Henseler and Fassott 2010; Henseler et al. 2012). Interaction effects pay tribute to
the fact that not all individuals function according to the same mechanism but that
the strength of relationships depends on contingencies.
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In addition to interaction effects, there are more comprehensive tools to take
into account the heterogeneity between individuals. Heterogeneity can be observed,
i.e., it can be traced back to an identified variable, or unobserved, i.e., there is no
a priori explanation for why an individual’s mechanism would differ from others.
Because incorrectly assuming that all individuals function according to the same
mechanism represents a validity thread (Becker et al. 2013b), several PLS-based
approaches to discover unobserved heterogeneity have been proposed. Prominent
examples include finite mixture PLS (Ringle et al. 2010a, c), PLS prediction-
oriented segmentation (PLS-POS, Becker et al. 2013b), and PLS genetic algorithm
segmentation (PLS-GAS, Ringle et al. 2010b, 2014). In order to assess observed
heterogeneity, analysts should make use of multigroup analysis (Sarstedt et al.
2011). No matter whether heterogeneity is observed or unobserved, another concern
for the analysts must be not to confound heterogeneity in the structural model with
variation in measurement. Particularly in cross-cultural research, it has therefore
become a common practice to assess the measurement model invariance before
drawing conclusions about structural model heterogeneity. There is a plethora of
papers discussing how to assess the measurement invariance of factor models
(see, e.g., French and Finch 2006); there is only one approach for assessing the
measurement invariance of composite models (Henseler et al. 2016).

2.6 Discussion

The plethora of discussions and developments around PLS path modeling called for
a fresh look at this technique as well as new guidelines. As important aspect of this
endeavor, we provide an answer to the question “What has changed?” This answer
is given in Table 2.2, which contrasts traditional and modern perspectives on PLS. It
is particularly helpful for researchers who have been educated in PLS path modeling
in the past and who would like to update their understanding of the method.

The fact that PLS today strongly differs from how it used to be has also
implications for the users of PLS software. They should verify that they use a
software that has implemented the newest developments in the PLS field. One
possibility would be ADANCO (Henseler and Dijkstra 2015), a new software for
variance-based SEM, which also includes PLS path modeling.

The modularity of PLS path modeling as introduced in the second section opens
up the possibility of replacing one or more steps by other approaches. For instance,
the least squares estimators of the third step could be replaced by neural networks
(Buckler and Hennig-Thurau 2008; Turkyilmaz et al. 2013). One could even replace
the PLS algorithm in Step 1 by alternative indicator weight generators, such as
principal component analysis (M. Tenenhaus 2008), generalized structured com-
ponent analysis (Henseler 2012; Hwang and Takane 2004), regularized generalized
canonical correlation analysis (A. Tenenhaus and Tenenhaus 2011), or even plain
sum scores. Because in these instances the iterative PLS algorithm would not serve
as eponym, one could not speak of PLS path modeling anymore. However, it still
would be variance-based structural equation modeling.
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Table 2.2 Contrasting traditional and modern perspectives on PLS

Traditional view on PLS Modern view on PLS

PLS has some but not all abilities of
structural equation modeling

PLS is a full-fledged structural equation modeling
approach

PLS can estimate formative (using
Mode B) and reflective measurement
models (using Mode A)

PLS can consistently estimate composite models
(using Mode B), formative models (MIMIC
specification), and factor models (using consistent
PLS for the latter)

Identification is not an issue for PLS To ensure identification, analysts must provide a
nomological net for each multi-item construct

PLS path models must be recursive PLS path models can contain feedback loops or take
into account endogeneity if an adequate estimator is
used for the structural model. A sufficient number of
exogenous variables must be available

PLS needs fewer observations than
other SEM techniques

PLS does not need fewer observations than other
techniques when it comes to inference statistics.
Analysts should ensure sufficient statistical power
and representativeness of data

In contrast to other SEM techniques,
PLS does not rely on the assumption of
normality

With regard to assumptions made for the estimation
of parameters, PLS does not differ from other SEM
techniques. For inference statistics, PLS applies a
nonparametric technique, namely, bootstrapping,
which can equally be applied by other SEM
techniques

PLS only permits local model
assessment by means of certain criteria

PLS path models can and should be assessed globally
by means of tests of model fit and approximate
measures of model fit. Models should be locally
assessed, too

The reliability of PLS construct scores
is indicated by Cronbach’s alpha
and/or composite reliability

The reliability coefficient rhoA is a consistent
estimate of the reliability of PLS construct scores;
composite reliability (based on consistent loadings) is
a consistent estimate of the reliability of sum scores

Discriminant validity should be
assessed by comparing each
construct’s average variance extracted
with its squared construct correlations

Discriminant validity should be assessed by means of
the heterotrait-monotrait ratio of correlations
(HTMT) and by comparing each construct’s average
variance extracted (based on consistent loadings)
with its squared consistent construct correlations

Bootstrapping should be conducted in
combination with sign change
correction in order to avoid inflated
standard errors

For each construct, a dominant indicator should be
defined in order to avoid sign indeterminacy

Finally, recent research confirms that PLS serves as a promising technique for
prediction purposes (Becker et al. 2013a). Both measurement models and structural
models can be assessed with regard to their predictive validity. Blindfolding is
the standard approach used to examine if the model or a single effect of it can
predict values of reflective indicators. It is already widely applied (Hair et al. 2012b;
Ringle et al. 2012). Criteria for the predictive capability of structural models have
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been proposed (c.f. Chin 2010) but still need to disseminate. We anticipate that
once business and social science researchers’ interest in prediction becomes more
pronounced, PLS will face an additional substantial increase in popularity.
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