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Abstract. This paper defines a comprehensive set of metrics for evaluating the 
quality of Entity Relationship models.  This is an extension of previous research 
which developed a conceptual framework and identified stakeholders and qual-
ity factors for evaluating data models. However quality factors are not enough 
to ensure quality in practice, because different people will have different inter-
pretations of the same concept.  The objective of this paper is to refine these 
quality factors into quantitative measures to reduce subjectivity and bias in the 
evaluation process. A total of twenty five candidate metrics are proposed in this 
paper, each of which measures one of the quality factors previously defined. 
The metrics may be used to evaluate the quality of data models, choose between 
alternatives and identify areas for improvement.  

1 Introduction 

The choice of an appropriate representation of data is one of the most crucial tasks in 
the entire systems development process. Although the data modelling phase represents 
only a small proportion of the total systems development effort, its impact on the final 
result is probably greater than any other phase (Simsion, 1994). The data model is a 
major determinant of system development costs (ASMA, 1996), system flexibility 
(Gartner, 1992), integration with other systems (Moody and Simsion, 1995) and the 
ability of the system to meet user requirements (Batini et al., 1992). For this reason, 
effort expended on improving the quality of data models is likely to pay off many 
times over in later phases. 

Previous Research 
Evaluating the quality of data models is a discipline which is only just beginning to 
emerge. Quantitative measurement of quality is almost non-existent.  A number of 
frameworks for evaluating the quality of data models have now been proposed in the 
literature (Roman, 1985; Mayer, 1989; von Halle, 1991; Batini et al., 1992; Levitin 
and Redman, 1994; Simsion, 1994; Moody and Shanks, 1994; Krogstie, Lindland and 
Sindre, 1995; Lindland, Sindre and Solveberg, 1994;  Kesh, 1995; Moody and 
Shanks, 1998).    

Most of these frameworks suggest criteria that may be used to evaluate the quality of 
data models. However quality criteria are not enough on their own to ensure quality in 
practice, because different people will generally have different interpretations of what 
they mean. According to the Total Quality Management (TQM) literature, measurable 
criteria for assessing quality are necessary to avoid “arguments of style” (Zultner, 
1992). The objective should be to replace intuitive notions of design “quality” with 
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formal, quantitative measures to reduce subjectivity and bias in the evaluation process. 
However developing reliable and objective measures of quality in software develop-
ment is a difficult task. As Van Vliet (1993) says:  

“The various factors that relate to software quality are hard to define.  It is even harder 
to measure them quantitatively.  There are very few quality factors or criteria for which 
sufficiently sound numeric measures exist.” 

Of the frameworks that have been proposed, only two address the issue of quality 
measurement.  Moody and Shanks (1994) suggest a number of evaluation methods, 
which in some cases are measures (eg. data model complexity) and in other cases are 
processes for carrying out the evaluation (eg. user reviews).  Kesh (1995) defines a 
number of metrics for evaluating data models but these are theoretically based, and of 
limited use in practice. Most of the other frameworks rely on experts giving overall 
subjective ratings of the quality of a data model with respect to the criteria proposed. 

2 A Framework for Evaluating and Improving the Quality of 
Data Models 

This paper uses the framework for data model evaluation and improvement proposed 
by Moody and Shanks (1998) as a basis for developing quality metrics. An earlier 
version of the framework was published in Moody and Shanks (1994).  This frame-
work was developed in practice, and has now been applied in a wide range of organi-
sations around the world (Moody, Shanks and Darke, 1998).  The framework is sum-
marised by the Entity Relationship model shown below.  

Quality 
Factor

Quality 
Metric

Stakeholder

Improvement
Strategy

concerned
with

Weighting
defines 

importance of

used to improve

evaluated by

interacts with

Fig. 1.  Data Model Quality Evaluation Framework 

• Quality factors are the properties of a data model that contribute to its quality.  
These answer the question: “What makes a good data model?”. A particular qual-
ity factor may have positive or negative interactions with other quality factors—
these represent the trade-offs implicit in the modelling process. 
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• Stakeholders are people who are involved in building or using the data model, 
and therefore have an interest in its quality. Different stakeholders will generally 
be interested in different quality factors.  

• Quality metrics are define ways of evaluating particular quality factors. There 
may be multiple measures for each quality factor. 

• Weightings define the relative importance of different quality factors in a prob-
lem situation. These are used to make trade-offs between different quality factors.   

• Improvement strategies are techniques for improving the quality of data models 
with respect to one or more quality factors.  

A previous paper (Moody and Shanks, 1994) defined the stakeholders and quality 
factors relevant to data modelling, as well as methods for evaluating the quality of 
data models.  This paper defines metrics for each quality factor.   

Stakeholders 
The key stakeholders in the data modelling process are: 

• The business user, whose requirements are defined by the data model 

• The analyst, who is responsible for developing the data model 

• The data administrator, who is responsible for ensuring that the data model is 
consistent with the rest of the organisation’s data 

• The application developer, who is responsible for implementing the data model 
(translating it into a physical database schema) 

Quality Factors 
The proposed quality factors and the primary stakeholders involved in evaluating them 
are shown in Fig. 2 below.  

DATA 
MODEL

QUALITY

Completeness

     Implementability         Integration    Simplicity

UnderstandabilityFlexibilityIntegrity

Correctness

Business User Business User Business User Business User

Data Analyst Data Analyst Data Administrator Application Developer

Fig. 2.  Data Model Quality Factors 

These quality factors may be used as criteria for evaluating the quality of individual 
data models or comparing alternative representations of requirements. Together they 
incorporate the needs of all stakeholders, and represent a complete picture of data 
model quality. The following sections define quality measures for each quality factor. 
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3 Completeness 
Completeness relates to whether the data model contains all information required to 
meet user requirements. This corresponds to one half of the 100% principle—that the 
conceptual schema should define all static aspects of the Universe of Discourse (ISO, 
1987). Completeness is the most important requirement of all because if it is not satis-
fied, none of the other quality factors matter. If the requirements as expressed in the 
data model are inaccurate or incomplete, the system which results will not satisfy us-
ers, no matter how well designed or implemented it is.  

Evaluating Completeness 
In principle, completeness can be checked by checking that each user requirement is 
represented somewhere in the model, and that each element of the model corresponds 
to a user requirement (Batini et al, 1992). However the practical difficulty with this is 
that there is no external source of user requirements—they exist only in people’s 
minds. Completeness can therefore only be evaluated with close participation of busi-
ness users.  

The result of completeness reviews will be a list of elements (entities, relationships, 
attributes, business rules) that do not match user requirements. Fig. 3 illustrates the 
different types of completeness mismatches: 

�

Data Model User Requirements�

�

�

Fig. 3.  Types of Completeness Errors 

• Area 1 represents elements included in the data model that do not correspond to 
any user requirement or are out of scope of the system—these represent unneces-
sary elements.  We call these Type 1 errors. 

• Area 2 represents user requirements which are not represented anywhere in the 
data model—these represent gaps or omissions in the model.  We call these Type 
2 errors. 

• Area 3 represents items included in the data model that correspond to user re-
quirements but have been inaccurately defined.  We call these Type 3 errors. 

• Area 4 represents elements in the data model that accurately correspond to user 
requirements. 

The objective of completeness reviews is to eliminate all items of type 1, 2 and 3. 
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Proposed Completeness Metrics 
The proposed quality measures for correctness all take the form of mismatches with 
respect to user requirements.  The purpose of the review process will be to eliminate 
all such defects, so that the model exactly matches user requirements: 

✎ Metric 1. Number of items in the data model that do not correspond to user re-
quirements (Type 1 errors).  Inclusion of such items will lead to unnecessary 
development effort and added cost. 

✎ Metric 2. Number of user requirements which are not represented in the data 
model (Type 2 errors).  These represent missing requirements, and will need to 
be added later in the development lifecycle, leading to increased costs, or if 
they go undetected, will result in users not being satisfied with the system 

✎ Metric 3. Number of items in the data model that correspond to user require-
ments but are inaccurately defined (Type 3 errors).  Such items will need to be 
changed later on the development lifecycle, leading to rework and added cost, 
or if they go undetected, will result in users being unsatisfied with the system. 

✎ Metric 4. Number of inconsistencies with process model. A critical task in veri-
fying the completeness of the data model is to map it against the business proc-
esses which the system needs to support.  This ensures that all functional re-
quirements can be met by the model.  The result of this analysis can be pre-
sented in the form of a CRUD (Create, Read, Update, Delete) matrix.  Analysis 
of the CRUD matrix can be used to identify gaps in the data model as well as to 
"prune away" unnecessary data from the model (Martin, 1989).   

4 Integrity 
Integrity is defined as the extent to which the business rules (or integrity constraints) 
which apply to the data are enforced by the data model1. Integrity corresponds to the 
other half of the 100% principle—that the conceptual schema should define all dy-
namic aspects of the Universe of Discourse (ISO, 1987). Business rules define what 
can and can’t happen to the data.  Business rules are necessary to maintain the consis-
tency and integrity of data stored, as well as to enforce business policies (Date, 1989; 
Loffman and Rush, 1991).  All rules which apply to the data should be documented in 
the data model to ensure they are enforced consistently across all application programs 
(ISO, 1987).   

Evaluating Integrity 
Like completeness, integrity can only really be evaluated with close participation of 
business users.  The rules represented by the data model may be verified by translating 
them into natural language sentences.  Users can then verify whether each rule is true 

1  In the original version of the evaluation framework (Moody and Shanks, 1994) integrity 
was included as part of completeness, but has since been separated out as a quality factor in 
its own right. 
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or false. This is useful as a check on the integrity of the data model because business 
users often have difficulty understanding the constraints defined in data models, par-
ticularly cardinality rules on relationships (Batini et al., 1992).  Many CASE tools can 
automatically translate relationship cardinality rules into natural language sentences, 
provided relationships have been named correctly.   

Proposed Integrity Metrics 
The proposed quality measures for integrity take the form of mismatches between the 
data model and business policies.  The purpose of the review process will be to elimi-
nate all such defects: 

✎ Metric 5. Number of business rules which are not enforced by the data model.  
Non-enforcement of these rules will result in data integrity problems and/or 
operational errors. 

✎ Metric 6. Number of integrity constraints included in the data model that do 
not accurately correspond to business policies (i.e. which are false). Incorrect 
integrity constraints may be further classified as:  

• too weak: the rule allows invalid data to be stored 

• too strong: the rule does not allow valid data to be stored and will lead to 
constraints on business operations and the need for user “workarounds”. 

5 Flexibility 
Flexibility is defined as the ease with which the data model can cope with business 
change. The objective is for additions and/or changes in requirements to be handled 
with the minimum possible change to the data model. The data model is a key con-
tributor to the flexibility of the system as a whole (Gartner, 1992; Simsion, 1994).  
Lack of flexibility in the data model can lead to: 

• Maintenance costs: of all types of maintenance changes, changes to data struc-
tures and formats are the most expensive. This is because each such change has a 
“ripple effect” on all the programs that use it. 

• Reduced organisational responsiveness: inflexible systems inhibit changes to 
business practices, organisational growth and the ability to respond quickly to 
business or regulatory change. Often the major constraint on introducing business 
change—for example, bringing a new product to market—is the need to modify 
the computer systems that support it (Simsion, 1988).  

Evaluating Flexibility 
Flexibility is a particularly difficult quality factor to assess because of the inherent 
difficulty of predicting what might happen in the future. Evaluation of flexibility re-
quires identifying what requirements might change in the future, their probability of 
occurrence and their impact on the data model. However no matter how much time 
spent thinking about what might happen in the future, such changes remain hard to 
anticipate.  In this respect, evaluating flexibility has much in common with weather 
forecasting—there is a limit to how far and how accurately the future can be predicted. 
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Proposed Flexibility Metrics 
The proposed measures for evaluating flexibility focus on areas where the model is 
potentially unstable—where changes to the model might be required in the future as a 
result of changes in the business environment. The purpose of the review process will 
be to look at ways of minimising impact of change on the model, taking into account 
the probability of change, strategic impact and likely cost of change.  A particular fo-
cus of flexibility reviews is identifying business rules which might change. 

✎ Metric 7.  Number of elements in the model which are subject to change in the 
future. This includes changes in definitions or business rules as a result of 
business or regulatory change.   

✎ Metric 8.  Estimated cost of changes.  For each possible change, the probability 
of change occurring and the estimated cost of making the change post-
implementation should be used to calculate the probability-adjusted cost of the 
change. 

✎ Metric 9.  Strategic importance of changes.  For each possible change, the stra-
tegic impact of the change should be defined, expressed as a rating by business 
users of the need to respond quickly to the change. 

6 Understandability 
Understandability is defined as the ease with which the data model can be understood. 
Business users must be able to understand the model in order to verify that it meets 
their requirements.  Similarly, application developers need to be able to understand 
the model to implement it correctly. Understandability is also important in terms of the 
useability of the system. If users have trouble understanding the concepts in the data 
model, they are also likely to have difficulty understanding the system which is pro-
duced as a result. 

The communication properties of the data model are critical to the success of the 
modelling effort. However empirical studies show that in practice data models are 
poorly understood by users, and in most cases are not developed with direct user in-
volvement (Hitchman, 1995). While data modelling has proven very effective as a 
technique for database design, it has been far less effective for communication with 
users (Moody, 1996a).   

Evaluating Understandability 
Understandability can only be evaluated with close participation with the users of the 
model—business users and application developers.  In principle, understandability can 
be checked by checking that each element of the model is understandable. However 
the practical difficulty with this is that users may think they understand the model 
while not understanding its full implications and possible limitations from a business 
perspective. 
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Proposed Understandability Metrics 
The proposed measures for understandability take the form of ratings by different 
stakeholders and tests of understanding.  The purpose of the review process will be to 
maximise these ratings.   

✎ Metric 10. User rating of understandability of model: user ratings of under-
standability will be largely based on the concepts, names and definitions used, 
as well as how the model is presented. A danger with this metric is that it is 
common for users to grasp familiar business terms without appreciating the 
meaning represented in the model.  As a result, they may think they understand 
the model while not really understanding its full implications for the business. 

✎ Metric 11. Ability of users to interpret the model correctly.  This can be measured 
by getting users to instantiate the model using actual business examples (scenar-
ios).  Their level of understanding can then be measured by the number of errors 
in populating the model.  This is a better operational test of understanding than 
the previous metric—it measures whether the model is actually understood rather 
than whether it is understandable (Lindland et al, 1994).  This is much more im-
portant from the point of view of verifying the accuracy of the model. 

✎ Metric 12. Application developer rating of understandability. It is essential that 
the application developer understands the model fully so that they can imple-
ment it correctly. Getting the application developer to review the model for un-
derstandability is particularly useful for identifying where the model is unclear 
or ambiguous because they will be less familiar with the model and the busi-
ness domain than either the analyst or business user.  Many things that seem 
obvious to those involved in developing the model may not be to someone see-
ing it for the first time.  

7 Correctness 
Correctness refers to whether the model conforms to the rules of the data modelling 
technique being used. Rules of correctness include diagramming conventions, naming 
rules, definition rules and rules of composition (for example, each entity must have a 
primary key). Correctness is concerned only with whether the data modelling tech-
nique has been used correctly (syntactic or grammatical correctness).  It answers the 
question: “Is this a valid model?”.  Another important aspect of correctness, and a 
major focus of data modelling in practice, is to ensure that the model contains no re-
dundancy—that each fact is represented in only one place (Simsion, 1994).  

Evaluating Correctness 
Correctness is the easiest of all the quality factors to evaluate, because there is very 
little subjectivity involved, and no degrees of quality—the model either obeys the 
rules or it does not.  Also, the model can be evaluated in isolation, without reference 
to user requirements.  The result of correctness reviews will be a list of defects, defin-
ing where the data model does not conform to the rules of the data modelling tech-
nique.  Many of these checks can be carried out automatically using CASE tools. 
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Proposed Correctness Metrics 
The proposed quality measures for correctness all take the form of defects with re-
spect to data modelling standards (syntactic rules).  We break down correctness errors 
into different types or defect classes to assist in identifying patterns of errors or prob-
lem areas which may be addressed by training or other process measures.  The pur-
pose of the review process will be to eliminate all such defects: 

✎ Metric 13. Number of violations to data modelling conventions.  These can be 
further broken down into the following defect classes: 

• Diagramming standards violations (eg. relationships not named) 

• Naming standards violations (eg. use of plural nouns as entity names) 

• Invalid primary keys (non unique, incomplete or non-singular) 

• Invalid use of constructs (eg. entities without attributes, overlapping sub-
types, many to many relationships) 

• Incomplete definition of constructs (e.g. data type and format not defined 
for an attribute; missing or inadequate entity definition) 

✎ Metric 14. Number of normal form violations.  Second and higher normal form 
violations identify redundancy among attributes within an entity (intra-entity 
redundancy).  Normal form violations may be further classified into: 

• First normal form (1NF) violations 

• Second normal form (2NF) violations 

• Third normal form (3NF) violations 

• Higher normal form (4NF+) violations 

✎ Metric 15. Number of instances of redundancy between entities—for example, 
where two entity definitions overlap or where redundant relationships are in-
cluded. This is called inter-entity redundancy, to distinguish this from redun-
dancy within an entity (intra-entity redundancy—Metric 14) and redundancy 
of data with other systems (external redundancy—Metric 21). Fig. 4 summa-
rises the types of redundancy and corresponding metrics. 

Redundancy

Internal 
Redundancy

Intra-Entity 
Redundancy

Inter-Entity 
Redundancy

External 
Redundancy

Metric14

Metric 15

Metric 21

Fig. 4. Classification of Redundancy 
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8 Simplicity 
Simplicity means that the data model contains the minimum possible constructs. Sim-
pler models are more flexible (Meyer, 1988), easier to implement (Simsion, 1991), 
and easier to understand (Moody, 1997). The choice of simplicity as a quality factor is 
based on the principle of Ockham’s Razor, which has become one of the cornerstones 
of the scientific method. This says that if there are two theories which explain the 
same observations, the one with the fewer constructs should be preferred (Dubin, 
1979).  The extension of this to data modelling is if there are two data models which 
meet the same requirements, the simpler one should be preferred. 

Evaluating Simplicity 
Simplicity is the easiest of all quality factors to evaluate, because it only requires a 
simple count of data model elements.  This can be done automatically by CASE tools, 
or carried out manually.  It takes no skill (apart from the ability to count!) and is to-
tally objective.  Simplicity metrics are particularly useful in comparing alternative data 
models—all other things being equal, the simpler one should be preferred. 

Proposed Simplicity Metrics
Metrics for evaluating simplicity take the form of complexity measures.  The purpose 
of the review process will be to minimise the complexity of the model while still satis-
fying user requirements.  The following metrics represent alternative ways of measur-
ing complexity of a data model—Metric 17 is recommended as the most useful of the 
measures proposed: 

✎ Metric 16. Number of entities (E).  This is the simplest measure of the com-
plexity of a data model.  The justification for this is that the number of entities 
in the logical data model is a surrogate measure for system complexity and de-
velopment effort. Symons (1988, 1991) found that in sizing of business (“data 
rich”) applications, the major determinant of software size (and development 
effort) was the number of entities.   

✎ Metric 17. Number of entities and relationships (E+R).  This is a finer resolu-
tion complexity measure which is calculated as the number of entities (E) plus 
the number of relationships (R) in the data model.  This derives from complex-
ity theory, which asserts that the complexity of any system is defined by the 
number of components in the system and the number of relationships between 
them (Klir, 1985; Pippenger, 1978). Subtypes should not be included in the 
calculation of the number of entities because these represent subcategories 
within a single construct and generally do not translate into separate database 
tables. In addition, many to many relationships should be counted as three con-
structs, since when they are resolved, they will form one entity and two rela-
tionships (Shanks, 1997). This helps to standardise differences between differ-
ent modelling styles.  

✎ Metric 18. Number of constructs (E+R+A). This is the finest resolution com-
plexity measure, and includes the number of attributes in the calculation of data 
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model complexity.  Such a metric could be calculated as a weighted sum of the 
form aNE + bNR + cNA where NE is the number of entities, NR is the number of 
relationships and NA is the number of attributes.  In practice however, such a 
measure does not provide any better information than Metric 17.   

9 Integration 
Integration is defined as the level of consistency of the data model with the rest of the 
organisation’s data.  In practice, application systems are often built in relative isola-
tion of each other, leading to the same data being implemented over and over again in 
different ways.  This leads to duplication of data, interface problems and difficulties 
consolidating data from different systems for management reporting (Moody and Sim-
sion, 1995).  The primary mechanism for achieving corporate-wide data integration is 
a corporate data model (Goodhue et al., 1992).  The corporate data model provides a 
common set of data definitions which is used to co-ordinate the activities of applica-
tion development teams so that separately developed systems work together.  The cor-
porate data model allows opportunities for sharing of data to be identified, and ensures 
that different systems use consistent data naming and formats (Martin, 1989).   

Evaluating Integration 
Integration is assessed by comparing the application data model with the corporate 
data model (Batini, Lenzerini and Navathe, 1986). The result of this will be a list of 
conflicts between the project data model and the corporate data model.  This is usually 
the responsibility of the data administrator (also called information architect, data ar-
chitect, data manager), who has responsibility for corporate-wide sharing and integra-
tion of data.   It is their role to maintain the corporate data model and review applica-
tion data models for conformance to the corporate model.   

Proposed Integration Metrics
Most of the proposed measures for integration are in the form of conflicts with the 
corporate data model or with existing systems.  The purpose of the review process will 
be to resolve these inconsistencies. 

✎ Metric 19. Number of data conflicts with the Corporate Data Model.  These 
can be further classified into: 

• Entity conflicts: number of entities whose definitions are inconsistent 
with the definition entities in the corporate data model.  

• Data element conflicts: number of attributes with different definitions or 
domains to corresponding attributes defined in the corporate data model. 

• Naming conflicts: number of entities or attributes with the same business 
meaning but different names to concepts in the corporate data model 
(synonyms).  Also entities or attributes with the same name but different 
meaning to concepts in the corporate data model (homonyms).

✎ Metric 20. Number of data conflicts with existing systems.  These can be fur-
ther classified into: 
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• Number of data elements whose definitions conflict with those in existing 
systems e.g. different data formats or definitions.  Inconsistent data item 
definitions will lead to interface problems, the need for data translation 
and difficulties comparing and consolidating data across systems. 

• Number of key conflicts with existing systems or other projects.  Key 
conflicts occur when different identifiers are assigned to the same object 
(eg. a particular customer) by different systems.  This leads to fragmenta-
tion of data across systems and the inability to link or consolidate data 
about a particular entity across systems. 

• Number of naming conflicts with other systems (synonyms and/or homo-
nyms).  These are less of a problem in practice than other data conflicts, 
but are a frequent source of confusion in system maintenance and inter-
pretation of data.   

✎ Metric 21. Number of data elements which duplicate data elements stored in 
existing systems or other projects.  This is called external redundancy to dis-
tinguish it from redundancy within the model itself (Metrics 14 and 15).  This 
form of redundancy is a serious problem in most organisations—empirical 
studies show that there are an average of ten physical copies of each primary 
data item in medium to large organisations (O’Brien and O’Brien, 1994). 

✎ Metric 22. Rating by representatives of other business areas as to whether the 
data has been defined in a way which meets corporate needs rather than the re-
quirements of the application being developed. Because all data is potentially 
shareable, all views of the data should be considered when the data is first de-
fined (Thompson, 1993).  In practice, this can be done by a high level commit-
tee which reviews all application development projects for data sharing, consis-
tency and integration (Moody, 1996b). 

10 Implementability 
Implementability is defined as the ease with which the data model can be implemented 
within the time, budget and technology constraints of the project. While it is important 
that a data model does not contain any assumptions about the implementation (ISO, 
1987), it is also important that it does not ignore all practical considerations. After all, 
there is little point developing a model which cannot be implemented or that the user 
cannot afford. 

Evaluating Implementability 
The implementability of the data model is assessed by the application developer, who 
is responsible for implementing the data model once it has been completed. The appli-
cation developer provides an important “reality check” on what is technically possible 
and/or economically feasible.  The process of reviewing the model also allows the 
application developer to gain familiarity with the model prior to the design stage to 
ensure a smooth transition.   
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Proposed Implementability Metrics 
Proposed measures of implementability all take the form of ratings by the application 
developer.  The purpose of the review process will be to minimise these ratings: 

✎ Metric 23. Technical risk rating: estimate of the probability that the system can 
meet performance requirements based on the proposed data model and the 
technological platform (particularly the target DBMS) being used 

✎ Metric 24. Schedule risk rating: estimate of the probability that the system can 
be implemented on time, based on the proposed data model 

✎ Metric 25. Development cost estimate: this is an estimate of the development 
cost of the system, based on the data model.  Such an estimate will necessarily 
be approximate but will be useful as a guide for making cost/quality trade-offs 
between different models proposed.  If the quote is too high (exceeds available 
budget), the model may need to be simplified, reduced in scope or the budget 
increased. 

11 Conclusion 
This paper has proposed a comprehensive set of metrics for evaluating the quality of 
data models based on the set of quality factors proposed by Moody and Shanks 
(1998). A total of twenty five candidate metrics are identified, with eighteen secon-
dary metrics which may be used to classify defects in more detail.  It is not expected 
that all of these metrics would be used in evaluating the quality of a particular data 
model.  Our aim in this paper has been to be as complete as possible—to suggest as 
many metrics as possible as a starting point for analysis.  Selection of the most appro-
priate metrics should be made based on their perceived usefulness and ease of calcula-
tion. 

Further Research 
The next step in this research is to validate and refine these metrics in practice.  This 
will help to identify which metrics are most useful. It is proposed to use action re-
search as the research paradigm for doing this. Action research (Checkland and Scho-
les, 1990) is a research method in which practitioners and researchers work together to 
test and refine principles, tools, techniques and methodologies that have been devel-
oped to address real world problems. It provides the ability to test out new methods in 
practice for mutual benefit of researchers and practitioners. Moody, Shanks and 
Darke, 1998 (in this conference) describe how action research has already been used 
to validate the framework and the quality factors proposed. 

Further research is also required to develop strategies for improving the quality of data 
models once a quality problem has been identified.  Definition of improvement strate-
gies would complete the specification of the framework. 
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