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ABSTRACT

A method is proposed to identify the critical
misalignment of a multiple overconstrained mech-
anism. This misalignment indicates the limit of
desirable behaviour. The proposed method is
compared with a multibody simulation of a com-
pliant four-bar mechanism with three overcon-
straints. Subsequently, both analyses are com-
pared to an experimental setup.

The proposed method compares well to the
multibody model. The proposed method and
multibody simulation match qualitatively with
measurements of the four-bar mechanism. How-
ever, the measured critical misalignments are
about 30% larger in the experiment. As such, the
proposed method is able to compute the critical
misalignment of the four-bar mechanism.

INTRODUCTION

Compliant mechanisms are used in precision me-
chanics to mitigate the effects of play, among oth-
ers. In theory, their behaviour is predictable and
deterministic. To obtain deterministic behaviour in
an assembled mechanism, the principle of exact
constraint design is often used.

Misalignments increase the internal stress in the
mechanism. In an exactly constrained design
the increase of internal stress due to misalign-
ment is minimised. Yet these mechanisms can
also suffer from limited load carrying capability
and asymmetric and complex design. Overcon-
strained designs do not suffer from these draw-
backs, but have a relatively small tolerance on
misalignment. In a flexure-based mechanism this
will cause unwanted static and dynamic system
behaviour, such as buckling and change in sup-
port stiffness. The deterministic behaviour is
therefore no longer guaranteed [1, 2].

The consequences of misalignment on a once-
overconstrained parallel leaf spring guidance
were investigated by Meijaard et al. [1]; a
small misalignment in the overconstrained direc-

tion caused buckling and significant changes in
the support stiffness and dynamic system be-
haviour.

This article aims to find a computationally in-
expensive method to ascertain the limits of the
deterministic behaviour of an overconstraint
compliant mechanism by determining the critical
misalignment. As such, the work outlined in this
article can be used as a guideline to estimate
the manufacturing and assembly tolerances of an
overconstrained flexure-based mechanism.

FIGURE 1.  Photo of the experimental four-
bar mechanism, with the cross pivot flexures
(A,B,C,D) between the bars, dial gauges (E) on
the manipulator and accelerometers (F) on the ef-
fector, 3 in-plane folded leaf spring constraint el-
ements (G), 3 out-of-plane adjustment screws for
the misalignment (H) and a modal hammer (I) to
excite the mechanism.

SYSTEM DESCRIPTION

The four-bar mechanism under consideration is
shown in figure 1. The four hinges are equal,
both in dimension and orientation. A hinge is de-



signed to be exactly constrained; it has no over-
constraints and one compliant rotation. A hinge
consists of one leaf spring and two slender rods
(inset B of figure 1); this cross pivot flexure is
compliant for rotation along the vertical axis at
the intersection of the leaf spring and the slender
rods.
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FIGURE 2. The kinematics of a four-bar mech-
anism illustrated by opening the loop at hinge
C; the constraints of the left and right side are
shown.

These flexures are used as hinges in conjunction
with three rigid bars and the base to create the
four-bar mechanism. The resulting mechanism
has one degree of freedom (DOF) and three over-
constraints. These can be illustrated by opening
the mechanism at hinge C (figure 2). The in-
plane directions of the mechanism are z, y and
0, whereas the out-of-plane directions are z, ¢
and . Each hinge constrains five directions and
leaves one free. The left side of the loop has three
hinges and therefore has all in-plane DOFs. The
right side of the loop has one in-plane DOF, the
combined zr and 6z motion, since it only con-
tains one hinge. This is the DOF of the mecha-
nism. The three constraints from the left, z1, ¢r,
and v, are equal to the constraints zg, ¢r and
g from the right side. Therefore the mechanism
is three-times overconstrained [2].

The effects of these overconstraints can be
shown by manipulating the three corresponding
misalignments, the z- , ¢- and -misalignments,
at one end of the mechanism; in this case it is
the centre of compliance of hinge D. This ma-
nipulated point allows for independent control of
each misalignment. The three independent mis-
alignments can be controlled by three adjustment
screws (H in figure 1). Gauges are used (E in

figure 1) to measure the displacements. The spe-
cific misalignment at the manipulator (between D
and G in figure 1) can be inferred from these dis-
placements.

METHOD

A method is presented to provide insight into the
possible effects of overconstraints as well as to
simplify the problem of determining the buckling
behaviour. The loop buckling analysis presented
in this section divides the analysis of the buck-
ling behaviour into two problems. First the forces
in the mechanism due to a misalignment must be
determined; second the buckling loads of the flex-
ible elements of the mechanism are determined.
The combination of these two parts leads to a re-
lation between misalignment and the buckling be-
haviour of the flexures.

The relation between misalignment and stresses
and forces in the mechanism is analysed. To that
end, the equivalent compliance of the mechanism
at the manipulator is determined. Several as-
sumptions are made to calculate this equivalent
compliance for this case. The four-bar mecha-
nism is in its neutral position and will not deflect
significantly if misalignment is added. Further-
more, the bars are considered infinitely stiff and
the hinges are considered infinitesimally small.
This allows for the computation of the equivalent
stiffness of the mechanism as a serial loop of rigid
bars and compliant hinges, which can deform in
six directions.

Since the bars are rigid, the hinges are the only
components in the mechanism that will be able
to buckle. By means of free body diagrams the
forces acting on each hinge are then determined
from the forces acting on the mechanism at the
manipulator. These resultant force vectors at the
hinges are used in an analysis of the buckling be-
haviour of the hinges.

Due to the topology of the hinges, the compliance
of the hinges can be lumped to the centre of com-
pliance of the flexures. In this case this is at the
intersection of the leaf spring and the slender rod
flexure. The centre of compliance is the point in
certain flexures where a force or moment in a cer-
tain direction will only cause a displacement in
that same direction [3].

A finite element approach is used to determine
the equivalent compliance. The hinges are
treated as an infinitesimally small spring element



which can deform in all six directions. The bars
of the mechanism are rigid. A set of nodal coordi-
nates z(*) describe the locations and orientations
of the nodes of an element k. Deformation coordi-
nates ¢*) are used to describe the deformation of
an element. These are invariant for the rigid bars;
for the hinges they describe the elastic deforma-
tion due to forces [2].

The compliance matrix is the same for every
hinge. The force vector £") is specific for a hinge.
Expressions for all nodal coordinates are deter-
mined using the finite element approach. These
expressions are functions of the forces in the
mechanism. The same holds for the coordinates
of the end node ¢ of hinge D; this node is the
manipulated point. The forces at the hinges are
related to an input force vector at that node; the
forces at hinges, £, &) and £(©) , are written
as a function of the forces at hinge D, £). Con-
sequently, the resulting coordinate vector :chD )is
a function of the input force vector £©). The
equivalent compliance of the mechanism at the
coordinate ach ) is the Jacobian matrix of that vec-
tor function. The change in the nodal coordinate

vector :pf,D) describes the added misalignment.

The three overconstraints in the mechanism lead
to forces and moments on the hinges which can
cause them to buckle. The buckling multiplier of
a hinge is the ratio between the critical buckling
load in a direction and the magnitude of the ap-
plied force vector in that same direction.

The equivalent stiffness at the manipulator is
used to determine the explicit forces at the ma-
nipulator; these are related to specific amounts
of misalignment. For each applied misalignment
the resultant forces at the hinges are calculated.
The three possible misalignments yield three ex-
plicit force vectors at the manipulator. There are
four hinges in the mechanism; in total there will
be twelve buckling cases.

Initially the resultant forces are used in a multi-
body simulation of a single hinge. The program
SPACAR [4] can then determine the buckling mul-
tipliers and modes of the specific buckling case.
The twelve unique buckling cases are all simu-
lated.

The buckling loads were also estimated using
the classical buckling equations [5].The resultant
force vector can be factored into two components:

the part responsible of the lateral buckling of the
leaf spring and the part responsible of the axial
buckling of one of the slender rods. The corre-
sponding component of the resultant force vec-
tors is compared to the estimated critical buckling
loads in the same direction to determine the buck-
ling multipliers.

A full elastic multibody simulation of the mecha-
nism serves as a reference and is compared to
the loop buckling analysis. Elastic beams are only
used for the flexures of the hinges. Each hinge is
modelled with twelve flexible beams; four for the
leaf spring and four for each of the two slender
rods. The torsional stiffness of the leaf spring is
stiffened at the end to take into account constraint
warping effects [6].

METHOD RESULTS

The results of the two methods are shown in table
1. The lowest critical misalignment of a hinge is
listed in bold: at that specific misalignment at the
manipulator that hinge will buckle. The difference
between the methods is probably caused by
an incorrect estimate of the effective lengths of
the flexures. The equivalent length is hard to
estimate; the buckling problem of the flexures
has elastic constraints.

TABLE 1. The critical misalignments obtained
with the simulation (sim) and the classical equa-
tions (eq) with respect to the hinges. The lowest
misalignments are listed in bold.

hinge A B C D
eq 215 215 215 2.15
z(mm)
sim 233 233 233 233
o(mrad) eq 115 215 215 115
sim 119 239 239 11.9
w(mrad) eq 151 151 6.28 6.28

sim 16.7 16.7 6.99 6.99

The mechanism simulation shows agreement
with the hinge simulation with respect to the ¢-
and i-misalignments (table 2). The buckling
mode is consistent with both the hinge simula-
tion and the classical buckling equations. For in-
stance, it can be seen in table 1 that hinges C
and D buckle first due to a -misalignment; the
mechanism simulation also shows this behaviour.



TABLE 2. The calculated and simulated buckling
misalignments of the mechanism

misalignment z(mm) ¢(mrad) p(mrad)
mechanism sim  2.01 12.0 7.22
hinge sim 2.33 11.9 6.99
classical eq. 2.15 11.5 6.28
EXPERIMENT

The dynamic behaviour is measured with the help
of a modal analysis. The vibrations of the ef-
fector are measured with three acceleration sen-
sors; the mechanism is excited with a modal ham-
mer. Frequency response functions are then de-
termined using these four signals. Four vibration
modes of the effector are measured. Of these
four modes the third mode showed the most il-
lustrative changes in the system behaviour. The
third mode is the motion of the effector in the -
direction (figure 2). The misalignment was in-
creased until visible buckling occurred. The re-
sults concerning the -misalignment are shown
in figure 3.
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FIGURE 3. Modal profiles of the third mode due
to a v-misalignment, with the simulated values
in black (both negative and positive), the nega-
tive measured values in green and the positive
measured values in orange. The critical misalign-
ments are the dashed lines, again black for the
value found in the simulation, green for the value
at negative visible buckling and orange for the
positive value.

The mechanism in the simulatation was deflected
by half the thickness of the leaf spring flexures
(250 pm) to simulate imperfections in the neutral
position. A small deflection causes a significant

change in the slope of the frequency change (fig-
ure 3). Qualitatively, the dynamic behaviour of the
experiment matches with the simulation of the de-
flected mechanism. The buckling misalignment is
higher, and therefore more tolerant, in the exper-
imental setup. The average critical misalignment
found in the experiment is about 2.5 mrad larger
than the simulated and calculated values: about
9.5 mrad. The hardware imperfections may in-
fluence the boundary conditions of the buckling
problem of the slender rods. Still, the measured
critical misalignment is only 30% higher than the
calculated value, which is rather accurate consid-
ering the possible hardware imperfections. Also,
this specific mechanism displayed only about a
10% decrease in stiffness in the v-direction at the
critical misalignment.

The modal measurement on the experimental
setup gave distinguishable results. The combi-
nation of spring steel flexures and steel clamping
blocks resulted in a mechanism with a high Q fac-
tor.

CONCLUSION

The system behaviour of a multiple overcon-
strained compliant four-bar mechanism has been
investigated. All approaches yielded values for
the critical misalignment in the mechanism in
the three overconstrained directions. Agreement
was found between these approaches.The buck-
ling misalignments could also be adequately es-
timated with classical methods. The critical mis-
alignments found in the experiment were consis-
tently higher than those found in the theoretical
and numerical calculations: they were about 30%
higher.

Importantly, the critical misalignments can be ob-
tained without using complex simulations. The
values obtained from the loop buckling analysis
compare well with multibody simulations. These
misalignments can be used to determine the
manufacturing tolerances of a mechanism. The
approach outlined in this article can be adapted
to fit other types of compliant mechanisms.
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