P2.19 Tuesday, 2:45 pm

Crossover from 180-to-90 degree domains in ferroelectric thin films

A. Vlooswijk¹, A. Janssens², G. Rijnders², D. Blank², B. Noheda¹

We have grown thin films of the classical tetragonal perovskite ferroelectric $PbTiO_3$ on DyScO3 substrates. Due to the minuscule mismatch between $PbTiO_3$ and DyScO3 at the growth temperature (< 0, 4% at $570 \,^{\circ}C$), high-quality paraelectric thin films can be grown, in which periodic ferroelectric domains form upon cooling down. The thinnest of these films (d < 8nm) display $180 \,^{\circ}$ periodic domains due to the large depolarizing fields, whereas the thicker films (d > 28nm) consist of $90 \,^{\circ}$ domain patterns determined by the elastic energy. For intermediate thicknesses, we have observed for the first time the crossover from $180 \,^{\circ}$ -to- $90 \,^{\circ}$ domain walls. For this crossover, we propose a model that combines the elastic and electrical boundary conditions, giving rise to ferroelectric closure-like domains.

The observed domain periodicity (Λ) versus film thickness (d) correlation, has revealed the energetics of domain wall formation. For d < 8nm, 180domains form with periodicity in accordance with Kittel's Law applied to ferroelectric domains ($\Lambda \sim d^{1/2}$). Taking into account that during the cooling process, the domain walls can 'freeze in'[2], we have measured up to T=200 °C and did not observe any changes, showing that the 180° domain 'freezing' occurs above this temperature. Fitting the vs. d data provides domain wall energy between 120 and $132mJ/m^2$ for freezing temperatures (T_f) between 200° and 440°C, respectively, which is in good agreement with ab initio calculations for free-standing $PbTiO_3$ [1].

The 90° domains in thicker films (d > 28nm), obey Roytburd's Law for 90° domains, with the same $d^{1/2}$ dependence and domain wall formation energy between 10 ($T_f = 440 \,^{\circ}C$) and $65mJ/m^2$ ($T_f = 25 \,^{\circ}C$). Therefore, 90° domain walls are likely to be mobile down to room temperature [4]. This result, which is in good agreement with ab initio calculations [1] for freestanding $PbTiO_3$, is somewhat surprising for epitaxially grown films and is most likely due to the elastic properties of DyScO3 [3].

- [1] B. Meyer and D. Vanderbilt, *Phys. Rev.* B 65(10), 104111 (2002).
- [2] M.L. Mulvihill et al., J. Am. Ceram. Soc. 80(6), 1462-68 (1997).
- [3] S. Venkatesan et al., J. Appl. Phys. 102(10), 104105 (2007).
- [4] A.H.G. Vlooswijk et al., Appl. Phys. Lett. 91(11), 112901 (2007).

¹University of Groningen, Laboratory of Solid-State Chemistry

²University of Twente, Inorganic Materials Science Group, The Netherlands