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In this paper we study the probabilistic properties of reliable networks of minimal
total edge lengths. We study reliability in terms of k-edge-connectivity in graphs
in d-dimensional space. We show this problem fits into Yukich’s framework for
Euclidean functionals for arbitrary k, dimension d and distant-power gradient p,
with p < d. With this framework several theorems on the convergence of optimal
solutions follow. We apply Yukich’s framework for functionals so that we can
use partitioning algorithms that rapidly compute near-optimal solutions on typical
examples. These results are then extended to optimal k-edge-connected power
assignment graphs, where we assign power to vertices and charge per vertex. The
network can be modelled as a wireless network.

1 Introduction

The design of fault tolerant networks is an important issue in today’s research, due to their
numerous applications [1]. The goal is to find cheap and reliable networks with some specific
characteristics. Reliability is often expressed in terms of the connectivity of a network. For
example, we might want to have multiple paths between each pair of nodes to account for
possible failures in a link.

Wireless ad hoc networks have also received significant attention in recent studies [4, 6].
Instead of direct connections between nodes, communication takes place through single-hop
transmissions or by relaying through intermediate nodes. Here we assign a transmission power
to each node. As transmission range is directly related to power usage and therefore to battery
lifetime, the goal is to find a fault tolerant network with minimal total power usage.

Finding a cheapest k-edge-connected network is NP-hard [5], and so is finding a minimal
power wireless network [3]. As we still want to have reasonably good solutions in acceptable
computation time, we need to find good heuristics. We fit the problems into Yukich’s framework
for Euclidean functional [8] to get limit theorems and concentration results, as well as using
them for analysis of the partitioning algorithm.

Partitioning algorithms have shown a lot of potential with similar problems [2]. In practice,
partitioning algorithms are very fast. Partitioning algorithms divide the whole problems into
smaller cells and compute optimal solutions on these. Then these solutions are joined to obtain
a solution for the whole problem.
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2 Definitions and Results

All graphs in this paper are undirected and simple. Let G = (V,E) be a graph. We assume
V ⊂ Rd, where d is a constant and V is finite. The cost of an edge is its length raised to the
power of the distant-power gradient p > 0. So adding edge (u, v) to a graphs increases the cost
by |(u, v)|p, where |(u, v)| denotes the Euclidean distance between u and v. Here, we assume p
is a constant.

A graph is k-edge-connected if the graph is still connected when at most k − 1 edges are
removed, or if it is complete. The latter is to make sure k-edge-connected graphs on less
than k + 1 nodes still exist, which saves us from dealing with all kind of exceptions in proofs.
Alternatively, a network is k-edge-connected if there exist at least k edge-disjoint paths between
every pair of vertices.

Let d ∈ N be arbitrary and let p > 0. Then MkEEp(V ) is the minimal length of a k-
edge-connected graph in terms of summed edge lengths on V with pth power-weighted edges.
Thus

MkEEp(V ) = min
X∈S(V,k)

∑

e∈X
|e|p, (1)

where S(V, k) is the set of k-edge-connected simple graphs on V and |e| denotes the Euclidean
length of an edge e. Following Yukich [8], we call MkEEp a functional.

One of the desired properties for functionals is subadditivity. Roughly speaking, this shows
that the function value of a whole set is not larger than the sum of function values of the sets
in a partition of this set (with some error term).

Theorem 1. For p ≥ 1, MkEEp is geometrically subadditive, i.e. for all finite sets V , all
rectangles R and all partitions of R into rectangles R1 and R2 we have

MkEEp(V ∩R) ≤ MkEEp(V ∩R1) + MkEEp(V ∩R2) + C1(diamR)p, (2)

where C1 = C1(d, p) is a constant.

We would also want MkEEp to be superadditive. Roughly speaking, this would show that
the function value of a whole set is not lower than the sum of function values of the sets in
a partition. Combining sub- and superadditivity makes the functional nearly additive in the
sense that MkEEp(F,R) ≈ MkEEp(F,R1) + MkEEp(F,R2).

We could then approximate the optimal solution value of the whole set by the sum of
optimal solutions on its partitions. It is easily checked however that MkEEp does not possess
superadditivity. This is why we introduce the canonical boundary functional, an idea first
articulated in Redmond’s thesis [7]. In boundary functionals, the entire boundary of the
rectangle is considered as one additional vertex that can be used. We also refer to Yukich [8]
for more on this topic.

MkEEp
B is the boundary functional of MkEEp, so that MkEEp

B(V ∩R) is the minimal length
of a k-edge-connected boundary graph in terms of summed edge lengths on V ∪ ∂R in d-
dimensional rectangle R with pth power-weighted edges. Here ∂R denotes the boundary of R.
A vertex v is connected to ∂R by adding edge (v, v∂) where v∂ = arg minw∈∂R |(v, w)|.
Theorem 2. For p ≥ 1, MkEEp

B is a superadditive functional, i.e. for all finite sets V , all
rectangles R and all partitions of R into rectangles R1 and R2 we have

MkEEp
B(V ∩R) ≥ MkEEp

B(V ∩R1) + MkEEp
B(V ∩R2). (3)
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As we cannot directly show near additivity, we want to show that MkEEp and MkEEp
B

are pointwise close. Then we would get approximately get sub- and superadditivity for both
functionals.

Theorem 3. For 1 ≤ p < d, MkEEp is pointwise close to MkEEp
B, i.e. for all finite sets

V ⊂ [0, 1]d we have

|MkEEp(V )−MkEEp
B(V )| = o(|V |(d−p)/d). (4)

We have shown geometric subadditivity, superadditivity and pointwise closeness, creating a
powerful set of properties. These properties are more useful for obtaining other results when
the functional also is smooth. This describes how strong the variations of a functional are if
vertices are added or deleted. Smooth functionals behave a lot more predictable and therefore
it plays an important role in many limit theories.

Theorem 4. For 1 ≤ p < d, MkEEp is smooth, i.e. for all finite sets U and V we have

|MkEEp(U ∪ V )−MkEEp(U)| = O(|V |(d−p)/d). (5)

One of the concentration results we have obtained is stated below. It shows that the func-
tional values are not far from their expected value.

Theorem 5. For 1 ≤ p < d and k ∈ N, there exists a constant α = α(d, k) ≥ 0 such that

lim
n→∞

MkEEp(V,R)/n(d−p)/p = α c.c., and (6)

lim
n→∞

MkEEp
B(V,R)/n(d−p)/p = α c.c., (7)

where n = |V |. Here c.c. denotes complete convergence.

3 Partitioning algorithm

In a partitioning algorithm, the Euclidean plane is divided into a number of cells that all
contain only a few points. On each cell an optimal solution is calculated. This is generally
much faster than calculating a solution on all points at once, as these problems are often
NP-hard. The solutions of all cells are then joined to obtain a solution for the whole set.

We implement a partitioning scheme for MkEEp having a polynomial running time, for which
we derive approximation guarantees.

Algorithm 6 (Partitioning Scheme).
Input: set V ⊆ [0, 1]d of n points and number of points per cell s

1. Partition [0, 1]d into ` = d
√
n/s stripes of dimension d− 1 such that each stripe contains

exactly n/` = (nd−1s)1/d points.

2. Keep partitioning each i + 1-dimensional stripe into ` stripes of dimension i such that
each stripe contains exactly n/`i = (nd−isi)1/d points. Stop at i = 1 so that each 2-
dimensional stripe is partitioned into ` cells with n/`d = s points. In this way we end up
with `d = n/s cells. Here we assume s > k.

3. Compute a graph achieving the optimal solution of MkEEp for each cell.

4. Join the graphs to obtain a k-edge-connected graph on V .
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It can be easily verified that the graph we get as an output from Algorithm 6 is k-edge-
connected. With this algorithm and the properties obtained in Section 2 we can now give
running time and approximation guarantees. Depending on the way we compute the optimal
solution on each cell, we need to vary s to get a polynomial running-time.

Theorem 7. If the algorithm for computing an optimal solution on each cell in Algorithm 6
has a running time of O(Cn2

) for some constant C, the Partitioning Scheme has a polyno-
mial running time if we choose s = O(

√
log n). The approximation guarantee then becomes

MkEEp(V ) +O((n/s)(d−p)/d) for k-edge-connected graphs.

4 Extention to wireless networks

Besides our model for wired networks, we consider a different model for wireless networks.
These are defined by assigning power to each vertex. A power assignment PA assigns a real,
positive value to all vertices v ∈ V . The corresponding power assignment graph then contains
all edges (u, v) for which PA(u),PA(v) ≥ |(u, v)|p. The costs of k-edge-connected power as-
signment graphs is then simply the sum of all assigned powers. We obtain results similar to
Theorems 1 – 5 for the functional in wireless networks.
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