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ABSTRACT
Bounding the latency of real-time multiprocessor applica-
tions is crucial for safety-critical systems. Several approxi-
mative analysis approaches exist that can efficiently analyze
the latency. However, these approaches produce pessimistic
latency results and do not exploit buffer sizing nor exploit
additional sequence constraints to reduce the latency. More
accurate latency analysis results can be obtained using model
checking of timed-automata, however, at the cost of a typi-
cally excessive run-time.

This paper presents a latency analysis approach for cyclic
task graphs using model checking of timed automata of
which the run-time is reduced. The approach is applicable
for systems in which tasks are executed on shared processors
using a Fixed Priority Pre-emptive (FPP) scheduling policy.
The reduction in run-time is achieved by pruning the search
space of options that need to be analyzed using the model
checker by making use of approximative dataflow analysis
techniques. The approach exploits dimensioning of buffers
to minimize interference and latency. Moreover, sequence
constraints are introduced and automatically adapted in
order to minimize the latency of the task graph.

A WLAN 802.11p transceiver application is used in the
case study to compare this hybrid analysis approach to a
state-of-the-art approximation based approach that uses iter-
ative buffer sizing. Using our approach, the analyzed latency
decreased from 17µs to 15µs at the cost of a run-time of 23
minutes instead of a fraction of a second.

CCS Concepts
•Software and its engineering→ Formal software ver-
ification;

1. INTRODUCTION
Safety-critical applications often impose a strict latency

requirement on their implementation. Automated braking
systems, for example, require their inputs to be processed
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within a certain latency to be able to avoid collisions. In
this paper we assume that these applications are executed
on a multiprocessor system. Each application is described
as a task graph, in which the tasks are executed on shared
processors. A FPP scheduling policy is often used to share
the processor between all tasks assigned to it. Formal analy-
sis techniques must be used to verify at design time whether
the latency requirements of safety critical applications are
met.

Cyclic dependencies in such an application complicate
analysis. However, these dependencies can also have bene-
ficial effects on latency. These cyclic dependencies can for
example be a result of: feedback loops, a static task execution
order, clustering of tasks [5] or bounded size First-In-First-
Out (FIFO) buffers [22]. As a result of these cyclic depen-
dencies, tasks on these cycles can only interfere a bounded
number of times with each other. The maximum number of
times tasks can interfere with each other can for example
be controlled by the size of the buffer between tasks [22].
Lower interference between tasks can have a positive effect
on the maximum latency. But, as we will show in Section 7,
minimal buffer sizes, given a throughput constraint imposed
by a periodic source, do not always result in the minimal
latency.

Buffer sizing cannot be used to control the interference
between tasks if these tasks do not communicate. More-
over, sizing of buffers cannot delay the start of a consuming
task. To provide more control over the schedule freedom we
introduce sequence constraints with initial tokens between
tasks. The interference between tasks, and as a result the
maximum latency of the task graph, can be reduced by care-
fully controlling the number of initial tokens. We will show
that in some cases a negative number of initial tokens is
required for achieving the minimum latency. The number
of initial tokens on sequence edges can be derived with a
similar algorithm as is used for buffer sizing.

Several approximative analysis approaches exist that can
calculate the latency for real-time multiprocessor applica-
tions, including the effects of FPP scheduling. However, well
known approaches like MAST [7] and SymTA/S [10] are not
able to analyze arbitrary cyclic dependencies. Therefore,
these approaches are not able to optimize the latency by ex-
ploiting cyclic dependencies. The iterative dataflow analysis
approach in [15] is able to handle arbitrary cyclic dependen-
cies and uses a buffer sizing technique, which can result in
a latency reduction. This approach does not consider all
possible buffer sizes otherwise monotonicity and convergence
of the used analysis flow cannot be guaranteed.
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Dataflow analysis techniques have shown to be suitable for
the analysis of cyclic applications. Processor sharing, how-
ever, cannot be modeled explicitly and can only be included
by deriving an over-approximation bound on the interfer-
ence of tasks. There are techniques to prevent interference
between tasks that produce more accurate analysis results
by making tasks mutually exclusive [14]. However, making
tasks mutually exclusive does not always result in the min-
imum latency. As shown in [13], exact latency analysis for
dataflow graphs without pre-emptive scheduling is possible
using timed automata if the execution times are natural
numbers.

Timed automata are a popular formalism for modeling
and analyzing real-time systems. Although latency analy-
sis is possible, there is no computationally efficient build-in
support for optimizing of costs like, buffer sizes, or the intro-
duction of additional sequence constraints, to reduce latency.
The problem of finding the minimum latency in case of cyclic
dependencies is non-monotone, therefore all configurations
of buffer sizes have to be analyzed. Moreover, without a com-
bination of timed automata and an approximate analysis
technique to upper bound and reduce the number of config-
urations, many of these configurations need to be analyzed
leading to a high run-time.

This paper presents a latency minimization approach with
a reduced run-time for cyclic task graphs executed on shared
multiprocessor systems using FPP task scheduling. The ap-
proach identifies the configuration of buffer capacities and
sequence constraints that result in the minimum latency.
The approach uses approximative, but computationally ef-
ficient, timed-dataflow analysis techniques for removing all
configurations from the search space that cannot result in
the lowest latency since these will deadlock, won’t reach the
throughput of the periodic source, or impose redundant con-
straints. To find the configuration with the lowest latency
the remaining options are evaluated using a model checking
approach.

This paper is structured as follows. In Section 2, we
discuss related latency analysis approaches for task graphs
using FPP scheduling. The basic idea behind our hybrid
analysis approach is presented in Section 3. In Section 4,
timed automata are introduced, which we use to create
a model of task graphs. Model checking is performed on
these models to analyze latency. The dataflow model is
introduced in Section 5, which is used in analysis techniques
that reduce the number of configurations that need to be
analyzed. Both these timed automata and dataflow-based
analysis techniques are combined in our analysis flow as
described in Section 6. In Section 7, we introduce sequence
constraints to reduce latency. The case study is presented
in Section 8. We state our conclusions in Section 9.

2. RELATED WORK
In this section we present work related to latency anal-

ysis of task graphs where tasks are scheduled using FPP
scheduling. We first discuss related approximative analy-
sis approaches, which do not perform buffer sizing to re-
duce latency. Then we discuss analysis approaches that use
timed automata and decidability of scheduling problems us-
ing timed automata. Finally, we discuss an approach that
does perform buffer sizing.

The SymTA/S approach [10], is one of the techniques

which overestimates interference between tasks in order to
analyze latency. The approach, however, is not able to
handle arbitrary cyclic dependencies. MAST [7] is another
approach that can derive a more accurate characterization
of the interference. It is limited to the analysis of acyclic
graphs. The MPA-RTC [20] analysis approach has been
extended to support either cyclic data dependencies [21], or
cyclic resource dependencies [11]. The combination of cyclic
resource and data dependencies is not supported. Neither
of these approaches use buffer sizing techniques to reduce
latency, nor introduce additional sequence constraints to
reduce latency.

Timed automata based analysis approaches can be used to
determine the latency of a task graph. A number of these ap-
proaches only considers a fixed (worst-case) execution time of
tasks [9,17,18]. This ignores additional interference between
tasks that can occur when tasks finish earlier. The TIMES-
tool [1,6] does consider Best-Case Execution Times (BCETs)
and Worst-Case Execution Times (WCETs). We use their
method of summing up the time needed to finish all released
tasks to determine when a task finishes its own execution,
which is described in more detail in Section 4. However,
TIMES only considers the single processor case. The multi-
processor case is considered in [2, 3], but these approaches
are limited to acyclic task graphs. Moreover, none of these
timed automata based approaches exploit buffer sizing of
blocking buffers to reduce latency.

Decidability of scheduling problems using timed automata
is discussed in [12]. This paper shows that the problem of
deciding whether the deadlines are met of tasks in a task
graph that is scheduled using fixed priority scheduling on a
single processor, is in general undecidable. Therefore also the
exact latency of an arbitrary task graph on shared resources
can not be computed. More precisely the problem to verify
whether the tasks meet their deadlines is undecidable if the
following three conditions hold: 1) the execution times of
the tasks are characterized by an upper and lower bound
on a continuous time interval, 2) task can announce there
completion time to other tasks at every point in continuous
time, and 3) each task can preempt another task at any
point in time, i.e. not only at clock cycle boundaries. The
problem is not a decision problem anymore if the result
of the analysis can be besides the yes/no answer also the
answer that may-be the tasks meet their deadlines. Over-
approximation during analysis introduces this third option
and this is what has been used in [1, 6] and is also used
in this paper. The approach in [3] makes use of stopwatch
automata which are in general undecidable. In Uppaal 4.1
techniques are introduced that apply over-approximation
during analysis in case stopwatches are applied in the timed-
automata model. This over-approximation has as a positive
side-effect that the run-time is reduced. We introduce in this
paper also a timed-automata model in which stopwatches
are used. This enables a comparison with the case that a
timed-automata model without stopwatches is used. In [16]
it is not assumed that tasks can finish at every point in
time. This makes the schedulability of the decision problem
decidable but results in an impractically large automata
model if it is considered that tasks can be preempted at
every clock cycle boundary.

The approach in [15] minimizes buffer sizes given a through-
put constraint. It, however, does not minimize the latency



at the same time. We do make use of this approach in our
hybrid analysis flow to find bounds on buffer capacities, by
analyzing the buffers as non-blocking buffers. This approach
over-approximates interference. Moreover, a small general-
ization had to be made to be able to compute the number
of initial tokens on sequence constraints.

3. BASIC IDEA
The idea behind our analysis approach is presented in this

section. We start by showing the relation between a task
graph containing a blocking buffer and a dataflow model of it,
where cyclic dependencies are present. Then, we show how
these cyclic dependencies can influence interference between
tasks. Finally, we indicate how we can minimize latency
using these cyclic dependencies.

τi τj
δji δij

vi vj

δij

δji

Figure 1: One-to-one relation between a task graph contain-
ing a blocking buffer and a dataflow graph.

The dependencies in a task graph have a one-to-one rela-
tion with the edges in a dataflow graph. This is illustrated
in Figure 1, where two tasks, τi and τj , communicate using
a blocking buffer. Initially this buffer contains one full con-
tainer δij and two empty containers δji. A task can only
execute and write to such a buffer after it first obtained
an empty container. After its execution, it produces a full
container, which can be read by the consuming task. In
the dataflow graph, the initially full containers of the buffer
are represented as tokens on the edge from actor vi to vj ,
which correspond to the tasks, whereas the tokens on the
edge from vj to vi represent empty containers.

Scheduling freedom is affected by these cyclic dependencies
that model blocking buffers. Based on these cyclic depen-
dencies we can derive an upper bound on the number of
times tasks can be pre-empted using the FPP scheduling
policy. The number of times τi can be pre-empted by τj is
therefore bound by δij + δji. Therefore we can conclude that
interference between tasks can be controlled by choosing the
number of containers in the buffer, e.g. by using buffer sizing
techniques.

The relation between buffer sizes and latency for a graph
is non-monotone [22]. Therefore, in order to obtain the min-
imum latency for a task graph, we have to verify latency
for all possible buffer sizes of all buffer, which we call con-
figurations in this paper. In order to obtain latency results
for this unstructured analysis problem, model checking is
performed. An upper bound on the size of each buffer can
be calculated using approximative analysis techniques. The
upper bound represents the situation where the schedule of
tasks is not influenced by the size of buffers because there
are always sufficient empty containers. As a result the write
of a buffer will never be blocked and thus delayed because
there is always space in the buffer. The lower bound on the
buffer size is determined by the number of full containers.

In case it is equal to one a fixed execution order of the tasks
is enforced. Such an order is called a static-order schedule.
Timed automata of the task graph are generated for all pos-
sible buffer sizes between these computed lower and upper
bounds. These timed automata are then analyzed using
Uppaal to find a configuration with the minimum latency.

4. TIMED AUTOMATA
A template-based timed automata model is constructed

in this section to allow different configurations of a task
graph to be verified automatically using Uppaal. We first
present the extended timed automata model which is used in
Uppaal. Using these extended timed automata, we define
parameterized templates for the different components in a
tasks graph1. The maximum latency of a task graph is then
verified using Uppaal for a network of timed automaton
instances.

An extended timed automaton, as used in Uppaal, is
a directed graph A = (L,Act, C,Ea, Inv, l

0) where L is
a set of locations, Act a finite set of actions, C a set of
clocks, Ea ⊆ L × Act × B(C) × 2C × L is a set of edges,
Inv : L→ B(C) assigns an invariant to each location and l0

is the initial location. The invariant of a location expresses
an upper bound ĉ ∈ N on a clock c ∈ C. A location l ∈ L
can be urgent, meaning that no time is allowed to pass when
an automaton is in l. A committed location defines that
an automaton must leave the location immediately. These
committed locations are used to create atomic sequences.

invariant: x ≤ 3

label: example select: t : type

guard: x ≥ 1

channel: start?

update: y = t
Figure 2: Extended timed automaton annotations.

An edge in the automaton can have the following annota-
tions as shown in Figure 2: selects, guards, synchronizations
and updates. A select non-deterministically chooses a value
in a bounded range after a transition, which can be used as
variable in the other annotations. A guard specifies when
a transition over the edge is allowed by means of a boolean
expression or integer bounds on clocks. The synchroniza-
tions annotation can be used to define synchronization of
transitions in different automata. Finally, an update states
integer expressions of which the outcomes are assigned to
variables after a transition on the edge is taken.

A network of timed automata can be defined as a compo-
sition of extended timed automata, which can synchronize
with each other. Synchronization between these automata
can be implemented with channels or global variables. A
channel c has an emitting edge labeled c! and potentially
has multiple receiving edges labeled c?. These receiving
edges block until an event is received. Only when a tran-
sition on both sides of the channel is enabled, a transition
will occur simultaneously across both edges. For an urgent
channel the transitions cannot be delayed and must occur
immediately once they are enabled. A broadcast channel can
have multiple receiving edges simultaneously synchronizing

1Available at https://github.com/gkuiper/UppaalWLAN
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Idle

x ≤Wid

!empty()
req[CPU][id]!
consume()

grant[id]?
x = 0

x ≥ Bid

rel[CPU][id]!
produce()

(a) Timed automaton
template for a task id.

r <= 1

Measuring

m == −1
source?
r = 0,m = n,n++

m==0
m=-1,
n−−, r = 0
rel[CPU][t]?

rel[CPU][t]?
n−−

source?
n++

r=0

m! = 0
source?

m = (m < 0?m : m−1),n−−

rel[CPU][t]?
n−−

(b) Timed automaton used to measure
latency between the source and sink t.

Idle

Executing

t:task t
req[CPU][t]?
enq(t), x=t

grant[CPU][x]!t:task t
req[CPU][t]?
enq(t), new=t

pr(new) ≤ pr(x)

pr(new) > pr(x)
x=new

rel[CPU][x]?
deq(x)

!empty
x=front()

empty()

(c) Timed automaton template for a processor CPU using FPP
scheduling.

Figure 3: Timed automata templates for different compo-
nents in a task graph.

to one emitting edge. However, a transition across the emit-
ting edge may occur without one of the receiving edges being
enabled. A transition over an edge can also update a global
variable. A transition over an edge in another automaton
can be triggered when it contains a guard function returning
a boolean which depends on the value of that global variable.

Based on these extended timed automata we will now
define a template for tasks, schedulers, and FIFO buffers.
Given these templates, a network of timed automata is cre-
ated for a specific configuration of a task graph where the
buffer sizes are configured and a number of tasks and pro-
cessors are instantiated. Each configuration will therefore
result in a unique network of timed automata.

4.1 FIFO buffer
A FIFO buffer is modeled in extended timed automata

using global variables and access functions to manipulate
and check these variables [14]. Each buffer is represented by
two edges, each containing the producer task, consumer task,
and a number of tokens on the edge. The number of tokens

is initialized with the number of full or empty containers in
a buffer. The function empty() is used to check if there are
insufficient tokens, e.g. tokens < 1. Tokens are produced
using produce(), which increments the number of tokens
by one. The number of tokens is decremented by one using
consume().

4.2 Task template
The timed automaton of a task consists of three locations

as shown in Figure 3a. The transition from the initial loca-
tion, Idle, is guarded by the expression which checks if there
are sufficient tokens on all its incoming edges. The urgent
broadcast channel req is used to signal the processor that
the task is ready to execute and tokens are consumed from
all incoming edges using consume(). In the second location,
time passes until execution on the processor is granted using
the urgent broadcast channel grant. During the transition to
the 3rd location, the clock x is reset. This clock represents
the execution time of the task. This location can be left
when the clock is between Bid and Wid which are equal to
the BCET and WCET. During the transition to location
Idle tokens are produced and the processor is signaled about
the completion of the task using the broadcast channel rel.

Two options are implemented to incorporate the infer-
ence caused by pre-emptions of tasks with a higher priority.
One option uses over-approximations of the finish times to
guarantee decidability of the scheduling problem, the other
option uses stopwatches.

4.2.1 Over-approximating pre-emptions
Pre-emptions can be over-approximated by deriving a

lower and upper bound on the completion time of higher
priority tasks. For each pre-emption the bounds of lower
priority tasks, Bid and Wid in Figure 3a, are incremented
respectively with the BCET and WCET of the task which
triggered the pre-emption. This is an over-approximation
because their are executions of the higher priority task that
are smaller than its WCET.

4.2.2 Stopwatches
Using stopwatches a more intuitive task template can be

constructed in which the clock tracking the execution time
is paused when a task is pre-empted. The processor must
set a global variable runs[CPU] to indicate which task is
currently executing on a processor. The invariant of the
3rd location in Figure 3a must be extended to also set the
derivative of clock x to either 0 or 1 depending on the tasks
that is executing, e.g. x’ == (runs[CPU]==id). The clock
is stopped if x’ == 0. The global variable runs[CPU] is set
to the id of the task that is granted access to the processor
and is reset when the task releases the processor.

4.3 Processor template
A processor template for the FPP scheduling policy is

constructed using a task queue. This queue contains all
tasks that have issued a request. For FPP scheduling, the
queue is sorted based on the priority of the tasks. The timed
automaton consists of two locations where time can pass,
Idle and Executing, and three committed locations used to
create atomic sequences where time cannot advance. This
timed automaton is shown in Figure 3c. From the Idle and
Executing location, a transition occurs when a task issues
a request via the req channel. In that case, the new task is



enqueued, enq(t). When the transition is taken from Idle
the queue was empty and the task is immediately granted
access to the processor using the channel grant. Otherwise,
the priority of the currently executing task and the new
task are compared. Based on the outcome, the current task
can resume execution or is pre-empted and the new task is
granted access to the processor. After a task finished its
execution, the processor receives a signal on the rel channel
and as a result, removes that task from the queue. The task
in the front of the queue with the highest priority is then
granted access, or the processor idles if the queue is empty.

4.4 Verification
The latency in a network of timed automata is measured

using a separate timed automaton. The automaton as shown
in Figure 3b measures the latency between an event produced
by the source from channel source and the release event of
the task producing the output for the sink, using the channel
rel. The source, which produces events, is characterized by
a period and jitter. Since multiple source events can be
produced before a release event is produced that is a result
of the first source event, a non-deterministic selection is
made of an event that is tracked. This non-deterministic
selection results in that Uppaal will check all source events.
Variable n tracks the number of outstanding events from the
source and is incremented for each event from the source.
This variable is copied to variable m when a source event
has occured and the transition to the location Measuring is
made. Variable m tracks the number of remaining release
events before the event corresponding to the source event is
found. Release events belonging to previous source events
are skipped and decrement m. Only when both m == 0 and
a release event occurs, the matching release event is found
such that the latency measurement is stopped by returning
to the initial location. In the initial location, the clock r is
reset every time unit since no measurement is taking place.
This is implemented using the invariant r <= 1 and the edge
with the update r = 0. The maximum latency can then be
obtained by querying the suprema of clock r in the location
Measuring: sup{Measuring}: r.

5. TIMED-DATAFLOW
Computationally efficient approximative analysis of task

graphs can be performed using timed-dataflow analysis tech-
niques. In this section we will first formally introduce the
Homogeneous Synchronous Dataflow (HSDF) model. Based
on this dataflow model we derive techniques to prune the
number of configurations that need to be analyzed in our ap-
proach using timed automata. Finally, we describe dataflow-
based approximative analysis method that we use to derive
upper bounds on buffer capacities.

An HSDF graph is a directed graph G = (V,E, δ, ρ) that
consists of a set of actors V connected by a set of directed
edges E. An actor vi ∈ V communicates with another
actor vj by producing tokens on an edge eij ∈ E. Initially
there are δij ∈ N0 tokens on an edge. An HSDF actor
vi is enabled to fire its i-th iteration if there is at least
one token on all its incoming edges. When an actor fires,
one token is consumed from each of its incoming edges and
one token is produced on each outgoing edge of the actor.
The tokens are produced exactly ρx(i) ∈ [ρ̌x, ρ̂x] after the
enabling of the actor. The firing duration ρx(i) in each

iteration i is chosen non-deterministically from the interval
that is bounded by the minimum firing duration ρ̌x and
maximum firing duration ρ̂x of vx.

The dependencies of a task graph can directly be trans-
lated into an HSDF graph as discussed in Section 3. However,
the effect of FPP scheduling cannot be modeled directly in
HSDF graphs because HSDF graphs do not allow modeling
of choice. Therefore, bounds on the response times of tasks
are used as firing durations of the corresponding actor. As
a consequence accurate analysis latency results cannot be
obtained directly but these approximations can be used to
prune the number of configurations that need to be analyzed
using Uppaal.

5.1 Deadlock
By definition, a HSDF graph deadlocks if it contains a sim-

ple cycle without initial tokens. We can therefore prune, i.e.
discard, all configurations with simple cycles without initial
tokens. This, is especially useful after introducing additional
constraints as presented in Section 7. Uppaal can also ver-
ify the absence of deadlock, however, less computationally
efficient.

5.2 Minimum guaranteed throughput
Another method to prune the number of configurations

is by considering the throughput constraint imposed by the
source. The guaranteed throughput of HSDF graph must
be greater than the throughput of the source to prevent the
source from blocking as a result of a full buffer. We cannot
determine the throughput of a dataflow graph accurately
when FPP scheduling is involved. However, a lower bound
on the guaranteed throughput can be determined by setting
the firing duration of all actors to the WCET of the corre-
sponding tasks, ignoring any interference. A computationally
efficient Maximum Cycle Ratio (MCR) algorithm [19] can
then be used to calculate the MCR, which corresponds to
the inverse of the minimum guaranteed throughput.

5.3 Approximative dataflow analysis
The approximative dataflow analysis method we use is

based on execution intervals of tasks [15]. The execution
interval Ii consists of the earliest possible start time and the
latest possible finish time of a task τi. These intervals are
determined from a best-case dataflow model using BCETs,
and a worst-case dataflow model using WCETs and upper
bounds on task interference.

The analysis flow is shown in Figure 4. Initially, the
execution intervals are determined without considering in-
terference as shown in step 1 of the flow. Initial buffer sizes
are chosen such that the graph is deadlock free. In step 2,
an upper bound on the possible interference between tasks
is calculated given the execution intervals. The precedence
constraints originating from the buffers in a task graph are
included in this interference calculation. The execution inter-
vals are extended in step 3 using the calculated interference.
Buffer sizes for iteration k ∈ N are calculated based on the
latest finish time of the consuming task τj , Îj , and earliest
start of the producing task τi, Ǐi:

δkji = max

(⌈
Îj − Ǐi
Pj

⌉
, δk−1

ji

)
(1)

where δkji is the number of initial tokens on eji in iteration



Compute initial execution interval1

Bound interference based on execu-
tion intervals & precedence constrains

2

Extend execution inter-
val considering interference

3

Determine estimates on buffer capacities4

5
Else

Constraints violation Convergence

Figure 4: Analysis flow of the approximative dataflow anal-
ysis approach.

Derive bounds on buffer capacities1

Generate configurations from the bounds2

Prune configurations using dataflow analysis3

Generate timed automata for each
configuration & verify latency

4

Figure 5: Hybrid analysis flow.

k and Pj is the period of the consuming task. The buffer
sizes are not allowed to decrease compared to the previous
iteration in order to guarantee termination of the analysis
flow. Step 2 to 4 form an iteration of the analysis flow,
which is repeated until a constraint violation occurs or the
execution intervals and buffer sizes have converged, i.e. stay
the same.

Since buffer capacities are determined in every iteration of
this analysis flow, we refer to this method as iterative buffer
sizing. Note that we cannot guarantee that the configuration
of buffer sizes leading to the minimal latency of a task graph
is considered using iterative buffer sizing.

The analysis flow can also analyze buffers without blocking
write, i.e. non-blocking buffers. In that case, the buffer sizes
are calculated such that there always is at least one empty
container available for a task that is enabled, to prevent
buffer overflows. Analyzing blocking buffers as non-blocking
buffers allows derivation of an upper bound on their capacity.

6. HYBRID ANALYSIS
Our hybrid analysis approach, which combines analysis

techniques from timed-dataflow and timed automata, will be
described in this section. The hybrid analysis flow is shown
in Figure 5, which will be described step-by-step. The flow
uses a task graph as an input containing buffers, tasks, and
a task to processor assignment.

In the first step, a lower and upper bound is derived on
the capacity of all buffers. The upper bound is calculated
using the approximative analysis technique as described in
Section 5. This upper bound is determined by making each

buffer non-blocking. The lower bound is set to the maximum
of 1, which prevents deadlock, and the number of initially
full containers in the buffer.

Once these bounds are determined, configurations of the
task graph are generated in step 2. Since the latency is
non-monotone in the buffer capacities, we have to consider
all possible sizes of each buffer within these bounds. The
set of configurations therefore consists of the product of all
sizes of all buffers.

Many configurations are generated for which we can guar-
antee, using dataflow analysis techniques, that these will not
result in the minimal latency. Step 3 performs pruning of the
configurations using the deadlock and minimum guaranteed
throughput techniques described in Section 5.

In the final step, a network of timed automata is created
for each remaining configuration. As described in Section 4,
a timed automaton template is initiated for all buffers, tasks
and processors. The sizes of the buffers are fixed as spec-
ified in the configuration. The model checker Uppaal is
used to verify the maximum latency of the network of timed
automata. Once all configurations are verified, the one re-
sulting in the minimum latency is selected to finish the
analysis.

In the next section we discuss the introduction of addi-
tional sequence constraints. The same hybrid analysis flow
can be used for these constraints, since these constraints can
be seen as a generalization of the constraints imposed by
buffers.

7. SEQUENCE CONSTRAINTS
In this section we present a method that potentially re-

duces latency by introducing additional sequence constraints.
We introduce pairs of these sequence constraints as cyclic
dependencies between two tasks to have direct control over
the maximum interference one of these tasks can cause on
the other. This construct of sequence constraints can be seen
as a generalization of a blocking buffer, with as important
difference that it does not store data.

In general, buffers only allow their capacity to be changed
in case it does not result in a change of the functional behav-
ior of an application. The number of initially full containers
in a buffer is fixed and therefore there is only control over the
number of initially empty containers. As a result, changing
the buffer capacity will only change the temporal behavior
of an application and not the functional behavior (unless
it deadlocks). The sequence constraints can be seen as a
generalized buffer, it not only allows control over the num-
ber of initially empty, but also over the number of initially
full containers. Adding these sequence constraints does not
influence the functional behavior of an application because
it only affects the schedule freedom and does not result in
transfer of data.

Formally, a sequence constraint between τA and τB con-
tains a number of containers δABfw on the forward edge
eAB, and a number of containers δABbw on the backward
edge eBA. Let sA(i) be start of the i’th (i ∈ N) execu-
tion of τA, fA(i) the finish of the i’th execution of τA and
logically fA(i) ≥ sA(i). The sequence constraints intro-
duce the following constraints: sB(i) >= fA(i− δABfw ) and
sA(i) >= fB(i− δABbw ). Notice that a deadlock will occur
when δABfw + δABbw ≤ 0. In case δABfw + δABbw = 1, only
one execution order is enforced between τA and τB , which
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(d) Schedule of Figure 6 for which δfw = 1, δbw = 1.

Figure 6: Example where a static execution order of vA and
vB increases the end-to-end latency.

therefore is a static execution order.
A one-to-one translation is possible from a sequence con-

straint to a corresponding dataflow model. The forward and
backward containers of a sequence constraint are equivalent
to initial tokens on the corresponding edge. An example of a
dataflow model containing sequence constraints is shown in
Figure 6. The example consists of four tasks; τA, τB , τX and
τY . τA and τB share a processor and sequence constraints
are therefore inserted between τA and τB . These tasks are
converted to actors in the dataflow model. The edges corre-
sponding to the sequence constraints are shown as dashed
lines in the graph.

Since the sequence constraints can directly be expressed
in a dataflow model, existing analysis techniques can be
applied to it that determine the required number of tokens

given a throughput constraint. The difference with buffer
sizing for the number of empty containers is that, for each
sequence constraint, the number of containers on two edges
can freely be chosen. The approximative timed-dataflow
approach in [15] is therefore extended to derive an upper
bound on the number of initial tokens on both the forward as
the backward edge using the existing buffer sizing algorithm.
The hybrid analysis, as presented in Section 6, is therefore
also applicable for graphs containing sequence constraints.

We will use the examples in Figure 6 to illustrate that
enforcing a static execution order between τA and τB by
using sequence constraints will lead to a higher latency than
when τA (with a high priority) can pre-empt τB (low priority).
A static order schedule between these tasks can be created
where τA must execute before τB by selecting δABfw =
0, δABbw = 1 as shown in the schedule in Figure 6b. The
other option is to execute τB first, δABfw = 1, δABbw = 0 as
shown in the schedule in Figure 6c. Both options result in
a latency from source to sink of 2.5T as computed by our
hybrid analysis approach. However, selection of δABfw =
1, δABbw = 1, as shown in the schedule in Figure 6d, results
in a latency of 2T. Therefore, we can conclude that enforcing
a static execution order between tasks mapped to the same
processor does not always result in the minimum latency.

7.1 Negative tokens
Recently the use of negative tokens has been introduced

in dataflow models [4, 8]. A negative number of tokens
delays the enabling of an actor since the number of tokens
on an edge must be positive before the consuming actor
is enabled. A negative number of tokens can be used in
sequence constraints to model that there are several initial
executions of a task before a static execution order between
two tasks starts.

Figure 7 shows an example of a dataflow graph, for which
enforcing a static execution order, without using negative
tokens, will result in a throughput violation. A static order
is enforced by setting δfw = 0, δbw = 1. In that case there
are insufficient tokens on cycle vA → vB → vC → vA to keep
up with the periodic source. When introducing a negative
token, δfw = −1, δbw = 2, the throughput of the source will
be achieved, while there is a static execution order after vA
is execute twice.

src vA vB vC snk

π1 π2
0.5T [0.9...1]·T 0.5TP=T

δ1 δ2 δ3

δfw

δbw

δ4

Figure 7: Dataflow graph where a negative number of tokens
on δfw between vA and vC can be useful.

For this example, creating a static order with negative
tokens results in a latency of 2T. Whereas, without nega-
tive tokens, the latency will be 3T. The range of the fir-
ing duration of vB can result in vC pre-empting vA, which
leads to this increased latency. The approximative analysis
method [15] is not able to compute a feasible result since its
analysis did not converge.



7.2 Redundant constraints
Sequence constraints introduce additional constraints in an

already connected dataflow graph of an application. There-
fore, adding sequence constraints can lead to redundant con-
straints, more configurations and an increased in run-time.
We now present two techniques to reduce this redundancy.

We will exploit that within one application graph, a path
is required from the source to all tasks without tokens. In
a dataflow model of that graph, there are tokens on the
edges in the opposite direction to represent buffers with a
minimum of one empty container. This connected graph
allows us to create a token distance matrix, containing the
minimum number of tokens on the path P(i, j) between
all actors i, j. For each configuration with buffer sizes and
specific number of tokens on the forward and backward edge
of the sequence constraints, this matrix can be constructed.

First of all, the sequence constraints are always redundant
when these sequence constraints are inserted between two
tasks, τA and τB , that are already connect by a buffer. Such
sequence constraints can safely be removed to reduce the
number of configurations. An example is shown in Figure 8,
where the sequence constraints between vA and vB can be
removed to reduce the number of configurations.
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Figure 8: Dataflow graph where the sequence constraints
between vA and vB is redundant to the constraints of the
buffer between the actors.

Secondly, sequence constraints impose redundant con-
straints if: δfwAB > P(from, to) or δbwAB > P(to, from).
Configurations where this equation holds can be skipped
without the possibly of missing a configuration, which leads
to the minimal latency. In the example shown in Figure 7,
configurations where δbw > δ2 + δ3 can be skipped.

8. CASE STUDY
In this section we will compare our timed automata-based

analysis approach to a state-of-the-art approximative anal-
ysis approach for a WLAN 802.11p transceiver application
which contains cyclic dependencies due to a feedback loop
in the algorithm.

The application consists of eight tasks that are each mapped
to one of four processors using a FPP scheduling policy. Fig-
ure 9a shows the task graph of this application, where the
colors of the nodes represent a mapping to a processor. The
priority of tasks is indicated next to them, as πi, where π1 is
the lowest possible priority. The figure also shows the WCET
of all tasks or the range [BCET..WCET] for tasks without
constant execution times. The color of the containers in the
buffers connecting the tasks indicates if they are initially
empty (red) or full (green). The number of containers in
each buffer in Figure 9a shows the size of the buffer, which
does not influence the schedule of the tasks as determined by
an approximate analysis approach. The sum of these buffer
capacities is 21. In this example, the source has a period of
10µs and a jitter of 5µs. For this application, we want to
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(a) Task graph of a WLAN 802.11p transceiver application.
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(b) Dataflow model of Figure 9a without including interference.

Figure 9: Task graph and equivalent dataflow model of a
WLAN 802.11p transceiver application.

minimize the maximum latency between the i’th start of the
source, vsrc, and the corresponding i’th production of the
Viterbi task, vit.

The approximate analysis approach makes use of the fact
that lower buffer capacities can result in a lower end-to-end
latency [15]. Buffer sizing is therefore performed iteratively
inside the analysis algorithm and sizing of buffers is not
deferred until the analysis of response times of all tasks
is computed. In order for the analysis flow to guarantee
convergence, the iterative buffer sizing step increases the
buffer sizes monotonically. Therefore, this buffer sizing tech-
nique does not guarantee that all possible buffer sizes are
considered.

Our timed automata-based approach can offer more accu-
rate latency analysis given buffer capacities. We analyze all
possible buffer sizes, thereby guaranteeing the buffer size con-
figuration that leads to the minimum latency to be present in
the analyzed set of configurations. However, many of these
configurations need to be considered and the evaluation of
each of these configurations takes a significant run-time.

We will now compare the computed buffer sizes, end-to-
end latency and run-time for the two approaches using the
WLAN 802.11p transceiver application. These numbers will
be used to draw conclusions about which analysis method
to use in which case. For each approach three different
settings will be used as shown in Table 1: buffer sizing,
introducing sequence constraints, and a combination of both.
We also included results of an analysis option (#7) where
no pruning was performed to identify the difference in run-
time. Moreover, stopwatches are used in option #8, which
can results in a speedup, but potentially also less accurate
analysis results.

For the timed automata-based analysis method we list the
number of configurations that need to be verified in the last
column of Table 1. In case buffer sizing and introducing



Table 1: Settings used for the two analysis approaches and
resulting configurations to consider.

# Analysis method Setting Configurations

or iterations

1 Approximative Iterative buffer sizing 2

2 Approximative Iter. sequence constr. 2

3 Approximative Iterative combined 2

4 Uppaal Buffer sizing 768

5 Uppaal Sequence constraints 128

6 Uppaal Combination 8168

7 Uppaal Comb. no pruning 98304

8 Uppaal Comb. stopwatches 8168

Table 2: Analysis results obtained using the configurations
in Table 1 for two minimization goals: minimizing buffer
sizes and latency.

Minimizing buffers Minimizing latency

#
∑

buffer Latency
∑

buffer Latency Total

(us) (us) run-time (s)

1 12 17 12 17 < 1

2 21 17 21 17 < 1

3 12 17 12 17 < 1

4 12 16 13 15 2.2 · 104

5 21 15 21 15 7.8 · 104

6 12 16 13 15 9.7 · 105

7 12 16 13 15 7.0 · 106

8 12 16 13 15 4.8 · 104

sequence constraints are combined (#6) the number of con-
figurations to consider is 12 times less than the product of
both individual cases (98304, option #7). Firstly, the con-
straints that can be imposed by three of the seven sequence
constraints becomes redundant when also performing buffer
sizing and these sequence constraints are therefore removed.
Secondly, after the task graph is translated into a dataflow
graph, the minimum throughput can be verified. In this
case, all configurations where the size of the buffer FFT to
CHEST is less than two are discarded since the throughput
is then limited by the sequentially executed tasks on the
cycle FFT-EQ-DEMAP-DEINT-VIT-REENC-CHEST-FFT
highlighted in red in Figure 9b, which cannot keep up with
the periodic source. All remaining configurations (8168)
could keep up with the source without the source blocking
on full buffers. The approximative analysis approach did, for
this example, always converge after two iterations as shown
in Table 1.

The results of the analysis of the WLAN 802.11p transceiver
are shown in Table 2. Two minimization goals: minimal
buffer sizes and minimal latency, are presented in separate
parts of the table. The approximative timed-dataflow ap-
proach, however, does not differentiate between these goals
since its goal is to minimize buffer sizes.

The first part of the table shows that when minimiz-
ing buffer sizes, both the approximative timed-dataflow ap-
proach as Uppaal-based approach are able to reach the
optimum of 12, even without making use of additional se-
quence constraints. Although both approaches result in the
same minimum total buffer size, the analysis using Uppaal
results in a lower latency.

The second part of the table shows that the minimum
latency is only reached using Uppaal, and is equal for all its

analysis options (#4 to #8). Direct control over the inter-
ference between tasks using sequence constraints is advanta-
geous in this case, since the least amount of configurations
are considered (128 for option #5) and it results in the lowest
run-time. The approximative timed-dataflow approach does
result in a higher latency than our timed automata-approach,
and interestingly reaches this latency of 17µs for a different
configuration where the buffer sized are smaller than the con-
figuration as determined by Uppaal with a corresponding
latency of 15µs. The difference between the best configu-
ration for both approaches regarding latency is only in the
buffer from FILTER to FFT, where the minimum latency
is obtained for a buffer size of 2, where the approximative
timed-dataflow approach used a buffer size of 1. We also
analyzed the configuration of buffer sizes as found by the
approximative timed-dataflow approach by using Uppaal
to compare the analysis results. This resulted in a latency
of 16, which shows that higher buffer capacities, as derived
by our approach, can lead to a lower latency. Also when
using sequence constraints to optimize the latency, there is
a difference between the two approaches. The approxima-
tive timed-dataflow approach sets the number of tokens on
all forward edges to 0 and 1 for all backward edges. The
minimum latency obtained by using Uppaal is for a config-
uration where the backward edge from DEMAP to CHEST
is different and contains 2 tokens instead of 1 for the ap-
proximative timed-dataflow approach. In case stopwatch
automata are used (#7), the same minimal latency is found.
However, latency analysis results are more pessimistic as a
result of over-approximations for configurations where FFT
can pre-empt EQ, i.e. the size of the buffer between FFT
and EQ is larger than one.

The improvement in analysis results of our approach com-
pared to the approximative timed-dataflow approach comes
at the cost of a significant increase in run-time. The ap-
proximative timed-dataflow approach is always finished well
within 1 second as shown in the last column in Table 2. On
the other hand, the verification time in Uppaal of each anal-
ysis option is between 2.2 ·104 and 9.7 ·105 seconds for option
#4-#6 as shown in Table 1. The run-time is increased by
one order of magnitude when the pruning step is not used
as is shown for option #7 in Table 2. Using stopwatches
(#8), a speedup of a factor 20 is achieved. When running 16
threads in parallel on a multicore server (2x Intel Xeon CPU
E5-2630 v3 @ 2.40GHz), the total run-time for the option
where sequence constraints are introduced (#4) is about 23
minutes.

9. CONCLUSION
In this paper we presented a hybrid analysis approach

that determines the minimum latency of a cyclic task graph
by adapting buffer sizes and sequence constraints using a
combination of model checking and approximative analysis
techniques. Each task is scheduled on one of the processors
using a FPP scheduling policy.

Computationally efficient dataflow analysis techniques are
used to derive lower and upper bounds on buffer sizes. In this
way, the number of buffer size configurations is reduced that
need to be considered by more accurate, but computationally
intensive, model checking using Uppaal. To be able to
perform model checking, a network of timed automata is
generated for each of the remaining configurations. The



latency of each configuration is determined using Uppaal
and the best configuration is selected.

Next to the cyclic dependencies resulting from blocking
buffers, additional sequence constraints are inserted. Bounds
on the number of initial tokens on these sequence constraints
is determined by a slightly modified version of an approxi-
mative buffer sizing algorithm. These sequence constraints
can potentially reduce the latency of a task graph.

We compared the results of our hybrid analysis approach
with a state-of-the-art approximative dataflow analysis ap-
proach, which uses an iterative buffer sizing technique. Using
our approach, the analyzed latency decreased from 17µs to
15µs. The decrease in latency is obtained at the cost of a
run-time of 23 minutes instead of a fraction of a second.
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