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Abstract
Objective: Many prediction models are developed by multivariable logistic regression. However, there are several alternative methods
to develop prediction models. We compared the accuracy of a model that predicts the presence of deep venous thrombosis (DVT) when
developed by four different methods.

Study Design and Setting: We used the data of 2,086 primary care patients suspected of DVT, which included 21 candidate predictors.
The cohort was split into a derivation set (1,668 patients, 329 with DVT) and a validation set (418 patients, 86 with DVT). Also, 100 cross-
validations were conducted in the full cohort. The models were developed by logistic regression, logistic regression with shrinkage by boot-
strapping techniques, logistic regression with shrinkage by penalized maximum likelihood estimation, and genetic programming. The
accuracy of the models was tested by assessing discrimination and calibration.

Results: There were only marginal differences in the discrimination and calibration of the models in the validation set and cross-
validations.

Conclusion: The accuracy measures of the models developed by the four different methods were only slightly different, and the 95%
confidence intervals were mostly overlapped. We have shown that models with good predictive accuracy are most likely developed by sen-
sible modeling strategies rather than by complex development methods. � 2012 Elsevier Inc. All rights reserved.
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1. Introduction

In clinical prediction research, patient characteristics,
test results, and disease characteristics are often combined
in prediction models to estimate the risk that a disease is
present (diagnosis) or will occur (prognosis) [1,2]. Model de-
velopment is a complex process and includes the selection
and coding of predictors, testing the need for transformations
of continuous predictors, and assessing the predictive
strength of predictors. A key warning in model development
is to be aware of the risk of overfitting. As a result of over-
fitting, the predicted risks will be too extreme in future pa-
tients; that is, low risks are too low and high risks are too
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high. This risk of overfitting particularly occurs in relatively
small data sets where too many predictors relative to the
number of events are studied [3e6]. A rule of thumb is that
at least 10 events are needed to consider one candidate pre-
dictor (with one degree of freedom) [5,7].

Many prediction models are developed with multivari-
able regression analysis [2,5,8]. Overfitting of prediction
models can be reduced by a priori limiting the number of
predictors and correcting the regression coefficients of the
predictors using a so-called shrinkage factor [3e6]. This
can be a heuristic shrinkage factor, which is based on the
fitted model chi-square (in case of regression) corrected
for the degrees of freedom that were considered [4]. Also,
bootstrapping methods can be used to estimate a shrinkage
factor [5,9]. In both methods, a uniform shrinkage factor is
estimated post hoc, which can be used to adjust all regres-
sion coefficients. Penalized maximum likelihood estimation
(PMLE) resembles logistic regression, except that the
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Table 1. Distribution of the 21 predictors and the outcome in the
derivation set and the validation set, n (%) unless stated otherwise

Patient characteristics
Derivation set
(n[ 1,668)

Validation set
(n[ 418)

Age (yr)a 60 (18) 61 (17)
Male gender, n (%) 603 (36) 165 (40)
Oral contraception use, n (%) 172 (10) 32 (8)
Hormonal replacement use, n (%) 32 (2) 8 (2)
Duration of symptoms (d)a 8 (9) 8 (7)
Absence of a leg trauma, n (%) 1,402 (84) 353 (84)
Previous DVT, n (%) 343 (20) 78 (19)
Family history of DVT, n (%) 341 (20) 96 (23)
Presence of a malignancy, n (%) 95 (6) 19 (5)
Immobilization, n (%) 217 (13) 61 (15)
Recent surgery, n (%) 198 (12) 62 (15)
Swelling whole leg, n (%) 727 (44) 205 (49)
Vein distension, n (%) 300 (18) 70 (17)
Pain in leg, n (%) 1,458 (87) 347 (83)
Pain when walking, n (%) 1,370 (92) 324 (78)
Oedema in leg, n (%) 1,039 (62) 271 (65)
Ill feeling, n (%) 315 (19) 85 (20)
Tender venous system, n (%) 1,213 (73) 299 (72)
Pregnancy, n (%) 38 (2) 8 (2)
Log (calf circumference)a 1.07 (0.52) 1.09 (0.51)
Log (D-dimer level)a 6.81 (1.16) 6.89 (1.14)
DVT present, n (%) 329 (20) 86 (20)

Abbreviation: DVT, deep venous thrombosis.
a Mean (standard deviation).
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regression coefficients are shrunk individually (nonuni-
form) and also directly during modeling [10e12]. This
nonuniform shrinkage is the major advantage of PMLE.

Other methods to develop prediction models are, for ex-
ample, classification and regression trees and neural net-
works. However, in medical data, it has been shown that
these types of prediction models often do not achieve higher
predictive accuracy [13e18]. Genetic programming, how-
ever, is a more novel and promising search method that
may improve the selection and transformation of predictors,
and it may lead to models with good predictive accuracy in
new patients [19e22]. The modeling process starts with
a large number of candidate prediction models that are step-
wise optimized by selecting the best models and adding ran-
dom variations (see also the Methods section). Although
a promising technique, critics state that genetic program-
ming is more prone to overfitting compared with conven-
tional development methods.

Only a few studies have compared models developed by
conventional logistic regression vs. models developed by
PMLE [3,12] or by genetic programming [19], and direct
comparisons are lacking. Using empirical data from a study
on the diagnosis of deep venous thrombosis (DVT), we
compared the results of four different prediction modeling
methods, namely logistic regression analysis without
shrinkage, logistic regression analysis with uniform shrink-
age, PMLE (nonuniform shrinkage), and genetic program-
ming (no shrinkage). To adhere to daily practice in which
methodological guidelines are followed, we explicitly
chose a sensible modeling strategy, in which precautions
to prevent overfitting were taken. All methods used a deriva-
tion set to develop the models and a validation set to test the
accuracy of the models.
2. Materials and methods

2.1. Data

Our clinical example concerns the prediction of the pres-
ence or absence of DVT. Timely diagnosis of DVT is im-
portant because patients with untreated DVT may develop
pulmonary embolism, whereas unjustified therapy with an-
ticoagulants poses a risk for major bleeding [23]. In pri-
mary care, the physician decides based on patient history,
physical examination, and usually the D-dimer value, which
patients should be referred to the hospital and which can be
safely kept under their own surveillance. A diagnostic pre-
diction model can aid physicians in this decision.

We used the data of a cohort of 2,086 primary care
patients with a suspicion of DVT that were included be-
tween 2001 and 2005, described previously in the literature
[24,25]. After patient history, physical examination, and the
D-dimer value were obtained (in total 21 candidate predic-
tors, see Table 1), all patients underwent repeated leg ultra-
sound as the reference method to determine the true
presence or absence of DVT. To compare the effect of the
different modeling strategies, we randomly split the cohort
into a derivation set (80% of the data: 1,668 patients,
329 with DVT) to develop the models and a validation
set (418 patients, 86 with DVT) to test the models
(Table 1).
2.2. Methods to develop the prediction models in the
derivation set

2.2.1. Logistic regression without shrinkage
Logistic regression was used to assess the association

between each continuous variable (age, duration of pain,
difference in calf circumstance, and the D-dimer value) with
the log odds of the presence of DVT. For each continuous
variable, restricted cubic splines with three knots were used
to model the relationship between the variable and the pres-
ence of DVT [5,6]. If the plot of the restricted cubic spline
showed that the association between the continuous predic-
tors and the outcome was not linear, the predictors were
transformed accordingly. Subsequently, all 21 candidate
predictors were included in a logistic regression model.
Backward stepwise elimination of the candidate predictors
was applied to fit the final prediction model. To eliminate
predictors from the model, we used the Akaike information
criterion. This implies that the increase in c2 has to be
larger than two times the degrees of freedom. When consid-
ering eliminating a predictor with one degree of freedom,
this corresponds to a P-value O0.157.
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2.2.2. Logistic regression with one uniform shrinkage
factor obtained by bootstrapping

The same modeling steps were followed as in the previ-
ous method. Subsequently, to obtain the uniform shrinkage
factor, bootstrapping techniques were applied [5,6]. We
drew 101 bootstrap samples from the derivation set. In each
bootstrap sample, the modeling process was repeated, in-
cluding testing for transformations and the backward step-
wise elimination of the candidate predictors. This resulted
in 100 models that were applied to the original derivation
set. The uniform shrinkage factor was the mean of the
100 calibration slopes (see also the description of the cali-
bration plots in the section ‘‘Accuracy measures’’). To
shrink the regression coefficients of the model, these were
multiplied with this shrinkage factor.
2.2.3. Logistic regression with nonuniform shrinkage by
PMLE

As in the conventional logistic regression, the linearity of
the continuous predictors was studied, and all 21 candidate
predictors were included in a logistic regression model.
For an extensive description of PMLE, we refer to the
Appendix (see on the journal’s Web site at www.elsevier.
com) and the literature [6,12]. In brief, instead of maximiz-
ing the log likelihood as in conventional logistic regression,
PMLE maximizes the penalized log likelihood. Hence, the
maximum log likelihood of the full model is adjusted
(shrunk) by a penalty factor. Accordingly, the estimated re-
gression coefficients are individually (nonuniform) adjusted
for overfitting during the model fit. Because of the penaliza-
tion, the number of degrees of freedom effectively used in
PMLE is lower than the actual number of predictors, reduc-
ing the potential for overfitting [6,10,26].

As there is no selection of candidate predictors, a predic-
tion model that has been developed by PMLE includes all
possible candidate predictors, which can be impractical to
use in clinical practice. Alternatively, a parsimonious model
can be obtained by estimating a new model with a reduced
number of predictors. This parsimonious model approxi-
mates the predictions from the penalized model [6]. To de-
velop such parsimonious model, ordinary least squares
(linear) regression is used to fit the linear predictor of the
penalized model as the outcome and all 21 predictors as co-
variates [6]. This model necessarily has an R2 of 1. Next,
backward stepwise elimination is used to exclude the least
important predictors until the R2 is lower than 0.975. The re-
gression coefficients of the predictors that remained in this
linear regression model are also penalized for overfitting as
the shrinkage that is used in the penalized model is inherited
by the reducedmodel [6]. For amore profound description of
this procedure, we refer to the literature [6].
2.2.4. Genetic programming
Genetic programming is a search method for the optimal

solutions for a given problem (in this situation, the optimal
prediction model), inspired by the biological model of evo-
lution [20,27e31]. For a detailed description of the method,
we refer to the Appendix (see on the journal’s Web site at
www.elsevier.com). In brief, first a set of 50 different pre-
diction models was randomly created, in which the predic-
tion models were different mathematical formulas using
different predictors. This can be seen as the first round.
Then, in an iterative process, models with a large receiver
operating characteristic (ROC) have a higher probability
of being selected for the next round. In each round, given
two randomly selected models, crossover is realized by ran-
domly swapping parts of the model. In addition, mutations
occur by exchanging part of the model with a randomly
created substitute. The performance of the models is esti-
mated, and models with a large ROC have a higher proba-
bility of being selected for the next round. Consequently,
the process of crossover and mutation is repeated in the
models that have been selected for the next round. This it-
erative process was terminated when no significant model
improvement was observed, and the model with the largest
ROC area was selected as the final genetic programming
model.

A prediction model developed by genetic programming
can be represented as a binary tree (see Fig. 1). To limit the
risk of overfitting, the trees were restricted to be no more
than four levels deep, corresponding to a maximum of eight
predictors. The building blocks of the model are mathemat-
ical operators, chosen from a library of 20 operators (e.g., x,
x2, and sin(p� x); see also Fig. 1). Each operator has two
input values and one output value (Fig. 1). The output of
the complete formula for individual patients is a score. To
transform this score to a risk of DVT presence, we esti-
mated a logistic regression model in the derivation set.
The score is the only covariate, modeled with a restricted
cubic spline function, as it most likely has a nonlinear as-
sociation with the outcome [6]. Subsequently, this model
was used to calculate the risk of DVT for each patient from
the corresponding score (see the equations provided in the
caption of Fig. 1). Note that the genetic programming
model cannot be adjusted for overfitting by shrinkage as
there are no regression coefficients.

For the present analyses, we used the Predictive Analyt-
ics Director (Chordiant Software Inc., Amsterdam, The
Netherlands; www.chordiant.com).
2.3. Accuracy of the four models in the validation set

We estimated the accuracy of the models by assessing
the discrimination and calibration. Discrimination is the
ability of a prediction model to distinguish between pa-
tients with the outcome and patients without the outcome.
It can be quantified with the area under the ROC curve
(ROC area) [32]. An ROC area ranges from 0.5 (no dis-
crimination, same as flipping a coin) to 1.0 (perfect dis-
crimination) [33].
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Calibration refers to the agreement between the pre-
dicted risks and observed frequencies of the outcome. It
can be assessed with a calibration plot with the predicted
risks on the x-axis and the observed frequencies on the
y-axis, that is, a smoothed curve of grouped proportions
vs. mean predicted probability in groups (see Fig. 2) [8].
The calibration plot shows a calibration line, which can
be described by a calibration slope and intercept. These
are estimated by fitting the linear predictor of the prediction
model as the only covariate in a logistic regression model.
The calibration slope of a model in new patients is ideally
equal to 1, implying that the calibration plot lies exactly on
the 45� line. The calibration intercept of a model in new
patients is ideally equal to 0, implying that the mean pre-
dicted probability is equal to the mean observed frequency,
and the calibration plot crosses the y-axis in 0. A slope !1
indicates overfitting (predicted risks are too extreme),
whereas a slope O1 indicates that the predicted risks are
not extreme enough. When the slope is not equal to 1,
the interpretation of the intercept is less straightforward.
Hence, we estimated the intercept with the slope fixed at
1 (calibration in the large) [8]. When this intercept is close
to 0, the so-called calibration in the large is good, that
is, the mean predicted risk equals the mean observed
frequency.
2.4. Accuracy of the four models in cross-validations

To mimic as much as possible current practice in the
domain of prediction research, we explicitly chose to con-
duct our analysis in a particular (usually larger) derivation
study sample and a second (usually smaller) validation
study, as this is often how prediction models are devel-
oped and validated. Yet, the predictive accuracy of any
developed model can be influenced by chance or sam-
pling variation [5,34]. Therefore, to quantify the robust-
ness of the developed models (by each method), we
also conducted 100 cross-validations in the full cohort
to assess the accuracy of the developed models in differ-
ent samples. The derivation set was 10 times randomly
split in 10 stratified equally sized samples. These 10
equally sized samples were combined 10 times, and this
approach was repeated 10 times, so that in 100 models
were developed on 90% of the data, and tested in the
other 10% of the data. This way, 100 cross-validations
were thus performed.

With these approaches, we aimed not only to mimic
current prediction research as much as possible but also
to adjust for potential chance findings. In the cross-
validation, the median value of the discrimination and cal-
ibration was estimated. Also, paired t-tests were used
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Fig. 2. Calibration plots in the validation set of the models derived by the four derivation methods. PMLE, penalized maximum likelihood
estimation.
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to assess whether there were significant differences in
the discrimination and calibration between the 100 cross-
validations.
3. Results

Table 1 shows the distribution of the candidate predic-
tors in the derivation and validation set. The incidence of
DVTwas similar in both sets (20%). The validation set con-
tained more males compared with the derivation set (40%
vs. 36%). More patients in the validation set experienced
a swelling of the whole leg (49% vs. 44%), and less patients
in the validation set experienced pain when walking (78%
vs. 92%).
3.1. Model derivation

3.1.1. Logistic regression without shrinkage
The difference in calf circumference and the D-dimer

value showed a logarithmic association with the log odds
of the presence of DVT and were subsequently transformed.
The final prediction model included six predictors: age, du-
ration of symptoms, the absence of a leg trauma, pregnancy,
the difference in calf circumference, and the D-dimer value
(Table 2). The ROC area in the derivation set was 0.904
(95% confidence interval [CI]: 0.885e0.922).

3.1.2. Logistic regression with one uniform shrinkage
factor

By definition, the final prediction model included the
same predictors as the previous model. Bootstrapping



Table 2. Regression coefficients of the models derived by
logistic regression: without shrinkage, with uniform shrinkage
by bootstrapping, and with nonuniform shrinkage by PMLE

Conventional
logistic regression
without shrinkage

Conventional
logistic regression
with shrinkage PMLE

Intercept �15.871 �14.970 �15.562
Age �0.024 �0.023 �0.021
Duration of
symptoms

�0.029 �0.027 �0.027

Absence of leg
trauma

0.688 0.647 0.625

Pregnancy �1.764 �1.658 NA
Log (difference
in calf
circumference)

1.010 0.949 1.019

Log (D-dimer
value)

1.967 1.849 1.892

Abbreviations: NA, not applicable; PMLE, penalized maximum
likelihood estimation.

The formula of the above described prediction models takes the
form: linear predictor5 ß0þ ß1� predictor1þ ß2� predictor2þ.
þ ßn� predictorn, where ß0 is the intercept and ß1 till ßn are the
regression coefficients of the predictors. The probability of deep ve-
nous thrombosis in an individual patient (scale: 0e100%) can be

calculated by
1

1þ e�linear predictor
.
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resulted in a shrinkage factor of 0.94 that was used to adjust
the regression coefficients (Table 2). The ROC area was
0.904 (95% CI: 0.885e0.922).

3.1.3. Logistic regression with nonuniform shrinkage
by PMLE

The reduced penalized model included five predictors;
the same predictors as in the previous model although with-
out pregnancy (Table 2). The optimal penalty factor was
three, and the penalized model had 18.93 effective degrees
of freedom (vs. 21 degrees of freedom in conventional
logistic regression). The ROC area was 0.902 (95% CI:
0.883e0.921).

3.1.4. Genetic programming
The final prediction model included nearly the same five

predictors as the model developed by logistic regression
with PMLE, except that age was excluded and swelling
of the leg was included (Fig. 1). The ROC area was
0.910 (95% CI: 0.893e0.928).
Table 3. Comparison of the accuracy measures of the models using the fou

Method Logistic regression Logistic reg

Shrinkage d Uniform shr

ROC area (95% CI) 0.906 (0.872e0.941) 0.906 (0.872
Calibration slope (95% CI) 0.961 (0.756e1.169) 1.024 (0.804
Calibration intercept given
slope 5 1 (95% CI)

�0.142 (�0.455, 0.171) �0.105 (�0.41

Abbreviations: PMLE, penalized maximum likelihood estimation; ROC, r
The accuracy measures include discrimination, expressed by the ROC are

(calibration in the large).
3.2. Accuracy of the four models in the validation set

We found only marginal differences in the discriminative
ability of the four models in the validation set (Table 3).
All methods led to calibration slopes close to 1 (Fig. 2 and
Table 3). The slopes of the models developed by logistic
regression without shrinkage and genetic programming
were smaller than one, indicating overfitting (Table 3).
The intercept (given that the slope was equal to 1) was
slightly negative although close to 0 for all models (Fig. 2
and Table 3). PMLE led to the best calibration in the large
(intercept5�0.087) and genetic programming to the worst
(intercept5�0.160).

3.3. Accuracy of the four models in the cross-
validations

Table 4 shows that there were only marginal differences
in the median discriminative ability of the models in the
100 cross-validations (logistic regression with and without
shrinkage: 0.902, PMLE: 0.901, and genetic programming:
0.883). The paired t-test yielded no significant differences
in ROC area for the logistic regression models (with and
without shrinkage) and PMLE. The ROC areas of the ge-
netic programming models were significantly different
from the ROC areas of the logistic regression models (with
and without shrinkage) (P5 0.04) and PMLE (P5 0.05).

All methods led to models with a median calibration
slope close to 1. The paired t-tests showed statistically sig-
nificant differences between the logistic regression models
with and without shrinkage (P5 0.01, slope 0.992 and
0.980, respectively), between the logistic regression models
with shrinkage and genetic programming models (P!
0.001, slope 0.992 and 0.945, respectively), and between
the PMLE and genetic programming models (P! 0.001,
slope 1.009 and 0.945, respectively). The median intercept
(given slope5 1) was close to 0 for all models and not sig-
nificantly different between the different methods.
4. Discussion

We used four different methods to develop a prediction
model to predict the presence or absence of DVT: logistic
regression without shrinkage, logistic regression with one
uniform shrinkage factor (estimated from bootstrapping
r different derivation methods in the validation set

ression PMLE Genetic programming

inkage Nonuniform shrinkage d

e0.941) 0.907 (0.873e0.941) 0.912 (0.882e0.943)
e1.244) 1.027 (0.808e1.247) 0.982 (0.788e1.176)
1, 0.201) �0.087 (�0.394, 0.220) �0.160 (�0.480, 0.161)

eceiver operating characteristic; 95% CI, 95% confidence interval.
a, and calibration, expressed by the slope and the intercept/slope5 1



Table 4. Comparison of the predictive accuracy of the four differently derived models averaged across the 100 cross-validations

Method Logistic regression Logistic regression PMLE Genetic programming

Shrinkage d Uniform shrinkage Nonuniform shrinkage d

ROC area (25e75%) 0.902 (0.884e0.917) 0.902 (0.884e0.917) 0.901 (0.882e0.917) 0.883 (0.864e0.902)
Calibration slope (25e75%) 0.980 (0.865e1.112) 0.992 (0.879e1.128) 1.009 (0.895e1.149) 0.945 (0.860e1.026)
Calibration intercept given

slope 5 1 (25e75%)
�0.022 (�0.160, 0.123) �0.011 (�0.148, 0.136) 0.031 (�0.106, 0.181) �0.063 (�0.186, 0.079)

Abbreviations: PMLE, penalized maximum likelihood estimation; ROC, receiver operating characteristic.
The accuracy measures (median with 25% and 75% quantiles) include discrimination, expressed by the ROC area, and calibration, expressed

by the calibration slope and the calibration intercept/slope5 1 (calibration in the large). 25e75%: 25e75% quantiles.
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techniques), logistic regression with nonuniform shrinkage
by PMLE, and genetic programming. The accuracy of the
methods was tested in 100 cross-validations and new pa-
tients (external validation). There were only marginal dif-
ferences in the discriminative ability of the models in the
cross-validations. Similarly, the accuracy measures of the
four models in the validation set were only slightly differ-
ent, and the 95% CIs were largely overlapped.

We expected that the PMLE models would show better
discriminative ability (because of less overfitting) in the
validation set than the logistic regression models. This
was not shown in our data. In addition, we expected that
logistic regression without shrinkage and genetic program-
ming would lead to the most overfitted models (calibration
slopes smaller than 1). Although this was indeed shown in
the validation set, it was only partly shown in the cross-
validations, where only genetic programming resulted in
(slightly) overfitted models. There are several possible rea-
sons why the amount of overfitting was so low.

First, we had a relatively large data set while the risk of
overfitting is higher in small data sets [3e6]. Our derivation
set consisted of 1,668 patients, of which 329 (20%) hadDVT.
According to the rule of thumb that at least 10 events are
needed to consider one candidate predictor (with one degree
of freedom), this implies that 33 candidate predictors could
have been considered. We considered only 21 candidate pre-
dictors, using eight extra degrees of freedom for assessing
the linearity of the four continuous predictors with restricted
cubic splines. Hence, within total 29�, we still conformed to
that rule of thumb, reducing the risk of overfitting.

Second, to adhere to daily practice in which methodolog-
ical guidelines are followed, we explicitly chose a sensible
modeling strategy, in which precautions to prevent overfit-
ting were taken. Because of its flexibility, genetic program-
ming models are more prone to overfitting, as besides the
‘‘true’’ associations also ‘‘noise’’ associations may be mod-
eled. However, a sensible application of genetic program-
ming reduces the risk of overfitting. We conducted
a simple experiment in which basic safeguards for both lo-
gistic regression and genetic programming were removed.
For genetic programming, the predictors were not grouped
based on statistical significance of predictive behavior, and
the predictors were modeled nonlinear. For logistic regres-
sion, all continuous predictorsweremodeledwith a restricted
cubic spline. We also included interaction terms between the
D-dimer value and all other predictors. We did not shrink the
regression coefficients. The discrimination of the genetic
programming model decreased from 0.94 in the derivation
set to 0.88 in the validation set. For the logistic regression
model, it slightly decreased from 0.92 to 0.90. However,
the calibration slope of the logistic regression model was
equal to 0.70, indicating serious overfitting. Hence, although
some modeling methods are more prone to overfitting, the
actual extent of overfitting is largely determined by thought-
fulness of the modeling process.

Third, logistic regression and PMLE is based on maxi-
mizing the (penalized) log likelihood, whereas genetic pro-
gramming maximizes the c-statistic (area under the ROC
curve). Because the c-statistic is not the most sensitive mea-
sure to assess incremental value of predictors [35,36], this
may have decreased the risk of overfitting for the genetic
programming model.

All four methods have their own opportunities and pit-
falls, depending on the characteristics of the data and situ-
ation at hand. The results of our study, in combination to
existing knowledge from previous studies, lead to the fol-
lowing advices. First, models with good predictive accu-
racy in new patients were most likely developed by
sensible modeling strategies rather than by complex devel-
opment methods. Second, when conducting logistic regres-
sion, one should preferably apply shrinkage, especially in
small data sets [5,6,37,38]. Although the discriminative
ability of a model will not be changed, in general the cali-
bration of the model in future patients will be improved.
Third, when evaluating the performance of prediction
models, not only the discrimination but also the calibration
should be assessed [35]. Fourth, when many interaction
terms are considered, PMLE should be preferred over
shrinkage by one uniform shrinkage factor, especially when
the data set is (relatively) small. In our data, we had no clin-
ical reasons to include interaction terms. Therefore, the ef-
fectively used number of degrees of freedom in PMLE was
only slightly lower than the actual number of predictors
(18.93 vs. 21). Fifth, genetic programming is highly flexi-
ble in the transformations of continuous predictors. Espe-
cially in data sets with many continuous predictors,
genetic programming can provide insight in unconventional
associations between the predictor and the outcome.
However, in our data set, only four of the 21 candidate pre-
dictors were continuous predictors. Note that the use of
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restricted cubic spline functions and fractional polynomials
[39e41] in logistic regression also increases the flexibility
of modeling continuous predictors. Sixth, genetic program-
ming is developed as a flexible search strategy, that is, the
optimal fit is searched in a data set. Therefore, it can be
used in data sets where no predefined clinical associations
exist. It may be a promising tool to find nonlinear associa-
tions and unknown interactions between predictors. Sev-
enth, logistic regression and PMLE modeling is based on
maximizing the (penalized) log likelihood, whereas genetic
programming can be used to maximize different parameters
or several parameters at the same time. For example, in
cost-effectiveness analyses, one wants to optimize both util-
ities and costs at the same time. Genetic programming can
be applied to find the model that best optimizes both
aspects. Eighth, the models developed by genetic program-
ming cannot be shrunk according to standard methodology.
Yet, by the method presented in this article, the scores that
are calculated with the model can be recalibrated in such
a way that the predicted risks are equal to the observed
frequencies.

In conclusion, we found no major differences in the pre-
dictive accuracy of the models, and the 95% CIs of the accu-
racy measures mostly overlapped. In a data set with one
strong predictor that shows a linear association with the out-
come or an association that can be easily approximated by
a restricted cubic spline or transformation (as the D-dimer
in our study), modeling methods other than logistic regres-
sion will probably have similar or only slightly better accu-
racy than logistic regression. The choice between the
development methods should be based on the characteristics
of the data and situation at hand. In our case, models with
good predictive accuracy were most likely developed by
sensible modeling strategies rather than by complex devel-
opment methods.
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