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ABSTRACT
The rational function model (RFM) is widely applied to orthorectifica-
tion of aerial and satellite imagery. This article proposes a newmethod
named Ortho-WTLS to solve the RFM in remote-sensing imagery
orthorectification. Based on a weighted total least squares (WTLS)
estimator, the proposed method allows one to handle coordinates of
ground control points (GCPs) that contain errors and are of unequal
accuracies. This situation occurs, e.g. if GCPs are automatically selected.
In the proposed model, first, the relationship of two linearization
methods for an RFM with errors contained in GCPs is investigated
and results in a hybrid linearization. Next, based on WTLS, RFM coeffi-
cients are estimatedwith an iterative computation function. Finally, the
performance of the Ortho-WTLS method thus obtained is investigated
using simulated images and remotely sensed images by collecting
GCPs with varying errors. Experimental results show that the Ortho-
WTLSmethod achieves amore robust estimation ofmodel parameters
and a higher orthorectification accuracy when compared with stan-
dard LS-based RFM estimation. We conclude that the quality of GCPs
has a large impact on the accuracy and that an increasing number of
low-precision GCPsmay lead to a decrease in orthorectification quality.
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1. Introduction

Remote sensing presents an important way to access geo-spatial information. Remote-sen-
sing images, however, become aberrant and distorted during capturing due to factors such as
the Earth’s rotation, sensor attitude, and terrain conditions (Toutin 2003; Ge et al. 2006). These
aberrations and distortions have a significant impact on both quality of images and subse-
quent analysis and decision-making (Li et al. 2016). Therefore, it is necessary to perform
rectification on the images to reduce or eliminate the aberrations and distortion prior to
further processing (Richards and Jia 1999). The methods of geometric correction, image
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registration, and orthorectification have been developed recently for different applications
with various terrain conditions (Toutin 2004; Dave, Joshi, and Srivastava 2015). Geometric
correction and image registration can effectively correct geometric distortions, when applied
to images acquired from relatively flat terrain. For study areas with undulating terrains, where
image distortion caused by terrain properties is more difficult to eliminate, orthorectification
methods are developed to address these terrain-caused distortions (Tao and Hu 2001a).

The common process in both geometric correction models and orthorectification
models is collecting corresponding ground control points (GCPs) in a study area. GCPs
are mainly collected from GIS data and remote-sensing images and essentially contain
errors due to the errors in data acquisition. Such errors will then propagate towards the
corrected image during geometric correction and orthorectification and lead to biased
coefficient estimation (Ge et al. 2006; Tong, Jin, and Li 2011; Ge et al. 2012; Wu et al.
2015). Recently, a series of studies on addressing errors in coefficients for geometric
correction has been conducted. Methods based on consistent adjusted least squares
estimation, relaxed consistent adjusted least squares estimation (Ge et al. 2006), total
least squares (TLS) (Ge et al. 2006; Wansbeek and Meijer 2000; Van Huffel and
Vandewalle 1991; Matei and Meer 2006), and scale TLS (STLS) were designed. The
above methods are based on the errors-in-variables (EIV) model and address indepen-
dent variables that contain errors (Ge et al. 2012). Among them, STLS estimation is
effective in determining the relative error sizes of response and explanatory variables by
including a scaling factor (Paige and Strakoš 2002). However, the precision of GCPs may
vary in image registration, when some GCPs are simultaneously obtained from both fine
scale and coarse-scale maps (Wu et al. 2015), resulting in measurement errors having a
non-identical distribution. This situation cannot be effectively addressed by STLS estima-
tion (Likar and Pernuš 1999; Abdelsayed, Ionescu, and Goodenough 1995). To solve this
problem, weighted total least squares (WTLS) estimation was proposed to address
heteroscedastic data structures in the EIV model (Markovsky et al. 2006), and iteration
weight TLS estimation as a more effective and robust method for geometric correction
(Wu et al. 2015) was further investigated.

Orthorectification models for remote-sensing images primarily include collinear equa-
tion models, 3D polynomial models, and rational function models (RFMs). RFMs are
commonly used as non-linear models and widely applied for processing various types of
sensors (Toutin 2004). RFMs need to be linearized before performing remote-sensing
image orthorectification (Tao and Hu 2001a; Dowman and Dolloff 2000). At present, two
primary RFM linearization methods are commonly used (Dowman and Dolloff 2000), but
their relationships and applicability have not been discussed before. Moreover, LS
estimation is commonly adopted in RFMs linearization. When GCPs contain errors, LS
estimator is no longer applicable to solve the biased estimation of model coefficients,
which should be addressed by EIV model. In addition, little research has been carried out
on the impact of GCPs with errors exhibiting a heteroscedastic structure on the orthor-
ectification for remote-sensing images.

To overcome the above problems, this article introduces the Ortho-WTLS method for
RFMs to perform remote-sensing image orthorectification. It addresses the heterosce-
dastic error structure of GCPs and handles biased estimation in orthorectification. In this
article, two RFM linearization methods, together with their relationships, are first intro-
duced and a hybrid linearized RFM is comparatively derived. The proposed Ortho-WTLS
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method estimates the RFM coefficients based on WTLS and the structure of the hybrid
RFM; thus, the errors of the observation and the errors of the coefficients are both taken
into consideration. Furthermore, the effectiveness of the Ortho-WTLS is validated with
simulated and real remote-sensing images. Finally, the impacts of the quantity and the
quality of GCPs on the precision of orthorectification are analysed.

2. Ortho-WTLS method for image orthorectification

2.1. RFM theory

The RFM provides image coordinates Ux;Uy
� �

as the ratios of polynomials, with the
independent variables related to the corresponding ground coordinates Gx;Gy;Gz

� �
.

The highest order is usually taken to be equal to three. The model equation is
(Consortium 1999; 2004; Yang 2000; Tao and Hu 2001b)

Ux ¼ P1 Gx ;Gy ;Gzð Þ
P2 Gx ;Gy ;Gzð Þ ¼

HaT
HbT

Uy ¼ P3 Gx ;Gy ;Gzð Þ
P4 Gx ;Gy ;Gzð Þ ¼

HcT
HdT

8><
>: (1)

where a, b, c, and d are rational polynomial coefficients (RPCs), i.e. coefficient vectors of
the RFM, and H is the vector composed of ground coordinates. Third-order polynomial is
most commonly used in an RFM.

Equation (1) expresses the relationship between the true value of the pixel coordinate
Ux;Uy
� �

and that of Gx;Gy;Gz
� �

. Due to measurement errors associated with the image

coordinate ε ¼ εx; εy
� �

and those with the ground coordinate δ ¼ δx; δy; δz
� �

, only the

corresponding observations are available, recorded as u ¼ ux; uy
� �

and m is the vector

composed of ground coordinates gx; gy; gz
� �

. Therefore, themeasurement errors correspond-
ing to the RFM are therefore expressed as

εx ¼ ûx � ux ¼ P1 gx ;gy ;gzð Þ
P2 gx ;gy ;gzð Þ � ux ¼ maT

mbT � ux

εy ¼ ûy � uy ¼ P3 gx ;gy ;gzð Þ
P4 gx ;gy ;gzð Þ � uy ¼ mcT

mdT � uy

8><
>: (2)

The RFM is clearly a non-linear equation with unknown coefficients, and LS together
with its generalizations (WLS, TLS, or WTLS) are effective tools for its linear iteration.

2.2. A hybrid RFM linearization

Two RFM linearization methods, together with their relationships, will be introduced in
this section. The first method is an iteration of initial values. Initial values are set, and then
the linearized RFM is calculated iteratively (Tao and Hu 2001a; Gong and Zhang 2003). The
error equation of ux derived from (2) equals

εx ¼ ûx � ux ¼ maT

mbT
� ux (3)

Linearizing (3) with the initial value iteration method results in Equation (4).
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εx ¼ maT

mbT
� ux
mbT

mbT ¼ m; �uxm½ � aT; b0T
� �T

mbT
� ux
mbT

(4)

where b0 is a vector defined by the relationship: mb0T þ 1 ¼ mbT. Setting D ¼ mbT,

βx ¼ aT; b0T
� �T

, and v ¼ m; �uxm½ �, we obtain

εx ¼ v
D
βx �

ux
D

(5)

Equation (5) is the RFM error equation including pixel coordinates and plane coordi-
nates. The matrix form of the error equation is given by Equation (6) where sample data
of n GCPs are substituted into Equation (5),

εx ¼ D�1vβx � D�1ux (6)

where εx ¼ εx1 ; εx2 ; . . . ; εxn½ �T, v ¼ v1; v2; . . . ; vn½ �T, ux ¼ ux1 ; ux2 ; . . . ; uxn½ �T, and

D�1 ¼ diag D�1
1 ;D�1

2 ; . . . ;D�1
n

� �� �
. To iteratively process Equation (6), the initial value

D�1 0ð Þ
of D�1 is set as a unit matrix, resulting in a linear equation. LS is used to derive

the initial value of the RPC β 0ð Þ
x , where β 0ð Þ

x ¼ ða 0ð ÞÞT b0 0ð Þ
� �T� 	T

. Next, D�1 1ð Þ ¼

diag 1=vib
0ð ÞT

� �
is obtained, and βx

1ð Þ is derived from LS estimation. Iteration is repeated

until all correcting numbers are smaller than a given threshold. This iteration process for
RFM linearization, however, is complex because it requires both initial values and
performing the iterative calculations.

Another linearization method can be found in Qin et al. (2005) and Dowman and
Dolloff (2000). This method transforms Equation (1) as

Fux ¼ P1 Gx;Gy;Gz
� �� uxP2 Gx;Gy;Gz

� � ¼ 0:

Then the corresponding error equation equals

Dεx ¼ vβx � ux (7)

The term βx ¼ ATA
� ��1

ATux is derived using LS, where A ¼ @Fux
@ai

@Fux
@bk

h i
(i = 0, 1, . . ., 19;

k = 1, . . ., 19). We found that although the two methods are different in terms of the

calculations, if DDT is positive definite, the characteristics of matrix and structures of
Equations (6) and (7) and their derivations are identical.

To benefit from the advantages of the two linearization methods, the hybrid linear-
ized RFM can be derived as

ux ¼ vβx � Dεx (8)

Below, WTLS is used to obtain the coefficients in this hybrid model.

2.3. Estimating RFM coefficients with iteration computation

2.3.1. WTLS estimation
The WTLS estimator is used to estimate the RFM coefficients of the hybrid RFM.
Compared to LS, the main advantage of WTLS is that it considers both errors of the
observation vectors and errors of the coefficients. The derivation of WTLS estimation is
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summarized as follows. In the EIV model, the observation equation is expressed as (Ge
et al. 2006; Paige and Strakoš 2002; Schaffrin and Wieser 2008)

u ¼ v� Evð Þβ� εu (9)

where u 2 Rn�1 is the observation vector of dependent variable, εu 2 Rn�1 is the obser-

vation error in dependent variable, β 2 Rk�1 is the parameter vector, v 2 Rn�k is the

observation matrix based on independent variable (n > k), and Ev 2 Rn�k is the random
error matrix of v.

Distributional characteristics of εu and Ev are equal to

εu
εv ¼ vec Evð Þ
� 	

, 0
0

� 	
; σ20

Qu 0
0 Qv

� 	
 �
(10)

where vec(.) is matrix straightening, σ20 is the variance of the unit weight, and Qv and Qu

are the variance–covariance matrices (inverse weight matrices) of εu and εv, respectively.
The relevant equations are

Qv ¼ P�1
0 ; Qu ¼ Q0 � QE (11)

in which Q0 2 Rk�k; QE 2 Rn�n and � is the direct product of matrices. The result of the
direct product is the variance–covariance matrix of errors in v. This results in the
objective function of WTLS as

ΦWTLS ¼ εu
TQ�1

u εu þ εv
TQ�1

v εv ¼ εu
TPuεu þ εv

T Q0 � QEð Þεv: (12)

To solve (12), we construct the following objective function based on Lagrange extreme
conditions (Schaffrin and Wieser 2008; Schaffrin 2006),

Φðεu; εv; λ;βÞ ¼ εuTPuεu þ εvT Q0 � QEð Þεv
þ 2λT u� vβ� εu þ βT � In

� �
εv

� � (13)

where λ 2 Rn�1 is the Lagrange operator and Evβ ¼ βT � In
� �

εv. Here, an iterative
process is used to estimate the parameters of the Lagrange equations.

Step 1: Initial values definition.

N ¼ vTv; C ¼ vTu

β̂
0ð Þ ¼ N�1C

β̂
1ð Þ ¼ vT Qu þ β̂

0ð Þ� �T
Q0β̂

0ð Þ
QE

�1v


 �
vTðQu þ β̂

0ð Þ� �T
Q0β̂

0ð Þ
QE


 ��1

u

8>>><
>>>:

(14)

Step 2: Iterative process.

θ ið Þ ¼ Qu þ β̂
ið Þ� �T

Q0β̂
ið Þ


 �
QE


 ��1

λ̂
ið Þ ¼ θ ið Þ u� vβ̂

ið Þ� �
r ið Þ ¼ λ̂

ið Þ� �T
QEλ̂

ið Þ

β̂
iþ1ð Þ ¼ vTθ ið Þv� r ið ÞQ0

� ��1
vTθ ið Þu

8>>>>>>>>><
>>>>>>>>>:

i ¼ 1; 2; 3; . . .ð Þ (15)

This process will repeat until β̂ ið Þ � β̂ i�1ð Þ<τ, where τ is a given threshold.
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2.3.2. WTLS-based RFM coefficients estimation and iterative computation
WTLS takes into consideration the coordinate errors of image points and the errors of
the coefficients. In the proposed model, they are derived from the errors of the observed
coordinates of the image point u ¼ ux; uy

� �
, and of the observed geodetic coordi-

nates g ¼ gx; gy; gz
� �

.
In addition to the matrix error given by the GCP error of the coefficients v, errors also

appear in Equation (8) during its construction. Since errors in D are caused by m, which
is a part of v, the errors in D will be reduced by minimizing errors in v. To simplify the
problem, the errors in D are ignored, and only the corresponding error matrix of v is
considered.

Analogously, based on the parameters defined in Section 2.1, we have the following
relationship:

ux ¼ Ux � εx
v ¼ V � εv

�
(16)

Given n (n � 39) GCPs, the matrix form of the EIV regression model equals

Ux ¼ Vβx
Ux ¼ Ux � εx
v ¼ V � Ev

8<
: (17)

Furthermore, by introducing the hybrid RFM linearization defined in Equation (8), the
linear EIV model will be represented as

ux ¼ vþ Evð Þβx � ε0x ¼ vþ Evð Þβx �MBTεx:

where M ¼ m1;m2; . . . ;mn½ �T and B ¼ b1;b2; . . . ;bn½ �T . The property of the errors is

ε0x
εv

� 	
, 0

0

� 	
;

MBT MBT
� �TP

εx
0

0
P

Ev

" # !
¼ 0

0

� 	
; σ20

MBT MBT
� �T

Pεx 0
0 PEv

� 	
 �

We record
P

ε0x ¼ MBT MBT
� �TP

εx
and Pε0x ¼ MBT MBT

� �T
Pεx , where Pεx ¼ P0;εx � Pεx ,

PEv ¼ P0;Ev � Pδ, and P0;εx / diag σ2εx

� �
. To simplify the formulation of P0;EV , we can set

ðΔ1;Δ2;Δ3;Δ4Þ¼Δ ðδz; δy; δx; εxÞ, where δ ¼ δx; δy; δz
� �

correspond to errors in ground

coordinate and ε ¼ εx; εy
� �

is the error in image coordinate. According to the variance
covariance propagation law, the polynomial and structure of V, it can be derived that

P0;Ev / diag
P4
1

@ Ev 1½ �ð Þ
@Δi

P4
1

@ Ev 2½ �ð Þ
@Δi

� � � P4
1

@ Ev 39½ �ð Þ
@Δi

� 	
 �
:

where Ev j½ � is the jth element of Ev; j ¼ 1; 2; . . . ; 39. Thus, the objective function of
WTLS-based RFM estimation turns into

ΦWTLS β̂x WTLS

� �
¼ ε0x

TWε0xε
0
x þ εv

TWEvεv (18)
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where Wε0x ¼ W0;εx �WεxW0, WEv ¼ W0;Ev �Wδ, W0;εx ¼ P�1
0;εx ,

W0;Ev ¼ P�1
0;Ev ,W0 ¼ MBT MBT

� �T� ��1
and,

Wεx ¼ P�1
εx

¼ σ20
P�1

εx
¼ diag wεx1

;wεx2
; . . . ;wεxn

� �
;wεxi

¼ σ20

.
σ2εxi

Wδ ¼ P�1
δ ¼ σ20

P�1
δ ¼ diag wδ1 ;wδ2 ; . . . ;wδnð Þ;wδi ¼ σ20

.
σ2δi

8<
: i ¼ 1; . . . ; n:

The solution β̂xWTLS is the WTLS estimation of the EIV model in the x direction.

Similarly, estimation in the y direction can also be derived, recorded as β̂yWTLS.

Therefore, the WTLS estimator for hybrid RFM-based image orthorectification is deter-

mined as β̂WTLS ¼ β̂x WTLS; β̂y WTLS

� �
. The WTLS estimator has no analytic closed-form

solution in the general case; therefore, a numerical iterative optimization method can be
employed to find the solution.

3. Experiments using a simulated data set

In this section, a simulation experiment is conducted with controlled settings to demon-
strate the effectiveness of WTLS for RFM coefficients estimation. Estimation performance
is assessed by comparing the results of simulation experiments using both LS and WTLS.

3.1. Design of simulation experiment

Four sections are included in this section: data preparation, adding errors and weight
determination for GCPs, estimation and image correction, and precision evaluation.
Orthorectification uses RFM to convert the reference image to the distortion image,
and errors in the x, y, and z directions are simultaneously added to reference GCPs.

3.1.1. Data preparation
Elevation of the GCP is considered in the third-order RFM. Therefore, elevation values of
pixels are randomly generated for the reference image to produce the corresponding
elevation data. The simulated data in this experiment are with three dimensions but the
generation of the distortion images is adapted from the idea of our previous works in Ge
et al. (2012) and Wu et al. (2015). That is, the RFM coefficients β are known and used to
transform the elevation data and the reference image, with a spatial resolution of 3 m
and a size of 400 × 400 pixels, to obtain a corresponding system distortion image.

3.1.2. Adding errors and weight determination for GCPs
Error-free RCPs and TCPs (target GCPs) are generated from the reference image and
distortion image, respectively. For validation, random errors are added to GCPs,

gx ¼ Gx þ δx ¼ Gx þ σδx � r � Sxy
gy ¼ Gy þ δy ¼ Gy þ σδy � r � Sxy
gz ¼ Gz þ δz ¼ Gx þ σδz � r � Sz

8<
: (19)

where Sxy ¼ 1m and Sz ¼ 5m denotes the resolutions in the x, y directions and z
direction, respectively. r denotes a random number from a standard normal distribution
N(0,1). The errors of the RCPs in the x, y, and z directions follow the normal distributions
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N 0; σ2δx

� �
, N 0; σ2δy

� �
, and N 0; σ2δz

� �
, respectively, and their standard deviations σδx , σδy ,

and σδz are determined by

σδx ¼ σδ � cos θ1;δ
� �� cos θ2;δ

� �
σδy ¼ σδ � sin θ1;δ

� �� cos θ2;δ
� �

σδz ¼ σδ � sin θ2;δ
� �

8<
: (20)

where σδ, θ1;δ, and θ2;δ follow the uniform distributions,

σδ ,U 0; σδ;max
� �

θ1;δ ,U 0; 2π½ �
θ2;δ ,U 0; 2π½ �

8<
: (21)

According to the definition of the optimized weight for WTLS, the weights of the GCP
containing errors u ¼ ux; uy

� �
and g ¼ gx; gy; gz

� �
are

ωε ¼ σ20=σ
2
ε

� �
normalized

ωδ ¼ σ20=σ
2
δ

� �
normalized

�
(22)

where the variance scalar σ20 is equal to 1.

3.1.3. Image correction and precision evaluation
The GCP data and their weights are centralized first; afterwards the input data are set to
the corresponding correction model, followed by the estimation of the model coefficient

β̂ ¼ β̂x; β̂y
� �

. Finally, a corrected image is obtained by using a correction technique.
Precision assessment is performed in two steps. (a) Coefficient estimation: the primary

indices for evaluating precision and robustness are the variance of the estimated
coefficient β̂, the bias, and the mean square error (MSE). (b) Correction error: the primary
indices are the root mean squared error (RMSE) of the verification points (VPs) and the
spatial variation (SV). For precision assessment, 32 VPs are chosen.

3.2. Results of simulation experiment

To validate the effectiveness of the proposed WTLS estimator, comparison has been
conducted with LS and WLS. Monte Carlo simulation is used to express the uncertainties
with a predefined input probability distribution. In this article, the Monte Carlo simula-
tion was repeated 10,000 times on adding errors and weight determination.

3.2.1. Analysing estimated coefficients
Table 1 shows the mean values of the estimated coefficients. Figure 1 illustrates the
variance, bias, and MSE in the different directions and calculated with LS, WLS, and WTLS
for the Ortho-WTLS model. The variances in the x and y directions obtained with WTLS

Table 1. Summary of RMSE and SV of a 10,000-run Monte Carlo test.
Estimator RMSE (m) SV (m2)

LS 1.3664 ± 0.3457 0.9675 ± 0.6722
WLS 1.1065 ± 0.2852 0.5841 ± 0.4106
WTLS 1.0397 ± 0.2838 0.5804 ± 0.4374

7288 Y. GE ET AL.

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
] 

at
 0

1:
19

 1
2 

Se
pt

em
be

r 
20

17
 



are equal to 0.0124 and 0.1216, and those calculated using LS are 0.0335 and 0.1894,
WLS are 0.0201 and 0.1649, respectively. It demonstrates that WTLS is more robust when
estimating coefficients as compared to LS and WLS. Biases and MSE in the two directions
also show the superiority of the WTLS. Less bias is obtained by WTLS estimation because
LS estimation is inconsistent and asymptotically biased if the RCP coordinates contain
errors. In addition, the RMSE of WTLS is lower than that of LS and WLS, implying that
WTLS is less affected by outliers. To conclude, WTLS provides a better coefficient
estimation.

3.2.2. Error analysis
The precision indices, i.e. RMSE and SV, are discussed to further test the performance of
image correction. Figures 2 and 3 show the RMSE and SV values for 200-run intervals of the
10,000-run Monte Carlo simulation experiment. The results are summarized in Table 1. As
observed from Figure 2 and Table 1, the RMSEs calculated using WTLS are smaller than
those calculated using LS and WLS, which reveals the superiority of WTLS in reducing
correction errors. In addition, the errors produced by the WTLS estimator distribute more
uniformly across the image, since the SV values of WTLS are smaller compared to LS and
WLS, as can also be observed from Figure 3 and Table 1. When applied to the simulated

Figure 1. Comparison of estimated coefficients: variance, bias, and MSE values of the estimated βx
and βy .
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image, WTLS provides a more robust parameter estimation for the RFM-based orthorecti-
fication and has a higher correction precision, compared with LS and WLS estimation,
which cannot address the case wherein the RCP contain errors. In general, the Monte Carlo
test shows that RSE and RMSE values of GCPs are large when they are located at the edges.

Figure 2. RMSE of a 10,000-run Monte Carlo test.

Figure 3. SV of SME of a 10,000-run Monte Carlo test.
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4. Experiments with a remote-sensing image

Compared with simulated images, distortions are more complex in remote-sensing
images, leading to difficulties in recognizing and matching the corresponding points,
especially if the spatial resolutions of the images are varied. Different from the manual
collection in simulated experiment, the GCPs are commonly selected automatically
(Abdelsayed, Ionescu, and Goodenough 1995; Likar and Pernuš 1999) using software
such as ENVI. However, this may cause diverse precisions of errors of corresponding
points and thus influence the correction precision. Therefore, we apply the proposed
Ortho-WTLS method to real remote-sensing images to reduce the impact of heterosce-
dastic error contained in GCPs on orthorectification.

4.1. Image data

The test remote-sensing image was obtained from the Gaofen-1 satellite image covering
the northwest region of Beijing (Changping County and Yanqing County) (Figure 4(a)). It
was captured on 26 October 2013, with 16 m spatial resolution. The longitude and latitude
of the top right corner of this image are 116°29′24.11″E and 40°41′31.07″N, and those of the
lower left quarter of this image are 115°36′54.18″E and 40°1′21.52″N, respectively. The
northeast and southwest regions are mountainous, and the southeast region is a plain. Due
to the terrain fluctuations with elevation ranging from 20 to 2075 m, this region is fit for
orthorectification experiment. To match the distortion image region, a corrected Landsat-8
image with a spatial resolution of 15 m obtained on 4 November 2013, is selected as the
reference image (Figure 4(b)). The corresponding DEM is downloaded from an SRTM DEM
and has a spatial resolution of 90 m (available here: http://www.gscloud.cn); these data
were resampled to a consistent spatial resolution of 15 m for reference.

4.2. Basic steps of image orthographic correction

Step 1: Model selection. A third-order RFM is used for distortion image orthographic
correction.

Figure 4. (a) Image I (the study area for correction: Gaofen-1 image) and (b) Image II (reference
image: Landsat-8 image).
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Step 2: GCP collection and weight determination. GCPs are automatically collected using
automatic registration, by applying the image-to-image function in the MAP module of the
ENVI4.8 software. Incorrectly matched GCPs and GCPs with large RMSEs (about 3 times the
pixel’s spatial resolution) are removed to reduce the errors. Different from simulation experi-
ment, the weights of the GCPs are unknown in this image. Therefore, an adaptive optimiza-
tion weight determination method is used to calculate the weights. First, an equal weight is
set for each GCP during WTLS estimation initially. Then, the weight adjustment algorithm
(Holland and Welsch 1977; Huber and Ronchetti 1981) is applied for estimating weights so
that the weights of the GCPs can be revised. The primary idea is to estimate weights in the
next step with the square error regression method after calculating the coordinate residuals
of the RCP and TCP. However, due to the limitation of the RFM expression, the weights of the
GCPs in the z direction, namely ûz, cannot be estimated using the adaptive iteration method
directly. This limitation lies in the relationship between the RCP gx; gy; gz

� �
and the TCP

ux; uy
� �

in the RFM that could only be estimated in x and y directions and can’t be
calculated in z direction. Therefore, to obtain the weights of the GCPs in the z direction,
two procedures are adopted: (1) assuming no error occurs in GCPs in the z direction and only
errors contained in the x and y direction; (2) using available GCPs of a higher accuracy in the z
direction to assess the accuracy of GCPs in the z direction used in the RFM.

Step 3: Model estimation and image orthographic correction. Identical to the simulation
experiment, LS, WLS, and WTLS are used to estimate the coefficients of the RFM. An
orthographically corrected image is generated with the estimation method and resam-
pling technique.

Step 4: Precision evaluation. The true values of the coefficients β ¼ βx;βy
� �

and the
true values of the reference VP coordinates are not available in real-world experiments.
Therefore, statistical precision evaluation is used for correction. The true coordinate of
the RCP G ¼ Gx;Gy;Gz

� �
is replaced by the observed coordinate g ¼ gx; gy; gz

� �
to

calculate the RMSE, in which the RSE of each VP is calculated as

RSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝx � gxð Þ2 þ ĝy � gy

� �2
þ ĝz � gzð Þ2

r
(23)

Because ĝz is difficult to obtain as a result of the limitation of the RFM in this article,
errors in the z direction are ignored, and Equation (23) can be written as

RSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝx � gxð Þ2 þ ĝy � gy

� �2r
(24)

4.3. Experiments

Three experiments are designed based on the above steps.

4.3.1. Experiment 1
To verify the orthorectification performance in flat area, the observations of the GCPs in
the z direction are assumed to be without errors in this part. Thus, only the random
errors in the x and y directions of the GCPs are considered.
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According to step 2, data in this experiment are derived from the pre-processed GCPs
automatically extracted by ENVI4.8. These data include 75 VPs with small residuals within
0.01 pixels, and 375 GCPs with a mean residual of 0.9 pixels, and a maximum residual of
1.2703 pixels. RMSE and SV values derived from the compared estimators with respect to
increasing number of GCPs are plotted in Figures 5 and 6.

Figures 5 and 6 show that the increase in number of GCP pairs has a positive effect on
registration precision to different extents. With an increasing number of GCPs, RMSE and
SV values derived from the compared methods exhibit downward trends. We can also
observe from Figure 2 that, compared with LS estimation, WTLS and WLS provide a more
robust parameter estimation for the RFM-based orthorectification model. Benefit from
the consideration of heteroscedastic data structures, WTLS outperforms WLS in terms of
the correction precision. This superiority becomes more obvious when providing suffi-
cient GCPs. A more detailed discussion on the impact of the number of GCPs, as well as
the properties of LS and WTLS, is drawn in Part 5.

4.3.2. Experiment 2
In this part, data are considered to contain random errors in the x, y, and z directions as
is the case in practice. The DEM with a spatial resolution of 25 m is regarded as the
reference and is used to evaluate the errors of the SRTM DEM with a spatial resolution of
90 m. This relative error, together with the errors in x and y directions derived from the
adaptive iteration method, is used to calculate the weight of each GCP and is introduced
into the model calculation to verify the property of WTLS that the heteroscedastic data
structures could be addressed.

Figure 5. RMSE values derived from LS, WLS, and WTLS with increasing number of GCPs (without
considering errors in the z direction).
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Figure 7(a) and Table 2 show that the RMSE value derived by WTLS (14.172 m) is
larger than that by LS (11.031 m) if 50 GCP pairs are used; however, the RMSE values
obtained by WTLS are all smaller than those obtained by LS if more than 75 GCP pairs
are used. This result proves that WTLS performs inferior to LS if a small number of GCP
pairs are used. As Figure 7(b) shows, although errors in the z direction have impact on
WTLS method, leading to high RMSE values, those values are still lower than those
obtained by LS if the numbers of GCPs are larger than 75. A primary reason to this
phenomenon is that the quality of GCPs deteriorates for WTLS by adding errors in the z
direction but LS is less affected, whereas due to robustness of WTLS in dealing with
errors in GCPs, WTLS achieves better accuracy of errors in the z direction than LS when
the number of GCPs increases. It should be noted that WLS slightly outperforms WTLS
when the number of GCPs exceeds 175. Inferred from the error distribution map of GCPs
in Figure 8, gross errors appear in the observation data (for instance, greater gross errors
exist in z direction than x, y direction). The presence of gross error or errors with large
variance has a negative effect on WTLS, resulting in a large deviation in the estimation
from the true value. A further study on the weighting factor function will improve the
robustness of WTLS for gross errors and errors with large variance.

The above results indicate that increasing the number of GCPs is beneficial for
improving the orthorectification precision, if the levels of the GCP errors are similar,
and the precision becomes stable if the number is sufficiently large (>375).

4.3.3. Experiment 3
Both quantity and quality of the GCPs on correction are considered in this experiment. A
total of 400 GCPs with an average standard deviation of 1.4 pixels are recorded as GCP-

Figure 6. SV values derived from LS, WLS, and WTLS with increasing number of GCPs.
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II-type data, where 125 GCP data sets with an average standard deviation of 0.9 pixels
used in experiment 1 are recorded as GCP-I-type data. In this experiment, GCP-I-type

Figure 7. RMSE values derived from LS, WLS, and WTLS with increasing number of GCPs. (a) Results
considering errors in the z direction. (b) Comparison on the results derived with and without
considering errors in the z direction.

Table 2. RMSE and SV results of remote-sensing experiment 2.
Estimator RMSE (m) SV (m2)

LS 4.8270 10.2400
WLS 2.9401 2.7116
WTLS 3.0719 4.3136

Figure 8. Distribution map of the errors in x, y, and z direction for GCPs used in experiment 2.
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data are used initially, and RMSE values are calculated for LS, WLS, and WTLS with the
number of GCPs increasing from 50 every 25 to 125. Then, the data sets of 25 uniformly
distributed GCP-II-type are added to the 125 GCP-I-type data sets each time, and the
corresponding RMSE values for the three estimators are calculated until the number of
GCP-II-type data reaches 400. Finally, the effects of the quantity and quality of the GCPs
on the orthorectification performance are analysed before and after gradually adding
GCP-II-type data, and the performance of LS, WLS, and WTLS is evaluated.

Figure 9 illustrates that the correction result using LS with 125 GCPs of type-I data
containing small errors can achieve a relatively low RMSE value of 5.4448 m; however,
this value fluctuates after type-II data with large errors are gradually added. The RMSE
value of LS first increases with the adding of GCP-II-type but decreases when the
number of GCPs reaches 275. When the number of GCP-II-type data is sufficiently
large, the RMSE value remains constant at 5.9 m. For the result generated by WLS and
WTLS, the RMSE value decreases and becomes stable with the increase in GCP-II-type
data. Compared to WLS, WTLS is more robust to the GCPs quality due to its considera-
tion of heteroscedastic data structure. According to this result, the quality of the GCPs
plays a more important role in image correction than its quantity for LS, whereas for WLS
and WTLS, the effect of the quantity of GCPs is larger than that of the quality.

To conclude this section, the performance of LS, WLS, and WTLS are compared in the
first experiment by only considering the random errors in the x- and y-direction. In order
to establish a comparison close to the real-world condition, the second experiment
considers the random errors in the z-direction in the simulation, and results shown in
Table 2 confirm the superiority of the WTLS method. According to the first two

Figure 9. RMSE values of LS, WLS, and WTLS results when 25 GCPs of II type are gradually added to
the 125 GCPs of I type (GCPs of I type: average standard deviation of approximately 0.9 pixels; GCPs
of II type: average standard deviation of approximately 1.4 pixels).
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experiments, the number of GCP pairs significantly influences orthorectification if the
levels of the GCP errors are similar. In the last experiment, WTLS exhibits better accuracy
than the compared methods with increasing number of GCPs of different precision
levels, which briefly validate the robustness of the proposed WTLS.

4.4. Discussion

The above experiments show that WTLS can be reliably applied to orthorectification of
real remote-sensing images, since it can effectively process errors with a heteroscedastic
structure, with flexible weights strategy to balance the significances of RCPs and TCPs
with various collecting precisions. Experimental results imply that the quantity and
quality of GCPs play important roles in the orthorectification process. Detailed analyses
on the impact of the GCPs’ location errors and GCPs number have been discussed
below.

4.4.1. Impact of the errors on the GCPs’ location
In these experiments, the spatial resolution of the orthorectification image was 16 m,
and that of a reference image was 15 m. During the GCP collection process, different
spatial resolutions between the distortion image and the reference image resulted in
difficulties when determining the precise locations of corresponding RCPs of TCPs. Thus,
the location errors of the GCP pairs automatically collected with ENVI4.8 are inconsistent,
even leading to incorrect image matching. Although we have removed the GCP pairs
with large matching errors and assumed that the residual GCPs are properly matched,
location errors were introduced and affected the estimation accuracy.

Assuming no errors in the z direction of the GCP data and that errors only occur in the
x and y directions, it has been shown the superiority of image orthorectification with
heteroscedastically structured errors within RCPs by comparing RMSE and SV values in
Experiment 1. To further test the orthorectification of real GCP data, DEM data with high
spatial resolution were used in Experiment 2 to depict errors in the z direction. Figure 10
and Table 2 show that if 50 GCP pairs are used, the SV value of the WTLS is larger than
that of LS and WLS; however, it decreases if more than 75 pairs are used. For the 375-
GCP-pair case, the SV value of WTLS (4.31 m) decreases by 57.91% as compared to LS
(10.24 m). These results demonstrate that, when considering the error in the z direction,
WTLS still performs better than LS in terms of RMSE and SV during image orthorectifica-
tion if a large (>75) number of GCP pairs are used. These results indicate that WTLS is
superior than LS in orthorectification if all types of GCP errors are considered.

The result obtained in Experiment 3 further shows that WTLS is preferable in addres-
sing GCPs containing large errors and provides a more robust estimation than LS and
WLS. According to Figure 10, the quality of the GCPs plays a more important role in
image correction than its quantity for LS, whereas for WTLS, the effect of the quantity of
GCPs is relatively larger than that of the quality.

4.4.2. Impact of the numbers of GCPs on the orthorectification precision
Experiment 1 shows that the RMSE and SV values derived from LS, WLS, and WTLS
methods exhibit downward trends, with respect to the increase in GCPs numbers.
According to Figure 5 and Figure 6, the rate of decrease is high if 50–150 GCPs are
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used, whereas the rate is low for higher numbers. In particular, if more than 250 GCPs
are used, the trend for the result is stable for LS. The figures suggest that WLS and WTLS
perform better than LS, and their improvement will be enhanced if the number of GCPs
is sufficiently large. This demonstrates the impact of the numbers of GCPs on the
orthorectification precision. Next, WTLS is evaluated with 375 GCPs. In Table 3, the
RMSE and SV values derived by WTLS are equal to 2.2926 m and 2.0790 m2, representing
decreases of 52.50% and 79.70% compared with those obtained by LS, i.e. 4.8270 m and
10.2400 m2. Those derived by WLS are 2.9418 m and 3.7864 m2. For LS, only the errors in
the TCPs are considered; those in the RCPs are not, leading to inaccurate coefficient
estimation. In addition, orthorectification of WTLS estimation is more precise.

According to Figure 7 obtained in experiment 2, if the number of GCPs increases, the
advantage of WTLS on image orthorectification becomes more obvious by comparing
the RMSEs containing estimation bias of DEM, i.e. Equation (23). In particular, if 375 pairs
are used, the RMSE value derived by WTLS (3.0719 m, 44.30% are derived by the part of
bias in the z direction) decreases by 36.36% compared to that derived by LS.

Moreover, GCPs with different precision levels were used in experiment 3 to further
validate the effectiveness of the proposed method. The comparison demonstrates that
orthorectification precision can be improved and becomes stable with an increasing

Figure 10. SV values derived from LS, WLS, and WTLS experiments with increasing number of GCPs.

Table 3. RMSE and SV results of remote-sensing experiment 1.
Estimator RMSE (m) SV (m2)

LS 4.8270 10.2400
WLS 2.9418 3.7864
WTLS 2.2926 2.0790
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number of GCPs if the observation precisions of the GCPs are identical. If low-precision
GCPs are added to a high-precision GCP data, orthorectification precision may not
improve. In addition, WTLS is robust for processing such GCPs with highly different
error precisions; however, LS is sensitive to such data.

It is common in practice that large amount of GCP pairs can be collected automati-
cally or manually but are in different precision levels. According to the above experiment
results, the proposed WTLS technique is robust to the quantity and quality of GCPs and,
thus, potential to provide more precise orthorectification results.

5. Conclusion

In this article, a new RFM based on WTLS estimation is presented for orthorectification of
remotely sensed image, aiming at addressing the case that RCPs and TCPs have hetero-
scedastically structured errors. This commonly happens if the coordinates of the RCPs
and TCPs contain errors of an unequal accuracy, e.g. when they are acquired manually or
automatically. The proposed Ortho-WTLS method is designed to address the challenge
of a biased sample. This study showed that it can obtain more precise and robust
orthorectification results than using commonly used LS and WLS in terms of variance,
bias, and MSE values. In particular, the experiment considering real remote-sensing
images found that orthorectification results obtained from adaptive weight determina-
tion and WTLS-based RFM estimation is more reliable than LS-based RFM estimation,
which is validated by comparisons of RMSE and SV values. This article further tested the
impact of the quantity and quality of GCPs in image orthorectification. Results show that
both quantity and quality of GCPs played a key role in obtaining accurate estimation
results. Orthorectification precision increased with an increasing number of GCPs of
identical precision levels but remained stable after reaching a maximum value. For GCPs
of different precision levels, Ortho-WTLS could generate more stable and precise results.
In conclusion, Ortho-WTLS is an effective and reliable image orthorectification method
for the RCPs and TCPs containing heteroscedastically structured errors in the
coordinates.

The results obtained from the simulated and real remote-sensing images are encoura-
ging. It remains challenging to improve the efficiency of weight determination for GCPs.
A potential solution lies in the evaluation of the spatial weights of GCPs from local
neighbours by considering their spatial autocorrelations. This needs further study and
could be done by sample partitioning and adapt the evaluation procedures.
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