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Response accuracy and response time data can be analyzed with a joint model to
measure ability and speed of working, while accounting for relationships between
item and person characteristics. In this study, person-fit statistics are proposed for
joint models to detect aberrant response accuracy and/or response time patterns.
The person-fit tests take the correlation between ability and speed into account, as
well as the correlation between item characteristics. They are posited as Bayesian
significance tests, which have the advantage that the extremeness of a test statistic
value is quantified by a posterior probability. The person-fit tests can be computed
as by-products of a Markov chain Monte Carlo algorithm. Simulation studies were
conducted in order to evaluate their performance. For all person-fit tests, the simula-
tion studies showed good detection rates in identifying aberrant patterns. A real data
example is given to illustrate the person-fit statistics for the evaluation of the joint
model.

Introduction

In computer-based testing, response accuracy (RA) and response time (RT) data
can be collected. The RTs used to respond to items provide information about work-
ing speed, where RA data provide information about ability. RTs are collected in
order to estimate speed and item time-intensity (i.e., population-average amount of
time needed to complete an item) and to investigate relationships with speed compo-
nents and accuracy, but also to investigate issues in educational testing. For instance,
the impact of time limits on test takers’ performances and to what extent time limits
initiate rapid-guessing behavior has been investigated using RTs (e.g., Chang, Tsai,
& Hsu, 2014; Schnipke & Scrams, 1997). RTs have also been useful in identifying
test takers with aberrant response behavior (e.g., cheating, guessing) (Marianti, Fox,
Avetisyan, Veldkamp, & Tijmstra, 2014).

This has raised an increased interest in modeling and analyzing RTs. Goldhammer
(2015), Lee and Chen (2011), and van der Linden (2006, 2007) give an overview
of recent developments in RT modeling, where joint models for speed and ability
are extensively discussed. In this joint modeling approach, ability is considered a
latent variable, where item responses serve as indicators to measure ability. Speed is
also considered a latent variable, since it cannot be observed directly and is always
measured in relation to time intensities (e.g., van der Linden, 2011).

Despite the methodological advances in the joint modeling of speed and abil-
ity, and the many applications in educational assessment, there has not been much
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attention to testing the underlying assumptions of a joint model for speed and ability.
Model comparison criteria have been proposed for RT models (e.g., Klein Entink,
Fox, & van der Linden, 2009a). However, model-fit statistics for the evaluation of
the joint model have been sparsely developed and evaluated. Bolsinova and Maris
(2016) developed a test for conditional independence between RA and RT data given
an exponential family model for the RA. Van der Linden and Guo (2008) developed
Bayesian posterior predictive checks to identify aberrant RT patterns. Some model-
fit tests for item response theory (IRT) model can been used for the joint model but
their performances for the joint model have not been fully tested. Tests to evaluate
the fit of RT models (e.g., Marianti et al., 2014) have also not been implemented and
evaluated for the joint model.

In this article, person-fit tests are developed for the joint model to distinguish test
takers with aberrant RA patterns and/or RT patterns from test takers with normal item
response patterns and/or RT patterns. The object is to identify aberrant response be-
havior, where the extremeness of an RA pattern and RT pattern needs to be evaluated
simultaneously, since speed and ability affects the response behavior. This relates to
van der Linden (2009) and Goldhammer (2015), who argued that in the measurement
of ability the influence of speed on the response behavior needs to be controlled. In
the same way, it can be argued that in the evaluation of RA patterns the RT patterns
needs to be taken into account.

The proposed person-fit statistics can be classified as Bayesian significance tests.
In this Bayesian test procedure, the extremeness of each person-fit value is quanti-
fied by computing the posterior probability (p-value) that the value is greater than a
certain threshold given the data. This Bayesian p-value is directly interpretable and
represents the posterior probability of the extremeness of a person-fit value given the
data.

The person-fit tests for the joint model can be used to identify aberrant response
behavior (e.g., cheating, guessing, random responding) manifested in the RA pattern
and/or manifested in the RT pattern. The developed person-fit tests are based on the
log-likelihood of an RA pattern (Drasgow, Levine, & Williams, 1985) and of an RT
pattern (Marianti et al., 2014). The joint distribution of ability and speed is included
in the computation of the person-fit tests to account for the relation between speed
and ability in evaluating the extremeness of the RA and RT pattern. The performance
of the person-fit statistics is evaluated using simulation studies.

After introducing the joint model for ability and speed, person-fit statistics are de-
fined under the log-normal RT model and IRT model. It will be shown that given all
information, RA and RT patterns can be identified as aberrant with a specific poste-
rior probability, according to the Bayesian significance test procedure. In a simula-
tion study, the power to detect the aberrancies is investigated by simulating various
types of aberrant RA and RT data. A real data study is used to illustrate the use of
person-fit statistics for different joint models. Several directions for future research
are presented.

The Joint Modeling Framework

RA and RT data can be jointly modeled using a hierarchical latent variable model.
Working speed and ability, defined at the level of persons, are assumed to underlie the
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RT and RA data, defined at the level of observations, respectively. Fox, Klein Entink,
and van der Linden (2007), Klein Entink et al. (2009a), and van der Linden (2007)
have developed a Bayesian modeling framework where a log-normal RT model and
an IRT model are used to model the level 1 observations. At level 2, population
distributions are defined for the latent variables speed and ability, and for the item
parameters in the RT model and the IRT model.

Although this hierarchical model for speed and ability consists of distinct distribu-
tions for RA and RT data, a relationship between speed and ability is specified at the
level of persons. This joint model (e.g., Klein Entink et al., 2009a; van der Linden,
2007) has been used to explain a cognitive structure (Klein Entink, Kuhn, Hornke,
& Fox, 2009b), to test hypothesis about relationships between speed and ability, to
calibrate test items, and to investigate test design characteristics, speededness, and
cheating.

Another joint modeling approach considered the generalized linear model for RA
and RT data (Molenaar, Tuerlinckx, & van der Maas, 2015). This generalized linear
approach restricts items to have equal discriminations. However, it is more realistic
to assume that the effect of an increase in ability (working speed) can have a differ-
ent effect across items on the accuracy in responses (time to respond). A joint IRT
modeling approach for categorical RTs has also been considered (e.g., DeBoeck &
Partchev, 2012; Partchev & DeBoeck, 2012; Ranger & Kuhn, 2012). Treating contin-
uous time observations as categorical RTs will always reduce the available amount
of information, where the measurement precision can be increased by modeling the
continuous RTs. A general overview of different modeling approaches is given by
van der Linden (2009).

In the present joint modeling approach, a two-parameter IRT model for bi-
nary responses is considered, and the log-normal model for RTs including time-
discriminations and item-specific error variances is presented. For the RT model, let
RTik denote the RT of person i(i = 1, . . . , N ) on item k(k = 1, . . . , K ). A log-
normal RT distribution is considered to account for the positively skewed charac-
teristic of RT distributions. The log-normal distribution for the RT is given by

ln RTik = λk − φkζi + εik, εik ∼ N
(
0, σ2

εk

)
, (1)

where the time intensity parameter λk represents the average time needed to com-
plete the item (on a logarithmic scale), the speed parameter ζi represents the work-
ing speed of test taker i, and the time discrimination parameter φk represents the
item-specific effect of working speed on the RT. Fox et al. (2007) and Klein Entink
et al. (2009a) introduced the time-discrimination parameter as a slope parameter for
speed, which models the sensitivity of the item for different speed levels of the test
takers.

This specification of the time discrimination parameter differs from the time dis-
crimination parameter defined by van der Linden (2009). In his approach, the re-
ciprocal of the standard deviation of the measurement error is defined to be the
time discrimination. This also allows for item-specific variances. However, the
time discriminations in Equation 1 also model covariances between RTs. When
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considering responses to item k and l, the covariance between RTs of test taker i is
given by

cov (RTik, RTil ) = cov (λk − φkζi + εik,λl − φlζi + εil )

= cov (−φkζi ,−φlζi ) = φkvar (ζi ) φl, (2)

assuming independent errors and time intensities. So the covariance between the two
RTs is influenced by both time discriminations. Furthermore, the additional error
term in Equation 1 can model variations in RTs due to stochastic behavior of the test
taker. When test takers operate with different speed values, take small pauses during
the test, or change their time management, the RTs might show more systematic vari-
ation than explained by the structural mean term. The item-specific error component
might accommodate for these differences and avoid bias in the parameter estimates.

Besides observing the RT for item k, let Yik denote the RA of person i on item
k (coded 1 if a correct answer is given and 0 if a wrong answer is given). A two-
parameter IRT model is considered to describe the RA. The probability of a correct
response is given by

P (Yik = 1 |θi , ak, bk ) = � (akθi − bk) , (3)

where � denotes the normal cumulative distribution function, ak the discrimina-
tion parameter, and bk the difficulty parameter. A latent response variable Zik can
be defined, which is normally distributed with mean akθi − bk and variance 1. So,
the probability of a correct response is equal to the probability that the latent re-
sponse variable is greater than 0. The latent response variable Zik is often used
to represent a latent continuous response given an observed categorical response
(Fox, 2010), and is also referred to as an auxiliary response. The latent response
variable is useful in a Markov chain Monte Carlo (MCMC) simulation procedure
to estimate the model parameters (e.g., Albert & Chib, 1993; Fox, 2010; Klein
Entink et al., 2009a; Meng, Tao, & Chang, 2015). For the two-parameter model,
the response Yik is the indicator of the latent response variable Zik being positively
truncated.

The joint model for the latent continuous responses and RTs is given by

Zik = akθi − bk + eik, eik ∼ N (0, 1)

ln RTik = λk − φkζi + εik, εik ∼ N
(
0, σ2

εk

)
. (4)

The test takers are assumed to be randomly selected from a population and the
ability and speed variable are assumed to have a multivariate normal population
distribution (

θi

ζi

)
∼ N

((
μθ

μζ

)
,

(
σ2

θ ρθζ

ρθζ σ2
ζ

))
, (5)

where the population means μθ and μζ represent the population average level of
ability and working speed, respectively. The population variances σ2

θ and σ2
ζ represent

the variance in ability and working speed in the population, where ρθζ represents the
common covariance between ability and speed.

246



Person-Fit Statistics for Joint Models for Accuracy and Speed

The population distribution of the item characteristics is a multivariate normal,
which is given by

⎛
⎜⎜⎝

ak

bk

φk

λk

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎝
⎛
⎜⎜⎝

μa

μb

μφ

μλ

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

σ2
a ρab ρaφ ρaλ

ρab σ2
b ρbφ ρbλ

ρaφ ρbφ σ2
φ ρφλ

ρaλ ρbλ ρφλ σ2
λ

⎞
⎟⎟⎠
⎞
⎟⎟⎠ . (6)

The mean of the multivariate distribution represents the test-average item charac-
teristics. The covariance matrix represents the variation in item characteristics and
the covariance between them.

Person-Fit for Speed and Accuracy

When a joint model is used to measure ability and speed, person-fit statistics are
required to distinguish test takers with aberrant RA patterns and/or RT patterns from
test takers with normal RA patterns and/or RT patterns. Scores on a test can be spu-
riously high or low due to cheating, guessing, or random responding (e.g., Meijer,
1996; van der Linden & Lewis, 2015), which can be directly detected from the RA
pattern. However, it is also possible that the aberrant response behavior is manifested
in the RT pattern. Subsequently, an inaccurate working speed measurement can bias
an estimated relation between speed and ability. It is also possible that both the RA
pattern and the RT pattern indicate aberrant response behavior. In that case the RT
simply contributes to the evidence to identify aberrant-responding test takers.

Before discussing the person-fit test for the joint model, a person-fit test for RA
patterns and one for RT patterns is discussed. For each person-fit test, a dichotomous
classification variable is introduced, which states whether a pattern is considered
extreme. Then, the person-fit test for the joint model is constructed from the dichoto-
mous classification variables for RA and RT patterns.

Person-Fit Statistic for RA Patterns

Meijer and Sijtsma (2001), Karabatsos (2003), and Rupp (2013) give an overview
of the large number of person-fit statistics to detect aberrant RA patterns. The para-
metric tests are based on the principle that the fit of responses to a set of items is
evaluated under the IRT model. The popular person-fit statistic of Drasgow et al.
(1985) and the standardized version of Levine and Rubin (1979) are based on the
log-likelihood of the RA pattern. This person-fit statistic is often used in educational
measurement and is shown to have power to identify aberrant RA patterns (Dimitrov
and Smith, 2006; Karabatsos, 2003).

The log-likelihood of the responses is used to evaluate the fit of an RA pattern,
and is referred to as a person-fit statistic, denoted as l y . Given the log-likelihood
according to a two-parameter IRT model, the person-fit statistic is given by

l y (θi , a, b; yi ) = log p (yi |θi , a, b ) =
K∑

k=1

log p (yik |θi , ak, bk )
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=
K∑

k=1

[
yik log p (yik |θi , ak, bk )

+ (1 − yik) log (1 − p (yik |θi , ak, bk ))
]
. (7)

The expected value and variance are given by

E
(
l y (θi , a, b; yi )

) =
K∑

k=1

p (yik = 1 |θi , ak, bk ) log p (yik = 1 |θi , ak, bk )

+ (1 − p (yik = 1 |θi , ak, bk )) log (1 − p (yik

= 1 |θi , ak, bk )) , (8)

and

Var (ly (θi, a, b; yi)) =
K∑

k=1

⎡
⎣p (yik = 1 |θi , ak, bk ) (1 − p (yik = 1 |θi , ak, bk ))

log

(
p
(
yip = 1 |θi , ak, bk

)
1 − p

(
yip = 1 |θi , ak, bk

)
)2
⎤
⎦ , (9)

respectively. Subsequently, the standardized version of this person-fit statistic is
given by

l y
s (θi , a, b; yi ) = l y (θi , a, b; yi ) − E (l y (θi , a, b; yi ))

(V ar (l y (θi , a, b; yi )))
1
2

, (10)

which is assumed to be approximately standard normally distributed.
A Bayesian significance test can be defined to compute the extremeness of each

RA pattern. It follows from Equation 7 that the person-fit statistic is an increasing
function of the likelihood of the responses. The logarithm-of-response-probabilities
are negative values, and the logarithm of more likely response probabilities is higher
than the logarithm of less likely response probabilities. Therefore, increasing values
of the negative person-fit statistic correspond to misfit.

The negative person-fit statistic is considered in the computation of a critical re-
gion. As a result, for increasing l y

s values the posterior probability of misfit is in-
creasing. The posterior probability that the person-fit statistic is greater than a certain
threshold value is given by

P
(
l y
s (θi , a, b; yi ) > C

) = �
(
l y
s (θi , a, b; yi ) > C

) = pl y . (11)

For the joint model, the computation of the person-fit statistic is more complex due
to relationships between model parameters such as speed and ability. These relation-
ships need to be taken into account in the computation of the person-fit statistic. The
MCMC algorithm developed for the joint model (e.g., Klein Entink et al., 2009a)
supports the computation of expected a posteriori estimates of the model parameters,
while accounting for the full covariance structure between model parameters. This
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MCMC algorithm can also be used to compute the person-fit statistic in Equation 11,
taking into account the full covariance structure. Therefore, a dichotomous classifi-
cation variable F y

i is defined, which equals 1 when the RA pattern of test taker i is
marked aberrant and 0 otherwise, given the population and item parameters

F y
i =

{
1 if P

(
l y
s (θi , a, b; yi ) > C

)
0 if P

(
l y
s (θi , a, b; yi ) ≤ C

)
.

(12)

The status of F y
i can be computed in each MCMC iteration, and the average over

MCMC iterations is used as an estimate of the posterior probability of an aberrant RA
pattern. This method makes it possible to identify aberrant RA patterns, for which the
person-fit statistic value is greater than the threshold value, with a specific posterior
probability. That is, the extremeness of each RA pattern can be quantified with a
posterior probability given the threshold C.

Person-Fit Statistic for RT Patterns

In Marianti et al. (2014), a person-fit statistic for RTs is defined, which is based on
the likelihood of RT patterns. Let RT ∗

ik = ln(RTik) denote the logarithm of the RT of
test taker i on item k. Given the model specification in Equation 1, the likelihood of
an RT pattern is represented by

−2 log p
(
rt∗i
∣∣ζi ,λ,φ, σ2

) = −2
K∑

k=1
log p

(
r t∗

ik

∣∣ζi ,λk,φk, σ
2
k

)
=

K∑
k=1

((
r t∗

ik−μik

σk

)2
+ log

(
2πσ2

k

))

=
K∑

k=1

(
Z2

ik + log
(
2πσ2

k

))
,

(13)

where Zik is standard normally distributed, since it represents the standardized error
of the normally distributed logarithm of RT. The sum of standardized errors is an
increasing function of the negative log-likelihood of RTs. This error function is used
as the likelihood-based person-fit statistic for RTs,

lt
i

(
ζi ,λ,φ, σ2; rt∗i

) =
K∑

k=1

Z2
ik, (14)

where unusually large statistic values indicate a misfit. The statistic represents a de-
parture of the RTs from expected RTs under the model. The posterior distribution of
the statistic can be used to examine whether a pattern of observed RTs is extreme
under the model.

The distribution of the test statistic is chi-square with K degrees of freedom given
the model parameters. Let threshold C define the boundary of a critical region. This
critical region contains the set of values for the observed statistic value for which
the null hypothesis is rejected. This critical value C can be determined from the
chi-square distribution

P
(
lt
i

(
rt∗i
)

> C
) = P

(
χ2

K > C
) = plt . (15)
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The plt is the posterior probability that the observed statistic value is larger than C
given the RT pattern, and the chi-square distribution of the test statistic can be used
to evaluate the extremeness of an RT pattern.

The person-fit statistic, lt , depends on the parameter values of the RT model, which
are also related to the parameters of the IRT model. To compute the posterior prob-
ability in Equation 15, again a dichotomous classification variable can be used. Let
variable Ft

i equal 1 for test taker i when his/her RT pattern is marked aberrant, and 0
otherwise; that is,

Ft
i =

{
1 if P

(
lt (ζi ,φ,λ; rti ) > C

)
0 if P

(
lt (ζi ,φ,λ; rti ) ≤ C

)
.

(16)

The status of Ft
i can be computed in each MCMC iteration, given draws of the

parameters. The average over MCMC iterations is used as an estimate of the posterior
probability of an aberrant RT pattern for test taker i.

Person-Fit Statistic for RA and RT Patterns

A third classification variable is defined to identify test takers with aberrant RT and
RA patterns. This third classification variable equals 1 when the other classification
variables are both equal to 1, Ft

i = 1 and F y
i = 1, and equals 0 otherwise. For test

taker i, the classification variable to identify an extreme pattern for responses and for
RTs is defined by

Ft,y
i =

{
1 if P

(
lt (ζi ,φ,λ; rti ) > C, l y

s (θi , α, β; yi ) > C
)

0 if 1 − P
(
lt (ζi ,φ,λ; rti ) > C, l y

s (θi , α, β; yi ) > C
)
.

(17)

The computation of the posterior probability of extreme RA and RT patterns can
be done using MCMC. In each MCMC iteration, the status of the classification
variable is evaluated and the average over MCMC iterations is an estimate of the
marginal posterior probability of an aberrant test taker concerning the RA and RT
pattern.

The posterior probabilities based on the classification variables defined in Equa-
tions 12, 16, and 17 are significance probabilities that express the extremeness of
statistic values given the data. They can be used to identify aberrant response behav-
ior with respect to RA and/or RT patterns. MCMC is used to compute the significance
probabilities, where dependencies between the joint model parameters are also taken
into account.

Three-Parameter IRT Model

Guessing behavior can lead to aberrant RA patterns under the two-parameter IRT
model. However, this type of response behavior can also be controlled for by the
three-parameter IRT model. Then, the probability of a correct response is a random
guess with probability ck . With probability 1 − ck the response is not guessed but
a response is given according to a two-parameter IRT model. This three-parameter
IRT model is given by

P (Yik = 1 |θi , ak, bk , ck) = ck + (1 − ck) � (akθi − bk) . (18)
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Although the three-parameter model accounts for guessing behavior, other types
of aberrant response behavior for the nonguessed responses can still be investigated.
The person-fit statistic defined in Equation 11 can be defined for the nonguessed
responses. Therefore, a latent variable Sik is introduced, which is equal to one, when
the test taker i knows the correct response to item k, and is equal to zero otherwise.

Béguin and Glas (2001) and Glas and Meijer (2003) defined such a latent vari-
able and showed methods to simulate Si values under the model given the binary
responses.

The person-fit statistic, defined in Equation 11, is used to evaluate the fit of
the responses for which the test taker i knows the response (Sik = 1). Then, a
Bayesian significance probability can be defined, which is the probability of an
extreme statistic value for the nonguessed responses integrated over the possible
nonguessed responses of test taker i,

pl y =
∫

�
(
l y
i (θi , a, b; si ) > C

)
p (si |yi , θi , a, b)ds. (19)

An MCMC method is used to sample latent variable values Si , and to compute the
significance probability.

MCMC Estimation

A MCMC algorithm was implemented to estimate the parameters of the joint
model. The MCMC procedure is based on the algorithm developed by Fox et al.
(2007) and Klein Entink et al. (2009a). The MCMC algorithm was extended to in-
clude the estimation of the three-parameter normal-ogive model parameters. This
extension was based on the simulation of auxiliary data S, and sampling of guessing
parameters ck , where a Beta prior distribution was used for the guessing parame-
ter. The other priors were similar to those of Fox et al. (2007) and Klein Entink
et al., (2009a). The R-code of the estimation method can be found in the R-package
LNIRT.1

Simulated Data Analysis

Parameter Recovery of the Joint Model With Guessing

The performance of the MCMC algorithm to estimate the joint model with a three-
parameter IRT model for the RA data was evaluated. Therefore, a total of 20 data
sets were simulated. Each data set consisted of simulated RA and RT data to K =
20 items of N = 500 persons according to the joint model. Furthermore, for each
simulated data set the joint model parameters were simulated from their prior dis-
tributions. The item parameters were simulated from the multivariate prior with a
mean vector of μa = 1, μb = 0, μφ = 1, and μλ = 0, and with a diagonal covari-
ance matrix with elements σ2

a = .05, σ2
b = 1, σ2

φ = .05, and σ2
λ = 1. The simulated

guessing parameters were equal to .10 to simulate a moderate level of guessing. As
a result, the performance of the MCMC algorithm was investigated without having
overwhelming data evidence about guessing behavior.

Speed and ability were simulated from a multivariate normal distribution
with means equal to 0 and variances to 1. The covariance between speed and

251



Figure 1. For each item, the difference between simulated and estimated values, averaged
across 20 data sets, of the item parameters is plotted.

ability was equal to .75 to simulate a high correlation between the person pa-
rameters. A high correlation was simulated to show that the estimation method
can also support the computation of the person-fit test for the joint model (Equa-
tion 17) for a more extreme situation. The person-fit test exploits the correla-
tion between speed and ability, and a higher correlation will induce more cor-
relation between RA and RT patterns. The measurement error variances were
simulated from a log-normal distribution with a mean of 0 and standard deviation
of .20.

For each replicated data set, the MCMC algorithm was run for 10,000 iterations
and a burn-in period of 1,000 iterations was used. The MCMC algorithm showed
rapid convergence without using informative starting values. The R-Coda package
(Plummer, Best, Cowles, & Vines, 2006) was used to investigate the convergence
of the MCMC chains. The commonly used convergence diagnostics (e.g., Geweke,
Heidelberger, and Welch) did not show any issues.

Figure 1 shows the estimated bias (y-axis) across 20 data replications as the
deviation between estimated and true value of each item parameter (x-axis). The
biases are small, generally ranging from −.077 to .045, for all item parame-
ters. The estimated posterior standard deviations, averaged across 20 data repli-
cations, ranged from .022 to .127, and represent the uncertainty of the esti-
mates. It was concluded that there exists a close agreement between estimated
values and true values. This shows that the MCMC method, for estimating the
joint model with a three-parameter IRT model, was able to recover the true item
parameters.
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Evaluate Performance Person-Fit Tests

Two types of aberrant patterns were simulated. One type represented cheating,
where aberrant RA data were simulated by letting low-ability persons correctly an-
swer difficult items (Meijer, 1996; St-Onge, Valois, Abdous, & Germain, 2011).
More specifically, in this simulation study, low-ability persons had a probability of
.75 to answer the 10 most difficult items correctly.

The other type represented random RT behavior. For this type of behavior, random
RTs were generated for persons who copied answers or used a cheat sheet and did
not require time to complete the items. Their RT patterns contained extreme RTs,
although their total time to finish the test was not extreme. To simulate random RT
behavior, aberrant RTs were generated from a log-normal distribution with the mean
equal to the average RTs, and the standard deviation equal to three times the average
standard deviation of RTs. As a result, the average test time for simulated aberrant
RT patterns was similar to the average test time of nonaberrant RT patterns. However,
for the same item randomly selected RTs of aberrant patterns deviated significantly
from average RTs of nonaberrant patterns.

Three conditions were considered. In condition 1, aberrant RA and RT patterns
were simulated according to cheating and random RT behavior. In condition 2,
aberrant RT patterns were simulated according to random RT behavior, and in
condition 3 aberrant RA patterns were simulated according to cheating. Furthermore,
for each condition a total of 1,000 response and RT patterns for a 20-item test were
simulated, where 100 (10% of the sample) and 200 (20% of the sample) patterns
were simulated to be aberrant.

For 20 replicated data sets, the MCMC algorithm showed accurate estimation re-
sults and sufficient variation in parameter estimates given the estimated standard
deviations. Therefore, in this simulation study, 50 data replications were expected to
provide accurate information about the detection rates of the person-fit statistics. In
Table 1, the estimated detection rates of both person-fit statistics are given, based on
50 replicated data sets.

A significance level of .05 was used. In Table 1, the header Aberrant refers to
all simulated persons with aberrant patterns, and header Total represents all per-
sons (aberrant and nonaberrant) in the sample. The Type I errors are given under the
header Model Fit: 4.2% and 3.1% of persons in the sample (under the label Total)
were detected as aberrant according to lt and l y

s , respectively; that is, in the condition
that no aberrant patterns were simulated, the detection rates slightly underestimated
the true Type I errors, but will improve when increasing the number of simulated
patterns.

In the first condition (Random RT Behavior and Cheating), both types of aberrant
behavior were simulated. The results show that with 10% simulated aberrant patterns
the lt and l y

s statistics were able to detect 9.4% and 10% of them, respectively. When
20% of the persons were simulated with aberrant responses, the lt and l y

s were able
to detect 15.6% and 20% of them, respectively.

The performance of each person-fit statistic was also evaluated under each con-
dition separately. Both the lt and l y

s showed less performance, when increasing
the percentage of aberrant patterns from 10% to 20%. This corresponds to the
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Table 1
Detection Rates of Person-Fit Tests lt and l y

s , to Identify Aberrant RA and/or RT Patterns for
N = 1,000 and K = 20

lt Statistic l y
s Statistic

Aberrant Total Aberrant Total

Model Fit
Significance level .05 – 4.2 – 3.1

10% Condition 1 9.4 9.7 10 13.4
Condition 2 9.4 9.7 – 3.2
Condition 3 – 3.9 10 13.1

20% Condition 1 15.6 15.8 20 23.3
Condition 2 15.6 15.8 – 3.2
Condition 3 – 4.1 19.9 23.2

Note. Condition 1 = random RT behavior and cheating; condition 2 = random RT behavior;
condition 3 = cheating.

finding of Karabatsos (2003), who reported that generally, detection rates decrease
as the percentage of aberrant patterns increases. Both statistics show good detection
rates in identifying aberrant patterns and the performance is similar to the results
of the condition with both violations. In the condition with only aberrant patterns
due to cheating, the lt statistic showed detection rates close to the detection rates
obtained under the Model Fit condition. In the condition with only aberrant patterns
due to random RT behavior, thel y

s statistic showed detection rates close to the Type I
error.

Real Data Analysis

Cizek and Wollack (2016) discuss a real data set (referred to as the credentialing
data) concerning 1,636 test takers who applied for licensure. The candidates took
Form 1 of the test, which consisted of 170 items, and their RA and RT data were
stored. The collected data followed from a year of testing using a computer-based
program that tests continuously. Besides the RA information, background informa-
tion of each candidate was available—for instance, the country where the candi-
date received his/her educational training, the state in which the test taker applied
for licensure, and the center where the candidate took the exam. The test takers
were pretested using three different item sets. The average scores varied significantly
across the differently pretested groups.

In this study, RT and RA patterns of 723 test takers, who were pretested with
the same item set, were analyzed using the joint model. The person-fit tests were
used to detect aberrant response behavior, without using any background informa-
tion. The LNIRT program was used to estimate all model parameters and to compute
the person-fit statistics.

The joint model was identified by restricting the population means of abil-
ity and speed to zero and by restricting the product of time discriminations and
discriminations to one.
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Figure 2. The estimated item parameters; difficulty and time intensity in the left subplot, and
item discrimination and time discrimination in the right subplot. (Color figure can be viewed
at wileyonlinelibrary.com)

The MCMC convergence diagnostics were used to evaluate the convergence of the
chains. According to the diagnostics, a burn-in period of 1,000 iterations and a total
of 5,000 MCMC iterations were made to estimate the model parameters (R-Coda
package; Plummer et al., 2006).

In Figure 2, the estimated item parameters are shown. The estimated item difficul-
ties and time intensities were rescaled to have a mean of zero to present them in the
same plot on the same scale. The estimated mean of the item difficulties is −0.56
and the item difficulties ranges from −1.71 to 0.79. The estimated mean of the time
intensities is around 4.00 and the time intensities ranges from 2.89 to 4.85. So, the
average RT to complete each item ranges from exp(2.89) ≈ 18 s to exp(4.85) ≈
128 s.

It can be seen that the range in item difficulties is relatively large, which gives
support to accurate estimation of test takers’ ability on the entire range of the scale.
Some of the item discriminations are relatively small (slightly above .30). The highly
discriminating items are also the most difficult items. The variety in time discrim-
inations is not very high, which ranges from .4 to 1.6 on a logarithmic scale. The
average population level of speed was fixed to zero to identify the scale.

The person-fit statistics to detect aberrant response behavior were computed. In
Figure 3, the estimated person-fit statistic values, lt , are plotted against the poste-
rior probability of significance. The statistic values are chi-square distributed with
170 degrees of freedom, under the joint model. Subsequently, the critical statistic
value is 201.4, when the level of significance equals .05. Estimated statistic values
higher than 201.4 are located in the critical region. Given this significance level, the
estimated number of aberrant patterns is 124, which is 17.15% of the test takers.

In Figure 4, the estimated person-fit statistic values l y
s are plotted against the pos-

terior significance probability. The critical area is above the statistic value of 1.645,
when considering a significance level of .05. Test takers with a statistic value higher
than 1.645, are located in the critical region. In this study, 16 persons (around 2.2%)
are identified in the critical region, and hence are detected as persons with aberrant
RA patterns.

In Figure 5, the person-fit statistic l y
s (x-axis) is plotted against the person-fit statis-

tic lt (y-axis). For both statistics, the threshold value of the significant area is marked
with a dotted line. It can be seen that with respect to aberrant RT patterns, lt , a serious
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Figure 3. Estimated person-fit statistics lt with respect to the RT patterns plotted against the
corresponding posterior significance probability. (Color figure can be viewed at
wileyonlinelibrary.com)

Figure 4. Estimated person-fit statistics l y
s with respect to RA patterns plotted against the

corresponding posterior significance probability. (Color figure can be viewed at
wileyonlinelibrary.com)

number of test takers are marked as aberrant, since their value is above the threshold
of 201.4. A few test takers are marked as aberrant with respect to their RA pattern,
because their statistic value is above 1.645. Those marked as aberrant with respect to
their RA and RT pattern are represented by a triangle. Only six test takers are marked
as aberrant for both patterns.

The plotted statistic scores concerning RT and RA patterns do not seem to be re-
lated. In theory, this relationship is possible, since in the computation of the person-fit
statistics structural relationships between parameters are taken into account. There-
fore, it would be possible that differences between aberrant and nonaberrant pat-
terns are explained by a relationship between speed and ability or by a relationship
between item characteristics.
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Figure 5. Person-fit statistic lt (related to RT) plotted against l y
s (related to RA).

The speed-accuracy trade-off in the population was investigated by plotting the
estimated ability against the speed values. In Figure 6, the relationship between
speed and ability for the identified nonaberrant and aberrant test takers is plotted. An
aberrant group of 124 test takers was identified according to the lt (significance level
of .05). It can be seen that both groups show a comparable positive correlation be-
tween speed and ability. Three regression lines of ability on speed are represented in
Figure 6, a dotted line for the aberrant test takers, a dashed line for the nonaberrant
test takers, and a straight line for all test takers. It can be seen that the correlation
between speed and ability is slightly smaller for the aberrant test takers. The aberrant
RT patterns do not strongly influence the estimated relationship between speed and
ability.

In Table 2, the covariance and correlation estimates are given of the population
parameters of the joint model under the label LNIRT. For all test takers, it can be
seen that the estimated correlation between ability and speed, when speed is con-
stant, is around .486. The positive correlation indicates that the high-ability test tak-
ers worked faster than the low-ability test takers. The variation in speed values across
test takers is around .022, which is rather small, since the variation in time intensities
is .10 and almost five times larger. The test takers’ speed values range from −0.60
to 0.56. Most of the variation between RTs is explained by the differences in time
intensities.

There exists a high correlation between item discrimination and time discrimi-
nation, and item difficulty and time intensity, around .501 and .464, respectively.
This means that the discriminating items with respect to ability also discriminate
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Figure 6. Estimated level of ability plotted against speed for the identified nonaberrant and
aberrant test takers according to the lt .

well with respect to speed. The positive relation between the item difficulty
and time intensity means that the time-intensive items are the more difficult
items.

Discussion

The joint modeling of RA and RT data can be used to make inferences about
ability and speed given educational test data. The joint model receives more and more
attention due to the increase in computer-based testing. To make correct inferences
from the joint model, statistical tests have been developed to evaluate the model
fit.

Person-fit tests have been developed to identify aberrant RA and/or RT patterns
under the joint model. A Bayesian significance testing procedure has been proposed
to evaluate the extremeness of computed person-fit statistics. The posterior probabil-
ity of the extremeness of an RA pattern is used to decide whether a pattern should
be flagged as aberrant. The developed person-fit statistics can be used to identify
aberrant test takers with respect to their RT pattern, their RA pattern, or both of their
patterns.

It was shown in a simulation study that under different conditions aberrant test
takers were correctly identified. Two different types of aberrant behavior were
considered in this study, but a more comprehensive simulation study is needed
to fully investigate the performance of the proposed person-fit tests for joint
models.

For RA data missing at random, missing data can be generated under the model,
and the fit statistics can be applied to the complete response patterns. When the
missing data are not missing at random, the person-fit statistics can only be applied
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Table 2
Covariance and Correlation Estimates of Person and Item Population Parameters of the Joint
Model (LNIRT)

LNIRT

Variance Components Mean SD Cor.

Person covariance matrix
Ability σ2

θ .093 .006
ρθζ0 .022 .002 .486

Speed σ2
ζ0

.022 .001
Item covariance matrix

Discrimination
∑

11 .287 .041∑
12 –.062 .022 –.236∑
13 .091 .018 .501∑
14 .013 .014 .076

Difficulty
∑

22 .24 .027∑
23 −.07 .015 −.421∑
24 .073 .013 .464

Time discrimination
∑

33 .115 .016∑
34 –.035 .01 –.322

Time intensity
∑

44 .103 .011

to the observed patterns. However, missing responses to items which are not reached
might be related to aberrant behavior. This should be taken into account when making
inferences about response behavior. Missing data by design (i.e., nonadministered
items) can be ignored in the person-fit analysis.

From a theoretical point of view, a reanalysis of the test results using the tools
for the joint model can provide more insight in the test characteristics. In some
test settings, the person-fit statistics can be the only tool to identify (statistical)
irregularities—for instance, when physical activities of the test takers cannot be ob-
served. The person-fit statistics do not directly provide information about the type of
aberrant behavior. However, they can provide insight in the prevalence of irregular
behavior and identify items with a high level of irregular RA and RT data. Further-
more, the effects of time limits can be investigated. For instance, when running out
of time, test takers might change their current strategy to work faster or adapt their
speed of working due to fatigue (Fox & Marianti, 2016).

In practice, aberrant response behavior can seriously diminish the validity of the
test results and affect test results of other test takers. As argued by Sinharay and
Johnson (2017), test companies and programs require advanced technology such as
video surveillance, but also seating charts and follow-up interviews, to prevent and
detect inappropriate behavior of test takers. They should support test integrity and
actively prevent and detect fraudulent or deceptive response behavior, since the test
results can have important consequences for test takers. The person-fit tests can be
used to detect inappropriate behavior by identifying patterns, which show irregulari-
ties and/or extreme RA and/or RT data.
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Fox and Marianti

Although statistical evidence is useful, it is not sufficient to conclude that fraudu-
lent (response) behavior occurred. Statistical evidence should be complemented with
other sources of information to obtain conclusive evidence of fraudulent behavior.
However, it can also be concluded that a final score could not be computed due to
irregularities in the RA and/or RT pattern. The test taker can be asked to retake the
test or to provide additional information (e.g., follow-up interview) such that his/her
test results are reconsidered for scoring (Sinharay & Johnson, 2017; van der Linden
& Jeon, 2012).

1The R-package LNIRT (https://cran.r-project.org/package=LNIRT) contains the
MCMC algorithm for the joint model, the person-fit statistics, and several tools for
residual analysis, which are described in the online Supporting Information.
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