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Component-based and model-based reasonings are key concepts to address the increasing complexity of

real-time systems. Bounding abstraction theories allow to create efficiently analyzable models that can be

used to give temporal or functional guarantees on non-deterministic and non-monotone implementations.

Likewise, bounding refinement theories allow to create implementations that adhere to temporal or functional

properties of specification models. For systems in which jitter plays a major role, both best-case and worst-case

bounding models are needed.

In this paper we present a bounding abstraction-refinement theory for real-time systems. Compared to the

state-of-the-art TETB refinement theory, our theory is less restrictive with respect to the automatic lifting of

properties from component to graph level and does not only support temporal worst-case refinement, but

evenhandedly temporal and functional, best-case and worst-case abstraction and refinement.
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1 INTRODUCTION
To copewith the ever-increasing complexity of computer systems in general and real-time systems in

particular, two concepts gained major significance: A component-based reasoning allows to reduce

complexity by breaking down complex systems into subproblems, which can be ideally treated in

separation. And a model-based reasoning enables to give temporal or functional guarantees on

implementations without being exposed to their entire complexity. The process of creating models

from given implementations is called abstraction, whereas the process of creating implementations

from given specification models is called refinement, with the former being mainly used for system

analysis and the latter mainly for system design. Abstraction and refinement theories can be

classified as follows: First, we differ between theories that make use of purely temporal, purely

functional or both temporal and functional models. Second, we differ between theories whose
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models either include all behaviors of an implementation (e.g. use intervals of task execution

times instead of the actual execution times) or that bound all behaviors of an implementation

(e.g. use worst-case task execution times instead of actual execution times). While both inclusion

and bounding can reduce implementation complexity by e.g. creating monotone models for non-

monotone implementations, only bounding supports the creation of deterministic models for

non-deterministic implementations, which is a prerequisite for the application of many efficient

analysis techniques. Lastly, we differ between best-case and worst-case bounding, with the former

bounding implementation behaviors from below and the latter from above.

In this paper we present a denotational timed component model whose components relate

discrete-event streams between input and output interfaces using mathematical relations. Require-

ments on components are thereby intentionally chosen as low as possible, in order to allow the

expression of most discrete-event systems and models, as well as their combinations. For the timed

component model we further provide an abstraction-refinement theory that evenhandedly allows

temporal and functional, worst-case and best-case abstraction and refinement. The theory enables

to abstract complex, non-deterministic implementations to efficiently analyzable, deterministic

models, such that model analysis results are guaranteed to hold for the respective implementa-

tions. Likewise, it enables to refine models to implementations, such that implementations are

guaranteed to adhere to model specifications. Lastly, we provide proofs that certain properties like

temporal and functional bounding are preserved on parallel, serial and feedback compositions. This

implies that these properties are automatically lifted from component to graph level, enabling a

component-based reasoning without the need for holistic analysis.

To give an example of the application of our theory, consider a non-deterministic, non-monotone

implementation consisting of software and hardware components with complex dependencies and

scheduling anomalies. To determine the end-to-end latency of such an implementation, we can

bound each of the components from above using deterministic timed dataflow components [11, 14].

The dependencies between components can be thereby ignored as bounding is automatically lifted

from component to graph level. The resulting abstract timed dataflow model can then be analyzed

efficiently [2] and the determined end-to-end latency does not only hold for the model, but is

guaranteed to be an upper bound on the end-to-end latency of the implementation as well.

Our theory is mainly inspired by the The-Earlier-the-Better (TETB) theory [7], but generalizes

it in multiple ways. While in TETB streams are only temporal, our notion of streams is based on

indices, timestamps and values. This enables a consideration of components that produce values

out of timestamp order like in [9], as well as both temporal and functional bounding. But the key

difference compared to [7, 9] lies in the combination of bounding and input acceptance preservation.

In TETB, bounding and input acceptance preservation are inseparably linked via the component

refinement relation ⊑: The relation implies that a component Aimpl
only refines a component

Awc
if it is worst-case temporally bounded by Awc

, i.e. if component Aimpl
is never slower than

the worst-case of Awc
, and if Aimpl

preserves input acceptance of Awc
, i.e. Aimpl

accepts at least

all inputs that Awc
also does. In contrast, our theory separates bounding and input acceptance

preservation, which resolves several shortcomings:

First, in system design it is desirable that a refined implementation accepts at least all inputs of a

design model, whereas in system analysis it is desirable that an analysis model accepts at least all

inputs of an implementation. As depicted on the left side of Figure 1, abstraction and refinement

are symmetric in TETB, which implies that an abstraction cannot accept more, but only less inputs

than an implementation. This means that in TETB the only way to realize analysis models which

hold for all cases of an implementation is to construct them such that they accept exactly the same

inputs as the respective implementation. However, if one considers that many implementations
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Fig. 1. Input acceptance preservation and bounding.

are input-restricted (such as components that are only laid out for inputs with a certain period

and jitter), while many analysis models are by definition input-complete (i.e. accept any inputs,

such as dataflow models), it appears that equal input acceptance is an unrealistic assumption in

many cases. As depicted on the right side of Figure 1, in our theory we consider input acceptance

preservation and bounding separately. This allows for a combination of the two as needed, i.e.

refinement for system design with input acceptance preservation from model to implementation,

as well as abstraction for system analysis with input acceptance preservation from implementation

to model. Effectively, this means that TETB is mainly a refinement theory, while our theory is an

abstraction-refinement theory.

Second, if for instance interference effects due to resource sharing or buffer allocation are in the

scope of analysis, determining worst-case upper bounds on the temporal behavior of components is

not sufficient. Instead, upper bounds on their jitters are needed [17, 18], which additionally requires

to construct models that are best-case lower-bounding the temporal behavior of implementations,

i.e. no behaviors of an implementation are allowed to be earlier than the earliest behavior of the

model. As depicted in Figure 1, TETB with its refinement relation ⊑ only supports worst-case

models. We introduce two bounding relations,

P
for worst-case bounding and P for best-case

bounding, such that our theory supports both worst-case and best-case models.

And third, in TETB automatic lifting from component to graph level is only discussed with respect

to refinement, which implies that input acceptance preservation must already hold on component

level. To understand the impact of this requirement, consider two serially connected components, of

which the latter is input-complete, but only receives strictly periodic inputs of the former. In TETB,

it would be required that any refinement of the latter component were also input-complete, although

it would actually suffice if the refinement of the latter accepted the strictly periodic inputs of the

former. On top of that, in most cases it does not even suffice that input acceptance preservation holds

on component level, but both abstract and refined components must be additionally input-complete.

This requires complex workarounds for cases in which e.g. data streams do not arrive in order [9],

while for other cases even no such workarounds exist (an example of this can be found in our

case study). These implications show that input acceptance preservation on component level is

a both severe and unnecessary restriction. Our theory circumvents this restriction by separately

discussing lifting of bounding and input acceptance. Consequently, bounding is automatically lifted

from component to graph level without any restrictions on component input acceptance.

The remainder of this paper is structured as follows. Section 2 gives an informal description of

our timed component model and abstraction-refinement theory and Section 3 presents related work.

Section 4 formalizes the denotational timed component model and Section 5 the corresponding

abstraction-refinement theory. Section 6 discusses the extended applicability of our theory compared

to the TETB refinement theory in a case study and Section 7 finally draws the conclusions.
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2 INFORMAL DESCRIPTION
In this section we give an informal description of our theory, which serves the purpose of a basic

idea and defines the terminology used in the remainder of this paper.

2.1 Timed Component Model
In our theory we reason in streams that map indices to tuples of timestamps and values.
Technically, every stream has an infinite amount of events, but the smallest index from which

onwards all timestamps and values are equal to infinity is used to mark the length of a stream.

Streams are transfered over ports, with each port being characterized by a value domain that

specifies which values the indices of a transfered stream can take, as well as an ordering relation
that specifies an order on the value domain. Multiple ports form an interface and streams being

transfered over the ports of an interface form a trace.
A component consists of an input interface, an output interface and a relation that trans-

lates traces on the input interface to traces on the output interface. As the relation of a component

does not necessarily have to be a function, a component can also be non-deterministic, i.e. it can
produce different output traces for the same input trace. We require that all components accept

the empty trace, a trace consisting of zero length streams (all timestamps and values are infinite),

and that the empty trace on the input interface always results in the empty trace on the output

interface.

The input set of a component is defined by its relation and contains all traces that are accepted

by the component. Likewise, the output set of a component is also defined by its relation and

contains all traces that can be produced.

Components can be composed to form new components. Thereby we differ between parallel
compositions in which the input and output interfaces of the original components are united,

serial compositions in which (a part of) the output interface of one component is connected to

(a part of) the input interface of another, and feedback compositions in which (a part of) the

output interface is connected to (a part of) the input interface of the same component. Interface

connections on serial and feedback compositions thereby adhere to one-to-one port mappings.
Composed components have input and output interfaces containing all ports not connected in the

respective compositions. Thus we differ between internal interfaces whose ports are connected
and external interfaces that remain unconnected. Consequently, a parallel composition does

not have internal interfaces, whereas the external interfaces of serial and feedback compositions

contain less ports than the individual components.

While the relations of parallelly composed components remain unchanged (as consequently

also the input and output sets), the relations of serially composed components are reduced to the

combinations of output traces that can be produced by the first and the input traces that can be

accepted by the second component. This implies that any serial composition of two components is

valid, however, both the input set and output set of the composition can contain less traces that

can be accepted or produced, respectively. For feedback composition, any external input trace

is valid if for this input a fixed-point is always reachable, starting from the empty trace on the

internal interface. Finally, we call a component that consists of multiple composed components a

component graph.

2.2 Bounding Abstraction & Refinement
Our abstraction-refinement theory is based on two key concepts:Bounding and input acceptance
preservation, which we consider separately in our theory. In this section we focus on the bounding
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part. We begin with the bounding of streams, then traces, components and lastly component graphs.

Finally, we discuss the relation of bounding to abstraction and refinement.

We say that a stream upper-bounds another stream if for all indices the timestamps are equal or

larger and if for all indices the values are equal or larger according to the port-specific ordering

relation. Likewise, a trace upper-bounds another trace if all the streams of the former upper-bound

all streams of the latter. A lower bound is the reverse of an upper bound.

Based on trace bounding we define two different variants of component bounding. Let it hold

for two input traces of two components that the input trace of the first is an upper bound on the

second. And let it further hold that there exists a corresponding output trace of the first that is an

upper bound on all corresponding output traces of the second. If this holds for any input traces

of the two components that are upper-bounding each other we say that the first component is a

worst-case upper bound on the second (and the second a worst-case lower bound on the first).

Analogously, let it hold for an input trace of one component that is a lower bound on an input

trace of another that for these input traces there exists an output trace of the first component that

is a lower bound on all output traces of the second. If this holds for any input traces of the two

components that are lower-bounding each other we say that the first component is a best-case
lower bound on the second (and the second a best-case upper bound on the first).

We prove that both worst-case and best-case bounding are preserved on component composition,

without any further requirements. This allows us to conclude that two graphs bound each other if

all their components bound each other, i.e. bounding is automatically lifted from component to

graph level.

Finally we define that a component graph is a worst-case (best-case) abstraction of another

graph if the first accepts at least all inputs of the second and if for the same inputs the first has at

least one output that upper-bounds (lower-bounds) all outputs of the second. Likewise, a graph

is a worst-case (best-case) refinement of another graph if the first accepts at least all inputs

of the second and if for the same inputs the second has at least one output that upper-bounds

(lower-bounds) all outputs of the first. We show that bounding abstraction and refinement can be

concluded from component level bounding and graph level input acceptance preservation. Lastly,

we discuss that bounding abstraction and refinement are transitive.

2.3 Input Acceptance Lifting & Replaceability
Unlike the TETB refinement relation, our bounding relations do not imply input acceptance preser-

vation. This generalization comes at the cost that graph level input acceptance preservation, which

is needed for abstraction and refinement, cannot be concluded from component level bounding.

To address this, we derive properties which imply automatic lifting of input acceptance from

component to graph level. If such an automatic lifting is given, one can conclude input acceptance

preservation between graphs from input acceptance preservation between individual components.

We say that a component is input-independent if it holds for the streams accepted according

to the component relation that all combinations of streams are accepted, i.e. if two streams are

accepted on one port and two other on another, then all four combinations must be accepted.

Moreover, a component is empty-continuous if it holds that the relation between input and

output traces is continuous with respect to a certain trace ordering relation for which the empty

trace is the infimum of all traces.

It can be seen that a graph consisting of components that are both input-independent and empty-

continuous is also input-independent and empty-continuous, if the input sets of all connected

components are supersets of the respective connected output sets. Based on these properties it can
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be further seen that input acceptance is also automatically lifted from component to graph level, i.e.

that a graph accepts all inputs that are accepted by its respective components before composition.

Furthermore we discuss that all input-complete components (components that accept any

inputs) are input-independent, as well as that all operational components (components that

produce extended outputs for extended inputs) are empty-continuous. This lets us conclude that a

graph of input-complete, operational components is also input-complete and operational, which is

for instance the case for the important subclass of timed dataflow models.
Based on the same properties, conditions can be derived for which components in a graph can

be replaced without reducing the input acceptance of the graph. Note that due to space limitations,

both input acceptance and replaceability are only discussed informally in this paper. For a formal

derivation please refer to [10].

3 RELATEDWORK
In this section we give an overview of related work, the so-called interface refinement theories.

The main scope of interface refinement is the replacement of components with refined components

without violating certain graph level properties. In this context, component interfaces are abstrac-

tions of the components themselves, containing sufficient information to be representative for the

underlying components, but not more information than needed to assert the adherence or violation

of graph level properties. With respect to the graph level properties that are to be preserved we

divide existing interface refinement theories into three classes.

With type refinement [12] it is merely ensured that refined components accept at least the

same data types and produce no other data types than abstract components. Inclusion refine-
ment subsumes all theories that involve inclusion of behaviors, meaning that abstract components

can match at least all behaviors of refined components. Examples of such theories are language
refinement [12], that is also called trace containment [13], and the stronger simulation refine-
ment [12]. Lastly, bounding refinement differs from inclusion refinement in that it is not required

for abstract components to match the exact behaviors of refined components, but it is sufficient that

abstract components upper- or lower-bound behaviors of refinements. This is of special importance

for analysis as, unlike inclusion refinement, bounding refinement allows to create deterministic and

monotone abstractions of non-deterministic, non-monotone implementations, simplifying analysis

drastically as only one behavior remains to be analyzed.

Besides this classification we further differ between theories considering the temporal and
functional behavior of components and between theories for synchronous and asynchronous
components. Synchronous components allow for an implicit notion of time by assuming a certain

duration of synchronous rounds, while asynchronous components are more general, but require an

explicit notion of time to consider temporal behavior.

In [4] a functional language refinement relation is introduced for synchronous components. In-

terfaces of components are defined in a relational manner using state machines, allowing to capture

input-output dependencies of components. The theory defines refinement only for a subclass of re-

lational interfaces. Moreover, the theory does not contain proofs for the preservation of refinement

on composition. These shortcomings are amended in [15] that allows for any kind of relational

interfaces (with the restriction that feedback composition is not allowed to be combinatorial) and

that proves the automatic lifting of refinement from component to graph level. In contrast to these

works, our theory assumes an asynchronous component model, resulting in a higher expressibility.

Instead of the implicit notion of time that is inherent to synchronous theories we make use of an

explicit notion in the form of timestamps.
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A functional language refinement relation for concurrent asynchronous components is presented

in [5]. The interfaces are described using automata in an operational manner. This theory of

interface automata is extended in [6] for timed automata [1], allowing an explicit specification of

progress of time. However, [1] lacks a definition of refinement, which is added in [3]. In comparison,

our theory is asynchronous as well, but also denotational and it operates on entire streams instead

of single values, which allows for a concise representation of complex interface relations.

Another fundamental difference of our theory compared to the aforementioned is that our

refinement relation is bounding, i.e. refinement does not require trace containment, but merely

bounding of streams. This is illustrated in Figure 2 in which a graphG is refined to a graphG ′. In
inclusion refinement it is allowed that the refined components A′ and B′ accept more inputs than

A and B, but for the same inputs the components A and B must have at least the same behaviors as

A′ and B′. This implies that if G ′ is non-deterministic also G must be non-deterministic. For TETB

as well as our theory, the latter is not required, but it is only needed that the behaviors of A and B
upper-bound the behaviors of A′ and B′. Consequently,G is allowed to be both deterministic and

monotone even if G ′ is neither. This is of special importance for analysis purposes as deterministic

and monotone analysis models enable the application of efficient analysis techniques [14], as well

as the usage of algebraic techniques on closed form expressions, which allow for deep insights into

the respective problems (e.g. enabling a quick identification of bottlenecks).

In [16] the concept of creating deterministic abstractions that upper-bound the temporal behavior

of a non-deterministic implementation is introduced using deterministic timed dataflowmodels. But

the work lacks the definition of a transitive refinement relation that can be used to create multiple

refinement layers. This is amended with the temporal bounding refinement relation presented

in [7], the aforementioned TETB refinement theory. However, in TETB streams consist only of

timestamps, but do not have a notion of values and indices, which prevents an application for

systems in which reordering takes place. Indexed streams are introduced in [9], enabling the

refinement and abstraction of systems with reordering.

In all aforementioned theories, refinement and abstraction are symmetric, i.e. if a component

refines another, the latter is an abstraction of the former. As in these theories a refinement must

accept at least the inputs of an abstraction, the symmetry of abstraction and refinement implies that

an analysis model may well be a valid abstraction of an implementation although it only accepts a

small part of the implementation’s inputs. But usually just the opposite is desirable, i.e. that an

analysis model accepts at least all inputs of an implementation. To account for this requirement

we define our notions of abstraction and refinement asymmetric, such that a refinement must

accept at least the inputs of a model and an abstraction at least the inputs of an implementation.

This makes our theory equally suitable for both system design and analysis.

Refinement in TETB further implies both worst-case lower-bounding and input acceptance

preservation. This allows for the creation of non-deterministic refinements of deterministic worst-

case models, which is fundamentally different to both language and simulation refinement and
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similar to the worst-case refinement in our theory. As illustrated in Figure 2, input acceptance

preservation does not only need to hold between two refining graphs as in our theory, but between

all components of the graphs individually. A consequence of this limitation is that for preserva-

tion of refinement on serial composition the components must be in most cases input-complete

and on feedback composition even always input-complete, which renders the whole notion of

input-restricted components in many cases useless. We only require bounding on component

level, which removes any requirement on input acceptance preservation. TETB further requires

refinement-monotonicity of the individual components on feedback and serial compositions, as

well as refinement-continuity on feedback composition, which we do not (a short discussion on

these differences can be found after the respective proofs in Section 5.4). Lastly, we introduce the

notion of value refinement, making our refinement theory both temporal and functional, and we

define both worst-case and a best-case bounding relations, enabling the creation of both worst-case

and best-case models.

4 TIMED COMPONENT MODEL
In this sectionwe first give a formal definition of streams on ports, which is subsequently generalized

to traces on interfaces consisting of multiple ports. Using such interfaces we define components

relating traces on input interfaces to traces on output interfaces. Finally we define parallel, serial

and feedback compositions of components, which enable the construction of component graphs.

4.1 Ports & Streams
We define streams as infinite sequences of events, with each event mapping an index to a timestamp

and a value. Subsequently we define the length of streams, as well as so-called ports that are used

to transfer streams from a specific value domain. Finally we specify the connectibility of ports and

define the prefix and earlier-than relations for streams on the same ports.

Definition 4.1 (Stream). A stream x on a port p is an infinite sequence of indexed events, with

each event consisting of the production time of the event in the form of a timestamp and a value

from the value domain of the port. Formally x can be described as a total mapping x : N→ T × O,
with T a continuous time domain and O a value domain. We require that the time domain T is

a lattice with respect to an ordering relation ≤ and that T has an infimum 0 ∈ T , as well as a

supremum ∞ ∈ T , such that ∀τ ∈T : 0 ≤ τ ≤ ∞. Analogously we require that the value domain

O is a lattice with respect to an ordering relation |= and that O has an infimum ϑ 0 ∈ O, as well

as a supremum ϑ∞ ∈ O, such that ∀ϑ ∈O : ϑ
0 |= ϑ |= ϑ∞. We use τx : N→ T and ϑx : N→ O to

retrieve timestamps and values of events by their indices, respectively.

Although streams are formally defined as infinite sequences of events, streams can also be seen

as finite. We define the length of streams as follows:

Definition 4.2 (Stream Length). We define an event of a stream x at index i to be absent iff

τx (i ) = ∞ and ϑx (i ) = ϑ∞. The length of a stream can then be defined as the smallest index from

which onwards all events are absent, i.e. (with min ∅ ≡ ∞):

|x | = min{i ∈ N | ∀i′≥i : τx (i
′) = ∞∧ ϑx (i

′) = ϑ∞}

In our timed component model we transfer streams over so-called ports, which are specified as

follows:

Definition 4.3 (Port). A port p is characterized by a tuple (x ,Op , |=p ) and contains a stream

x ∈ St (p), with St (p) the set of all valid streams on port p. The set St (p) is constructed based on a

port-specific value domain Op , such that St (p) = {x | x : N → T × Op }. The port-specific value
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domain Op must adhere to the requirements on the value domains of streams, i.e. it must be a

lattice with respect to an ordering relation |=p , with ϑ 0

p the infimum and ϑ∞p the supremum. Based

on the ordering relations ≤ of T and |=p of Op we further define the null stream x0p ∈ St (p), such

that ∀i ∈N : τx 0

p
(i ) = 0 ∧ ϑx 0

p
(i ) = ϑ 0

p , and the empty stream x∞p ∈ St (p), such that ∀i ∈N : τx∞p (i ) =

∞∧ ϑx∞p (i ) = ϑ∞p , respectively.

In the following we construct interfaces from multiple ports and connect such interfaces to

other interfaces by connecting the underlying ports. However, not all ports can be connected as

they may have different value domains. Consequently we define a sufficient requirement on the

connectibility of ports as follows:

Definition 4.4 (Port Connectibility). Let q and p be two different ports, i.e. q , p. Then port p is

connectible to a port q, i.e. q → p, iff it holds that all valid streams on port q are also valid streams

on port p, i.e. St (q) ⊆ St (p).

We define prefix and earlier-than ordering relations for streams on the same port as follows:

Definition 4.5 (Stream Order). Let x ,x ′ ∈ St (p) be two streams on a port p. The prefix ordering
relation ⪯ and the smaller-than ordering relation ≤ for streams are defined as:

x ⪯ x ′ ≡ |x | ≤ |x ′ | ∧ ∀i< |x | : τx (i ) = τx ′ (i ) ∧ ϑx (i ) = ϑx ′ (i )
x ≤ x ′ ≡ |x | = |x ′ | ∧ ∀i< |x | : τx (i ) ≤ τx ′ (i ) ∧ ϑx (i ) |=p ϑx ′ (i )

It can be seen that both the prefix and the smaller-than ordering relations of streams have the

same properties as in [7], which implies that we can reuse the results from [7] that are based on

these properties.

4.2 Traces & Interfaces
We generalize the concept of streams on ports to traces on interfaces, with interfaces being sets

of ports and traces being sets of streams on the ports of interfaces. Subsequently we define con-

nectibility and connection of interfaces and lift the prefix and earlier-than ordering relations of

streams to traces.

Definition 4.6 (Interface). An interface P is a set of |P | different ports.

Definition 4.7 (Trace). A trace X is a set of |X | = |P | streams on an interface P , such that each

stream x ∈ X is on a different port p ∈ P . In the following we use the shorthand notation X[p] to
retrieve the stream on port p ∈ P . The set of all valid traces on an interface P is then defined as

Tr (P ) = {X | |X | = |P | ∧ ∀p∈P : X [p] ∈ St (p)}, with X
0

P ∈ Tr (P ) the null trace and X
∞
P ∈ Tr (P ) the

empty trace, such that ∀p∈P : X
0

P [p] = x0p ∧ X
∞
P [p] = x∞p .

These definitions allow us to lift connectibility of ports to connectibility of interfaces:

Definition 4.8 (Interface Connectibility). Let Q and P be two disjoint interfaces of the same

numbers of ports, i.e. Q ∩ P = ∅ and |Q | = |P |. Furthermore letΘ : Q → P be a bijective mapping,

i.e. ∀q∈Q∃p∈P : p = Θ(q) and ∀q,q′∈Q : q , q′ ⇒ Θ(q) , Θ(q′). Then interface P is connectible to

interface Q given mapping Θ, i.e. Q →Θ P , iff it holds that all mapped ports are connectible, i.e.

∀q∈Q : q → Θ(q).

Given connectibility of interfaces we can now also define the connection of interfaces as follows:

Definition 4.9 (Interface Connection). Let Q and P be two disjoint interfaces of the same numbers

of ports. Furthermore letΘ : Q → P be a bijective mapping. If P is connectible to Q given mapping

Θ, i.e. Q →Θ P , then the interfaces Q and P can be connected by an interface connection CΘ .
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An interface connection CΘ is characterized by a tuple (Q, P ,Θ) and assigns the streams on P to

streams on Q , according to mappingΘ. Formally CΘ can be described as a function CΘ : Tr (Q ) →
Tr (P ) with X = CΘ (Y) ≡ ∀q∈Q : X[Θ(q)] = Y[q].

Finally we can lift the prefix and earlier-than ordering relations of streams to prefix and earlier-

than ordering relations of traces as follows:

Definition 4.10 (Trace Order). Let X ,X ′ ∈ Tr (P ) be two traces on an interface P . The prefix

ordering relation ⪯ and earlier-than ordering relation ≤ for traces are defined as:

X ⪯ X ′ ≡ ∀p∈P : X[p] ⪯ X ′[p]

X ≤ X ′ ≡ ∀p∈P : X[p] ≤ X ′[p]

4.3 Components
Instead of the term actor that is used in [7] we use the term component to prevent confusion with

actors from the timed dataflow theory, of which Synchronous Dataflow (SDF) actors are an example.

A component is defined as follows:

Definition 4.11 (Component). A componentA is characterized by a tuple (PA,QA,RA) and assigns
the traces on output interface QA to traces Y that are derived according to relation RA ⊆ Tr (PA) ×
Tr (QA) from traces X on input interface PA. We use XAY to denote (X ,Y) ∈ RA, with X ∈ inA and

Y ∈ outA. The input and output sets of A are defined as:

inA = {X ∈ Tr (PA) | ∃Y∈T r (QA ) : XAY}

outA = {Y ∈ Tr (QA) | ∃X ∈T r (PA ) : XAY}

We require that the empty input traceX∞ ∈ Tr (PA) is a valid trace with respect to RA, i.e.X
∞ ∈ inA,

and that for the empty input trace the relation RA always results in the empty output trace

Y∞ ∈ Tr (QA), i.e. X
∞AY ⇒ Y = Y∞. Initially (before a trace X with |X | > 0 is assigned to PA) the

input interface PA contains the empty input trace X∞, which implies that initially the respective

output interface QA contains the empty output trace Y∞.

4.4 Component Graphs
Composing components by connecting interfaces yields new components. In the followingwe define

the components resulting from parallel, serial and feedback compositions, as well as component

graphs as components composed of other components.

Definition 4.12 (Parallel Composition). Let A and B be two components with disjoint input

interfaces PA and PB and disjoint output interfaces QA and QB . Then the parallel composition of A
and B is a component A| |B with input interface PA | |B = PA ∪ PB , output interfaceQA | |B = QA ∪QB
and the relation between input and output interfaces as follows:

RA | |B = {(XA ∪ XB ,YA ∪ YB ) ∈ Tr (PA | |B ) ×Tr (QA | |B ) | XAAYA ∧ XBBYB }

For serial and feedback compositions we need the following notion of component connectibility:

Definition 4.13 (Component Connectibility). Let A and B be two components with input interfaces

PA and PB and output interfacesQA andQB , respectively. Furthermore letQ∗A ⊆ QA and P∗B ⊆ PB be

two disjoint interfaces with the same numbers of ports and letΘ : Q∗A → P∗B be a bijective mapping.

Then it holds that component B is connectible to component A given mappingΘ, i.e. A→Θ B, iff it

holds that P∗B is connectible to Q∗A given mappingΘ, i.e. Q∗A →Θ P∗B .

This allows us to define serial composition as follows:
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Definition 4.14 (Serial Composition). LetA and B be two components with disjoint input interfaces

PA and PB = P ⋄B ∪ P∗B and disjoint output interfaces QA = Q∗A ∪ Q⋄A and QB , respectively, with

P ⋄B ∩ P∗B = Q∗A ∩ Q⋄A = ∅. Furthermore let Q∗A and P∗B be two disjoint interfaces with the same

numbers of ports and letΘ : Q∗A → P∗B be a bijective mapping.

If B is connectible to A given mapping Θ, i.e. A →Θ B, then the serial composition of A and B
given mappingΘ is obtained by connecting interface P∗B to interfaceQ∗A via an interface connection

CΘ . This results in a component AΘB with input interface PAΘB = PA ∪ P ⋄B , output interface
QAΘB = Q

⋄
A ∪QB and the relation between input and output interfaces as follows:

RAΘB = {(XA ∪ X
⋄
B ,Y

⋄
A ∪ YB ) ∈ Tr (PAΘB ) ×Tr (QAΘB ) | ∃XAA(Y ∗A∪Y

⋄
A )
: ∃(X ⋄B∪C

Θ (Y ∗A ))BYB
∧

∀XAA(Y ∗•A ∪Y
⋄•
A ) : ∃(X ⋄B∪C

Θ (Y ∗•A ))BY •B
}

The first line thereby ensures that an input is only accepted by the composition AΘB if there

exists a corresponding output of A to that input which is also accepted by B. And the second line

addresses potential non-determinism ofA, such that an input is only accepted byAΘB if all possible

outputs of A for that input are also accepted by B. This prevents the occurrence of dead states.

Lastly, we define feedback composition as follows:

Definition 4.15 (Feedback Composition). Let A be a component with input interface PA = P ⋄A ∪ P
∗
A

and output interface QA = Q
∗
A ∪Q

⋄
A, with P ⋄A ∩ P

∗
A = Q

∗
A ∩Q

⋄
A = ∅. Furthermore let Q∗A and P∗A be

two disjoint interfaces with the same numbers of ports and letΘ : Q∗A → P∗A be a bijective mapping.

If A is connectible to A given mappingΘ, i.e. A→Θ A, then the feedback composition of A given

mappingΘ is obtained by connecting interface P∗A to interface Q∗A via an interface connection CΘ .
This results in a component AΘA with input interface PAΘA = P ⋄A, output interface QAΘA = Q

⋄
A and

the relation between input and output interfaces as follows (with Y ∗,∞ the empty trace on interface

Q∗A, for a formal definition of the trace limit limk→∞ Yk please refer to [10]):

RAΘA = {(X
⋄,Y ⋄) ∈ Tr (PAΘA) ×Tr (QAΘA) | Y

∗
−1
= Y ∗•
−1
= Y ∗,∞ ∧

∃(X ⋄∪CΘ (Y ∗k−1 ))A(Y
∗
k∪Y

⋄
k )
: ∃Y ∗∪Y ⋄= lim

k→∞
Y ∗k∪Y

⋄
k
∧

∀(X ⋄∪CΘ (Y ∗•k−1 ))A(Y
∗•
k ∪Y

⋄•
k ) : ∃Y ∗•∪Y ⋄•= lim

k→∞
Y ∗•k ∪Y

⋄•
k
}

For a component A without feedback the relation of the component is only applied once for each

input trace X , resulting in one output trace Y. For a component AΘA with feedback, however, the

relation of the component is applied multiple times for each external input trace X ⋄ until a fixed
point is reached, as the internal input trace on interface P∗A of the underlying componentA depends

on the internal output trace on interface Q∗A of the same component. According to the definition of

components, such a sequence of multiple applications always begins with the empty trace on the

internal input interface. The second line captures this by ensuring that an input is only accepted

by AΘA if A has a fixed point for this input that is reachable, starting from the empty trace on the

internal interface. Note that this makes our feedback composition fundamentally different to the

one in TETB, which only requires existence of fixed points. Compared to TETB, the reformulation

facilitates an expression of operational components in our denotational timed component model

and relaxes the conditions under which automatic lifting of bounding and input acceptance is given.

The third line again addresses potential non-determinism of A, preventing dead states by ensuring

that an input is only accepted by AΘA if not only one, but any sequence of internal traces, starting

from the empty trace, converges to a fixed point.

Based on these compositions we can finally define graphs of components as follows:

Definition 4.16 (Component Graph). A component graph G is itself a component composed of

other components via parallel, serial and / or feedback composition.
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5 BOUNDING
In this section we introduce the notions of best-case and worst-case abstraction and refinement,

which are used to create best-case and worst-case models of implementations, as well as implemen-

tations from best-case and worst-case models. For that purpose we define the relation ◁ to express

lower-bounding of streams and traces. Given trace lower-bounding, we define the relations P andP
to express best-case and worst-case lower-bounding of components. We show that composition

of components preserves bounding, which, together with input acceptance preservation, enables

abstraction and refinement of component graphs.

5.1 Stream & Trace Bounding
The bounding of streams is defined as follows:

Definition 5.1 (Stream Bounding). Let x ,x ′ ∈ St (p) be two streams on a port p. The bounding
relation ◁ for streams is defined as:

x ◁ x ′ ≡ ∀i : τx (i ) ≤ τx ′ (i ) ∧ ϑx (i ) |=p ϑx ′ (i )

Just like the prefix and earlier-than relations, the stream bounding relation has the same properties

as the stream refinement relation ⊑ defined in [7], which implies reusability of results. It can be

seen that the set St (p) forms a lattice with respect to the bounding relation, with the null stream

x0p ∈ St (p) the infimum and the empty stream x∞p ∈ St (p) the supremum.

The bounding relation for streams is lifted to a bounding relation for traces as follows:

Definition 5.2 (Trace Bounding). Let X ,X ′ ∈ Tr (P ) be two traces on an interface P . The bounding
relation ◁ for traces is defined as:

X ◁ X ′ ≡ ∀p∈P : X[p] ◁ X ′[p]

The set of traces Tr (P ) consequently also forms a lattice with respect to the bounding relation,

with the null trace X 0

P ∈ Tr (P ) the infimum and the empty trace X∞P ∈ Tr (P ) the supremum.

5.2 Component Bounding
Given trace bounding we define best-case bounding and worst-case bounding of components as

follows:

Definition 5.3 (Component Bounding). LetA,A′ be two components with input interfaces PA = PA′

and output interfaces QA = QA′ .

Component A is a best-case lower bound on A′, i.e. A P A′, iff it holds ∀X ∈inA,X ′∈inA′ that:

X ◁ X ′ ⇒ ∀X ′A′Y ′∃XAY : Y ◁ Y
′

Analogously, componentA is a worst-case upper bound onA′, i.e.A

P

A′, iff it holds ∀X ∈inA,X ′∈inA′
that:

X ◁X ′ ⇒ ∀X ′A′Y ′∃XAY : Y ◁Y ′

In words this means that A is a best-case lower bound (worst-case upper bound) on A′ iff for every

input trace X of A that is a lower bound (upper bound) on an input trace X ′ of A′ there exists an
output trace Y with XAY that is a lower bound (upper bound) on every output trace Y ′ with X ′A′Y ′.

5.3 Bounding Lifting
In this section we discuss the automatic lifting of bounding from component to graph level, i.e.

that two graphs bound each other if all their respective components bound each other. For that
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purpose we prove that bounding between individual components is preserved on parallel, serial

and feedback composition.

For parallel composition it holds:

Lemma 5.4 (Parallel Bounding Preservation). With ∇=P (∇= P) let A ∇ A′ and B ∇ B′. From
this follows that the respective parallel compositions also bound each other, i.e. A| |B ∇ A′ | |B′.

Proof. Trivial. □

For serial composition we obtain analogously:

Lemma 5.5 (Serial Bounding Preservation). With ∇=P (∇= P) let A ∇ A′ and B ∇ B′. From
this follows that the respective serial compositions also bound each other, i.e. AΘB ∇ A′ΘB′.

Proof Idea. From A ∇ A′ follows that for any input that is accepted by AΘB and that bounds

an input of A′ΘB′, there must be an output of A that bounds all respective outputs of A′. As these
outputs must be accepted by B, according to the second line in the definition of serial composition,

it follows with B ∇ B′ that there must also be an output of B that bounds all respective outputs of

B′. This lets us conclude that for any input of AΘB that bounds an input of A′ΘB′ there must be an

output of AΘB that bounds all respective outputs of A′ΘB′, i.e. AΘB ∇ A′ΘB′.

Proof. Let (XA ∪ X
⋄
B ) ∈ inAΘB , (X

′
A ∪ X

⋄′
B ) ∈ inA′ΘB′ and with ∆=◁ (∆= ◁) that (XA ∪ X

⋄
B ) ∆

(X ′A ∪ X
⋄′
B ). Thus it holds that also XA ∆ X ′A and from A ∇ A′ it follows:

∀X ′AA
′ (Y ∗′A ∪Y

⋄′
A )∃XAA(Y ∗A∪Y

⋄
A )
: (Y ∗A ∪ Y

⋄
A) ∆ (Y ∗′A ∪ Y

⋄′
A ) (1)

(XA ∪ X
⋄
B ) ∈ inAΘB implies that it holds for all Y ∗A with XAA(Y

∗
A ∪ Y

⋄
A) that (X

⋄
B ∪C

Θ (Y ∗A)) ∈ inB .
Analogously (X ′A ∪ X ⋄′B ) ∈ inA′ΘB′ implies that it holds for all Y ∗′A with X ′AA

′(Y ∗′A ∪ Y ⋄′A ) that

(X ⋄′B ∪C
Θ (Y ∗′A )) ∈ inB′ .

For (Y ∗A ∪ Y
⋄
A) and (Y ∗′A ∪ Y

⋄′
A ) according to Equation 1 it thus holds that (X ⋄B ∪C

Θ (Y ∗A)) ∈ inB ,

(X ⋄′B ∪C
Θ (Y ∗′A )) ∈ inB′ and with (XA ∪ X

⋄
B ) ∆ (X ′A ∪ X

⋄′
B ) that (X ⋄B ∪C

Θ (Y ∗A)) ∆ (X ⋄′B ∪C
Θ (Y ∗′A )).

With B ∇ B′ it follows:

∀(X ⋄′B∪C
Θ (Y ∗′A ))B′Y ′B

∃(X ⋄B∪C
Θ (Y ∗A ))BYB

: YB ∆ Y ′B

From this it can be finally concluded that it holds ∀(XA∪X ⋄B )∈inAΘB and ∀(X ′A∪X
⋄′
B )∈inA′ΘB′ :

(XA ∪ X
⋄
B ) ∆ (X ′A ∪ X

⋄′
B ) ⇒ ∀(X ′A∪X

⋄′
B )A

′ΘB′ (Y ⋄′A∪Y
′
B )
∃(XA∪X ⋄B )AΘB (Y

⋄
A∪YB ) : (Y ⋄A ∪ YB ) ∆ (Y ⋄′A ∪ Y

′
B )

This is just the definition of AΘB ∇ A′ΘB′, q.e.d. □

Note that Lemma 5.5 does neither imply AΘB ∇ AΘB′ nor AΘB ∇ A′ΘB in general.

For feedback composition it holds:

Lemma 5.6 (Feedback Bounding Preservation). With ∇=P (∇= P) letA ∇ A′. From this follows
that the respective feedback compositions also bound each other, i.e AΘA ∇ A′ΘA′.

Proof Idea. Let there be an input that is accepted by AΘA and that bounds an input that is

accepted by A′ΘA′. Consequently, the respective combinations of these traces with empty traces

on the internal interfaces also bound each other. From A ∇ A′ then follows that for these inputs

there exists an output of A that bounds all respective outputs of A′. With the third line of the

definition of feedback composition it follows that these outputs must be accepted by A and A′ as
inputs, respectively, again resulting in an output of A that bounds all outputs of A′. As the third
line ensures that for any such bounding sequences fixed points are reached, it follows that also

the respective fixed points bound each other. This lets us conclude that for any input of AΘA that
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bounds an input ofA′ΘA′ there exists an output ofAΘA that bounds all respective outputs ofA′ΘA′,
i.e. AΘA ∇ A′ΘA′.

Proof. We denote with Xk = (X ⋄ ∪ X ∗k ) and Yk = (Y ∗k ∪ Y
⋄
k ) the input and output traces of

component A in each feedback iteration k after assignment of an external input trace X ⋄ and with

X ′k = (X ⋄′ ∪ X ∗′k ) and Y ′k = (Y ∗′k ∪ Y
⋄′
k ) the input and output traces of A′ after assignment of X ⋄′

analogously.

Given that the external input of A is a lower bound (upper bound) on the external input of A′ we
first show with ∆=◁ (∆= ◁) that for each feedback iteration there exist output traces of A that are

lower bounds (upper bounds) on all output traces of A′, using mathematical induction. Based on

this we prove that there exists a fixed point of A for each fixed point of A′, such that the fixed point

of A is a lower bound (upper bound) on the fixed points of A′. We begin with the mathematical

induction:

Induction base: Let X ⋄ ∈ inAΘA, X ⋄′ ∈ inA′ΘA′ and X ⋄ ∆ X ⋄′. It follows from the definition of

components that initially (before X ⋄ and X ⋄′ are assigned) the traces on all interfaces are empty

traces, such that the input traces of A on assignment of X ⋄ and A′ on assignment of X ⋄′ are
X0 = (X ⋄ ∪CΘ (Y ∗,∞)) and X ′

0
= (X ⋄′ ∪CΘ (Y ∗′,∞)), respectively. With the definition of feedback

composition it follows from X ⋄ ∈ inAΘA that X0 ∈ inA and from X ⋄′ ∈ inA′ΘA′ that X
′
0
∈ inA′ . Due

to X ⋄ ∆ X ⋄′ it holds that X0 ∆ X ′
0
. From A ∇ A′ it then follows that there exists an X0AY0 for all

X ′
0
A′Y ′

0
such that Y0 ∆ Y ′

0
.

Induction hypothesis: Let Xk ∈ inA, X
′
k ∈ inA′ , let Xk ∆ X ′k and let an XkAYk exist for all X ′kA

′Y ′k
such that Yk ∆ Y ′k .
Induction step: With the definition of feedback composition it follows from X ⋄ ∈ inAΘA that

Xk+1 = (X ⋄ ∪CΘ (Y ∗k )) ∈ inA and from X ⋄′ ∈ inA′ΘA′ that X
′
k+1 = (X ⋄′ ∪CΘ (Y ∗′k )) ∈ inA′ . From the

definition of trace bounding it follows that Xk+1 ∆ X ′k+1 and A ∇ A′ lets us conclude that there
exists an Xk+1AYk+1 for all X

′
k+1A

′Y ′k+1 such that Yk+1 ∆ Y ′k+1.
Thus it holds for X ⋄ ∈ inAΘA, X

⋄′ ∈ inA′ΘA′ and X
⋄ ∆ X ⋄′ that:

∀k ∈N : ∀X ′kA
′Y ′k
∃XkAYk : Xk ∆ X ′k ∧ Yk ∆ Y ′k (2)

According to the definition of feedback composition X ⋄ ∈ inAΘA implies that for any sequence

(X ⋄ ∪CΘ (Y ∗k ))A(Y
∗
k+1 ∪ Y

⋄
k+1) with Y ∗

0
= Y ∗,∞ there exists a Y∞ = limk→∞ Yk that defines a fixed

point of the sequence, i.e. it holds that (X ⋄∪CΘ (Y ∗∞))A(Y
∗
∞∪Y

⋄
∞). AnalogouslyX

⋄′ ∈ inA′ΘA′ implies

that for any sequence (X ⋄′∪CΘ (Y ∗′k ))A′(Y ∗′k+1∪Y
⋄′
k+1) withY

∗′
0
= Y ∗,∞ there exists aY ′∞ = limk→∞ Y

′
k

that defines a fixed point of the sequence, i.e. it holds that (X ⋄′ ∪CΘ (Y ∗′∞ ))A′(Y ∗′∞ ∪ Y
⋄′
∞ ).

Now consider a sequence (X ⋄ ∪CΘ (Y ∗k ))A(Y
∗
k+1 ∪Y

⋄
k+1) that for any sequence (X ⋄′ ∪CΘ (Y ∗′k ))A′

(Y ∗′k+1∪Y
⋄′
k+1) satisfiesXk ∆ X ′k andYk ∆ Y ′k for all k ∈ N (existence of such a sequence is guaranteed

by Equation 2). Furthermore, let Y∞ and Y ′∞ be the respective fixed points of such sequences. Then

it holds that Y∞ ∆ Y ′∞ and thus also Y ⋄∞ ∆ Y ⋄′∞ . With Y ⋄ = Y ⋄∞ and Y ⋄′ = Y ⋄′∞ this lets us finally

conclude ∀X ⋄∈inAΘA,X ⋄′∈inA′ΘA′ :

X ⋄ ∆ X ⋄′ ⇒ ∀(X ⋄′)A′ΘA′ (Y ⋄′)∃(X ⋄)AΘA(Y ⋄) : Y
⋄ ∆ Y ⋄′

This is just the definition of AΘA ∇ A′ΘA′, q.e.d. □

Note that in contrast to TETB refinement we do not need any further requirements on the indi-

vidual components to prove serial and feedback bounding. First, input-completeness of individual

components is not needed as, unlike refinement in TETB, bounding does not imply input accep-

tance preservation. Second, monotonicity is not needed as we make use of a different definition

of component bounding, which does not only ensure output bounding for the same inputs like in
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TETB, but also bounding outputs for different, but bounding inputs. And third, continuity is also

not needed for feedback bounding as we make use of a different definition of fixed points than

TETB, such that not only existence, but also reachability of fixed points is ensured.

Lemmas 5.4 to 5.6 finally prove the automatic lifting of bounding from component to graph level:

Theorem 5.7 (Bounding Lifting). With ∇=P (∇= P) letG be a graph composed of components
A and let G ′ be a graph composed of components A′. If it holds for all components of G that they are
best-case lower bounds (worst-case upper bounds) on the respective components ofG ′, i.e. A ∇ A′, then
it follows that also the graph G is a best-case lower bound (worst-case upper bound) on graphG ′, i.e.
G ∇ G ′.

Proof. Follows immediately from Lemmas 5.4 to 5.6 and the fact that graphs consist of parallel,

serial and feedback compositions. □

5.4 Bounding Abstraction & Refinement
After defining bounding of streams, traces and components, as well as proving the automatic lifting

of bounding from component to graph level we can now also define bounding abstraction and

refinement. Subsequently we discuss that bounding abstraction and refinement can be directly

concluded from input acceptance preservation and bounding, as already indicated in Figure 1.

Definition 5.8 (Bounding Abstraction). A graph G is a best-case (worst-case) abstraction of a

graph G ′ iff G accepts at least all input traces thatG ′ also accepts, i.e. inG ⊇ inG′ , and iff it holds

for all accepted input traces of G ′ that for these input traces there exists an output trace of G that

is a lower bound (upper bound) on all output traces of G ′ for the same input traces, i.e. with ∆=◁
(∆= ◁) it holds:

∀X ∈inG′ : ∀XG′Y ′∃XGY : Y ∆ Y ′

Definition 5.9 (Bounding Refinement). A graph G ′ is a best-case (worst-case) refinement of a

graphG iffG ′ accepts at least all input traces thatG also accepts, i.e. inG ⊆ inG′ , and iff it holds for

all accepted input traces of G that for these input traces there exists an output trace of G that is

a lower bound (upper bound) on all output traces of G ′ for the same input traces, i.e. with ∆=◁
(∆= ◁) it holds:

∀X ∈inG : ∀XG′Y ′∃XGY : Y ∆ Y ′

Definition 5.8 thereby applies to the creation of best-case and worst-case models for the analysis

of an existing implementation (for which the specification lies in the implementation), whereas

Definition 5.9 applies to the design of an implementation from a best-case and / or worst-case model

(for which the specification lies in the model). Note that our definition of worst-case refinement

is equal to the definition of TETB refinement, whereas our definition of best-case refinement

corresponds to the The-Later-the-Better (TLTB) refinement mentioned in the future work section

of [7]. As we additionally consider a different notion of bounding abstraction, it follows that our

abstraction-refinement theory is a generalization of the TETB refinement theory.

With above definitions of bounding abstraction and refinement we can conclude the following

three important theorems:

Theorem 5.10 (Bounding Abstraction). A graph G is a best-case (worst-case) abstraction of a
graph G ′ if G P G ′ (G P

G ′) and if inG ⊇ inG′ .

Proof. Follows immediately from Definitions 5.3 and 5.8, as well as the fact that the ◁ relation

is reflexive, i.e. X ◁ X . □
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Fig. 3. In-order abstraction of an any-order implementation (io: in-order, ao: any-order).

Theorem 5.11 (Bounding Refinement). A graph G ′ is a best-case (worst-case) refinement of a
graph G if G P G ′ (G P

G ′) and if inG ⊆ inG′ .

Proof. Follows immediately from Definitions 5.3 and 5.9, as well as the fact that the ◁ relation

is reflexive, i.e. X ◁ X . □

Theorem 5.12 (Bounding Abstraction-Refinement Transitivity). With ∆=P (∆= P) let it
hold for three graphs G, G ′ and G ′′ that G ∆ G ′ ∆ G ′′ and that inG ⊇ inG′ ⊇ inG′′ . Then it follows
thatG is a best-case (worst-case) bounding abstraction ofG ′′. If it holds instead that inG ⊆ inG′ ⊆ inG′′

then it follows that G ′′ is a best-case (worst-case) bounding refinement of G.

Proof. For a formal proof refer to [10]. □

6 CASE STUDY
In this section we evaluate the applicability and utility of our timed component model and

abstraction-refinement theory, with an emphasis on differences with the TETB refinement theory.

As the obvious advantage of supporting best-case models is already discussed in Sections 1 and 3,

our focus is in the following on other implications of separating bounding and input acceptance

preservation.

6.1 Reordering
Consider the example depicted in Figure 3. It is often desirable to make an abstraction of a graph

containing any-order components (i.e. components producing streams whose timestamp-order does

not necessarily match index-order) like A′ and B′ to a graph consisting of in-order components (i.e.

components producing streams whose timestamps are monotonically increasing in their indices)

like A and B because in-order graphs can be analyzed more efficiently. However, with the original

TETB theory [7] this is not possible, due to the following two shortcomings: First, the definition of

streams in TETB does not support the expression of reordering. And second, the requirement of

input-completeness for preservation of refinement on both serial and feedback compositions is

too strict to allow abstractions of any-order components to in-order ones, even if reordering were

expressible.

Both these shortcomings are amended in [9], which introduces indices to allow the expression

of reordering and which does not require input-completeness for preservation of refinement on
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Fig. 4. Abstraction of periodic components A′ and B′ to input-complete components A and B (p: strictly
periodic streams with period P , a: any streams).

serial and feedback compositions, but only that abstract components accept all outputs of the

connected refined components. For our example this means that the abstract components A and B
must accept the respective outputs of A′, i.e. formally for the serial composition inB ⊇ out ⋄A′ and
for the feedback composition in∗A ⊇ out∗A′ . But as it holds that in-order is a subset of any-order, i.e.
io ⊆ ao, these requirements are not satisfied.

Therefore one has to apply a trick to narrow the output sets of the components, like the one

depicted on the left-hand side of Figure 3: At first, input-complete so-called identity components

ID are inserted on the outgoing edges, which simply forward input streams to output streams,

resulting in a graph equivalent to the lowest level. Then these identity components are abstracted

to ⊑-monotone, input-complete reorder components R which accept any-order streams and delay

them such that they become in-order. Thereafter, these reorder components are serially composed

with the components A′ and B′, resulting in the graph on the second-to-highest level. This graph

fulfills the requirements inB ⊇ out ⋄A′ and in
∗
A ⊇ out∗A′ , which enables the final abstraction to the

graph with components A and B.
In our theory none of this is needed. Given worst-case bounding of the individual components,

i.e. A′
P

A and B′
P

B, one can directly conclude that also the entire graphs bound each other,

without any further requirements on the interfaces or monotonicity of components and without

any additional tricks involving identity and reorder components. And together with the input

acceptance preservation on graph level one can finally conclude abstraction.

6.2 Input Set Widening on Abstraction
While the in-order / any-order case from the previous section already illustrates the potential of

our theory, one could still argue that the trick with the identity and reorder components is merely

an inconvenience. As we illustrate with the following example, however, there are cases in which

TETB simply fails, while our theory remains applicable.

Consider the components A′ and B′ at the bottom of Figure 4. The components only accept

input streams that are strictly periodic with a period P . This is a realistic use-case for components

representing tasks being executed on actual processors, for which the determined response times

are only valid assuming a certain period. The goal is to abstract these component to dataflow

components A and B, which are by definition input-complete.

Both TETB approaches [7, 9] fail for this example as the components violate the fundamental

requirement of input acceptance preservation on component level, i.e. it would have to hold

that inA′ ⊇ inA and inB′ ⊇ inB , but due to the fact that periodic streams with a period P are a

subset of any streams, i.e. p ⊆ a, this is clearly not the case. Now one could try to apply a similar

trick as discussed in the previous section, using a “periodize” component instead of a reorder

component which is input-complete and delays all streams to ones with a period of P . In this case,

such components could be used not to narrow output sets, but to widen the respective input sets.
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Fig. 5. Replacement of a slow input-complete controller implementation ctl by a faster controller ctl ′ with
restricted input acceptance.

However, for input streams with a period larger than P , the only valid delayed stream would be the

empty stream. Consequently, the usage of such components would prevent any useful analysis,

making TETB effectively inapplicable.

In our theory, in contrast, one only has to prove that A and B worst-case upper-bound A′ and B′

without considering input sets, as depicted on the right-hand side of Figure 4. To prove abstraction,

one has to additionally show that the input sets of the respective graphs are widening towards

abstraction, which is trivial here as both A and B are input-complete.

6.3 Practical Example
In the following we apply our theory on a more practical example. We consider a simple graph

of two components of which one is to be replaced by a faster one. According to TETB [7, 9] this

replacement would be invalid as the faster component has a more restricted input acceptance than

the original one. According to our theory this replacement would be only valid if the graph after

replacement were a worst-case refinement of the graph before. To prove refinement we have to

show bounding between the components individually and input acceptance preservation between

the whole graphs. Proving the latter is not trivial for this example. Nevertheless, we show that

input acceptance preservation can be proven by means of both best-case and worst-case models.

Consider the graph G depicted on the left side of Figure 5. This graph depicts a part of a control

loop which consists of two components, an estimator task that is laid out to operate on strictly

periodic in-order input streams with a frequency equal to 100kHz and a controller task that is laid

out in such way that it is input-complete with respect to in-order streams. It is determined that the

estimator task takes between 1µs and 3µs to execute, whereas the controller task executes between

2µs and 4µs. Both tasks are executed on separate processors. Ignoring the functional behavior of

the tasks, their temporal behavior can be expressed using the following relations (with τy (−1) = 0):

Rest ={(x ,y) ∈ St (pest ) × St (qest ) | c ≥ 0 ∧ ∀i< |x | : τx (i ) = i · 10µs + c ∧
∀i : 1µs ≤ ρi ≤ 3µs ∧ τy (i ) = max(τx (i ),τy (i − 1)) + ρi }

Rctl = {(x ,y) ∈ St (pctl ) × St (qctl ) | ∀i : 2µs ≤ ρi ≤ 4µs ∧ τy (i ) = max(τx (i ),τy (i − 1)) + ρi }

To reduce the end-to-end latency of the two tasks and thereby improve control behavior we attempt

to replace the controller task component ctl with a faster component ctl ′ that executes only between
2µs and 3µs, but that requires its input stream to be periodic with a frequency of 100kHz and a

maximum jitter of 3µs. The temporal behavior of ctl ′ is captured by the following relation:

Rctl ′ = {(x ,y) ∈ St (pctl ) × St (qctl ) | c
′ ≥ 0 ∧ ∀i< |x | : i · 10µs + c

′ ≤ τx (i ) ≤ i · 10µs + c ′ + 3µs ∧
∀i : 2µs ≤ ρi ≤ 3µs ∧ τy (i ) = max(τx (i ),τy (i − 1)) + ρi }

We have to show that the graph G ′ in the middle of Figure 5 is a valid worst-case refinement of G,
as only then it is guaranteed that G ′ accepts all input streams with a frequency of 100kHz and that
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for these inputs G ′ is overall faster than G. According to Theorem 5.11 we must thus show that

G ′
P

G and inG′ ⊇ inG .
For G ′

P
G it must hold that est

P
est , which is trivial for this example, and that ctl ′

P
ctl ,

which holds due to the following reasoning: Consider two input streams x ′ ∈ inctl ′ and x ∈ inctl
with x ′ ◁ x . Using the relations of the respective components it follows for any corresponding

output streams y ′ of ctl ′ that ∀i : τy′ (i ) ≤ max(τx ′ (i ),τy′ (i − 1)) + 3µs, whereas ctl has an output

stream y with ∀i : τy (i ) = max(τx (i ),τy (i − 1)) + 4µs. From x ′ ◁ x it follows that τy′ (0) ≤ τy (0),
from this that also τy′ (1) ≤ τy (1), and so on. Thus we can conclude that y ′ ◁ y, which satisfies

Definition 5.3, and it follows ctl ′
P

ctl and thus G ′
P

G.
It remains to be proven that inG′ ⊇ inG . If it held that inctl ′ ⊇ inctl this proof would be trivial.

But ctl is input-complete with respect to in-order streams and ctl ′ is not (which prevents a usage

of TETB for this example). Consequently we need to determine both inG and inG′ . For graph G it

holds that inG = inest , as ctl is input-complete for in-order streams and as no reordering takes

place in est . For graph G ′ it can be seen that also inG′ = inest if outest ⊆ inctl ′ . From the relation

Rctl ′ we determine:

inctl ′ = {x ∈ St (pctl ) | c
′ ≥ 0 ∧ ∀i< |x | : i · 10µs + c

′ ≤ τx (i ) ≤ i · 10µs + c ′ + 3µs}

Deducing outest is not straightforward. However, a superset of outest can be determined rather

easily by constructing two analysis models that bound the temporal behavior of G ′. For these
models we make use of deterministic Homogeneous Synchronous Dataflow (HSDF) actors, as

depicted on the right side of Figure 5. From the semantics of HSDF actors [10, 14] it follows for the

relation Restwc :

Restwc = {(x ,y) ∈ St (pest ) × St (qest ) | ∀i : τy (i ) = max(τx (i ),τy (i − 1)) + 3µs}

The other relations Restbc , Rctl ′wc and Rctl ′bc are all of similar forms, only the so-called firing

durations are not 3µs, but 1µs, 3µs and 2µs, respectively. By construction it holds that estbc P
est

P
estwc

, ctl ′bc P ctl ′
P

ctl ′wc
, and thus alsoG ′bc P G ′

P
G ′wc

. With the input-completeness

of the analysis models it further follows that G ′bc is a valid best-case and G ′wc
is a valid worst-

case abstraction of G. These dataflow abstractions allow to efficiently compute schedules that

bound the temporal behavior of est [8, 11]. For any output stream y of est we can conclude from

the best-case model that ∀i< |y | : i · 10µs + c + 1µs ≤ τy (i ) and from the worst-case model that

∀i< |y | : τy (i ) ≤ i · 10µs + c + 3µs. From that we obtain:

outest ⊆ {y ∈ St (qest ) | c ≥ 0 ∧ ∀i< |y | : i · 10µs + c + 1µs ≤ τy (i ) ≤ i · 10µs + c + 3µs}

By setting c ′ in inctl ′ to c + 1µs it can be seen that all streams in outest are also included in inctl ′ ,
i.e. outest ⊆ inctl ′ , and thus also inG′ = inest ⊇ inG . This concludes the proof that G

′
is a valid

worst-case refinement of G.

7 CONCLUSION
In this paper we presented a generic timed component model and an abstraction-refinement theory

for asynchronous discrete-event systems. The theory supports temporal and functional bounding

abstraction and refinement, which enables the usage of efficiently analyzable models for the analysis

and design of non-deterministic, non-monotone real-time systems. We discussed that properties

like best-case and worst-case bounding are automatically lifted from component to graph level,

enabling a component-based reasoning.

Unlike the TETB theory, our theory separates the preservation of component input acceptance

from bounding. We discussed that this separation evenhandedly enables abstraction, which pre-

serves input acceptance from implementations to models, and refinement, which preserves input
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acceptance from models to implementations. Consequently, our theory is an abstraction-refinement

theory that equally supports model-based design and model-based analysis, whereas related works

are mainly refinement theories, with a limited applicability for analysis purposes. Furthermore, we

proved that the separation of input acceptance preservation and bounding enables the automatic

lifting of bounding from component to graph level without a restriction to input-complete compo-

nents, resulting in a significantly larger applicability compared to TETB. Finally, we introduced

both worst-case and best-case bounding relations, such that our theory does not only allow for

the usage of worst-case models, but also of best-case models, which are both needed to analyze

systems in which jitter plays a major role.

In a case study, we discussed the extended applicability of our theory with respect to TETB

on several examples. These included a simplified handling of reordering, an abstraction of input-

restricted implementations to input-complete analysis models, as well as a replacement of input-

complete components by faster, but input-restricted components.
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