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ABSTRACT   

Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms 
(CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on 
interference and diffraction, thus they generally use laser light. However, laser sources are relatively expensive, 
available only at some particular wavelengths and difficult to miniaturize. In addition, highly coherent nature of 
laser light makes some undesired visual effects quite evident, such as speckle noise, interference due to stray 
light or defects of optical components. On the other hand, LED sources are available in variety of wavelengths, 
has small die size, and no speckle artifact. However, their finite spatial size introduce some degree of spatial 
incoherence in an HD system and degrade image resolution, which is the subject of the study in this paper. Our 
theoretical analysis indicates that the amount of resolution loss depends on the distance between hologram 
and SLM image planes. For some special configurations, the source size has no effect at all. We also performed 
experiments with different configurations using lasers and LEDs with different emission areas that vary from 50 
µm to 200 µm, and determined Contrast Transfer Function (CTF) curves which agree well with our theoretical 
model. The results show that it is possible to find configurations where LEDs combined with pinholes almost 
preserve natural resolution limit of human eye while keeping the loss in light efficiency within tolerable limits.  

Keywords: Holographic Displays, Computer Generated Holograms, CGH, Spatial Coherence, Image 
Resolution. Coherence Effect, Digital Holography, Coherence Effects in Resolution. 
 

1. INTRODUCTION  
Holography, invented in 1947 by Dennis Gabor, is a method that employs diffraction and interference for 
recording and reconstruction of optical wavefronts [1]. In Computer Generated Holography (CGH) approach 
fringe patterns are calculated by a computer and then optical wavefronts are reconstructed by a Spatial Light 
Modulator (SLM) [2-4]. Holographic Displays (HDs) are able to generate real or virtual 3D images without 
requiring 3D glasses for the viewer [5, 6]. Holographic displays have emerging applications in augmented reality 
and virtual reality [7-9]. 

Holographic displays rely on diffraction and interference and use high coherence laser illumination that produce 
adverse side effects such as speckle noise. Since presence of speckle noise severely degrades reconstructed 
images quality, this issue remains one of the fundamental challenges in digital and optical holography. Different 
optical methods (such as reducing the spatial coherence of light sources) [10] and computational methods (digital 
image processing and CGH computation algorithms) [11, 12] have been implemented for speckle reduction. Use 
of Light Emitting Diodes (LEDs) make it possible to reduce the undesirable interference effects and speckle 
noise in holographic displays to a certain extent at the expense of reduced resolution. Illuminating the SLM 
surface with low coherence LEDs results in smoother images in comparison to high coherence laser sources. 
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LEDs as sources in digital holography, have previously been investigated in holographic microscopy [13] and 
effect of partial spatial coherence in digital holographic microscopy was also studied [14, 15].  

The usage of LEDs as incoherent light sources for holographic displays have gained popularity. Full-color 
holographic displays using LEDs as sources with phase-only SLMs and amplitude-only SLMs has been 
proposed [4, 16-18]. Color head-mounted holographic displays that employ LED illumination has been 
developed to overcome the common vergence-accommodation conflict in 3D Head Mounted Displays[19, 20]. A 
new multiplexing method and a calibration technique for correcting the misaligned wavefronts due to 
multiplexing in color HDs has been studied [21, 22]. The influence of spatial and temporal coherence on digital 
holographic reconstructions has been studied[23, 24]. The effect of low coherence LED illumination in optical 
holographic reconstruction has been investigated[25]. 

In this paper we investigate the effect of source spatial coherence on the resolution of the reconstructed 
holograms. Our theoretical analysis indicates that the degradation in image resolution due to spatial incoherence 
of the light source depends on the optical architecture of the holographic display, and in particular depends on 
the distance between the apparent object and SLM planes. We also present experiments and verify our 
theoretical model. A reflective phase-only Liquid Crystal on Silicon (LCOS) SLM (Holoeye PLUTO-VIS-014) 
was illuminated with a red LED to reconstruct the holograms. We used 54 µm, 107 and 205µm pinholes in front 
of the LED to increase its spatial coherence. SLM is located in different locations and SLM image planes are 
placed at various planes. Our experimental results strongly support our theoretical analysis. 

 

2. ANALYSIS 
Our optical setup is shown in figure 1. Diverging light from an LED source is collimated by a lens and 
illuminates the reflective phase-only spatial light modulator. The modulated light passes once again through the 
lens (which now acts as a Fourier transform lens) and reaches a beam splitter. Rays reflected by the beam splitter 
and reach a diaphragm, an imaging lens and a CCD camera, on which the holograms are reconstructed. The LED 
source is used with pinholes of varying sizes to control the extent of spatial incoherence of the source. A He-Ne 
laser coupled to a single mode fiber is also used to serve as a reference source with almost perfect spatial 
coherence. For a particular object point, the CGH on the Spatial Light Modulator in general becomes an off-axis 
lens term that converts the collimated illumination wave to a new wave that becomes equivalent to the wave 
emitted by the object point upon passage through the Fourier lens. 

When the source has perfect spatial coherence and when the hologram on the SLM is appropriately calculated, 
one gets the holographic reconstruction at the camera plane with the best resolution. However, when the source 
has a nonzero extent, additional oblique plane wave components illuminate the SLM and form shifted replicas of 
the reconstruction at the CCD plane which are superimposed on the actual desired reconstruction, leading to a 
loss in spatial resolution. The extent of degradation, however, depends on the configuration of the system. This is 
best understood by considering the image of the SLM formed by the Fourier lens and the imaging lens. If the 
plane where this image forms coincides with the CCD plane, then all reconstructions are exactly aligned with 
each other, and the spatial incoherence of the source has no effect on the resolution at all. However, if there is a 
certain distance between the SLM image plane and the CCD plane, reconstructions due to oblique waves do not 
overlap, and lead to a blurring effect on the reconstructed image. The degree of blurring increases as the distance 
between the mentioned planes increase. Therefore, resolution degradation due to source incoherence in general 
depends on the optical configuration and the location of the reconstruction plane. 
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Figure 1. The Optical Setup With an incoherent LED source: Light generated by an LED passes through a pinhole 
to increase its spatial coherence, and then gets collimated by a lens and illuminates the surface of a spatial light 
modulator. Beam modulated and reflected backwards from the SLM passes through the same lens, gets reflected 
by a beam splitter and passes through a diaphragm that serves as a Fourier filter. Finally after passing through an 
imaging lens the holograms are reconstructed at the CCD plane of a camera. 

 
 

In our experiment, we choose the focal length of the Fourier lens as 100 mm, and we fixed the distance between 
the Fourier lens and imaging lens to 100 mm. We study five different configurations where the SLM to Fourier 
lens distance is taken as 20, 40, 60, 80, 100 mm. The focal length of the imaging lens is 50 mm. For each of the 
five cases, we placed the CCD camera (hologram reconstruction plane) at a distance of 50 mm, 55.5 mm and 
63.3 mm. Straightforward analysis shows that only in three cases (SLM to Fourier lens: 60 mm, imaging lens to 
CCD: 63.3 mm, SLM to Fourier lens: 80 mm, imaging lens to CCD: 55.5 mm, SLM to Fourier lens: 100 mm, 
imaging lens to CCD: 50 mm) the SLM image is formed on the reconstruction plane, whereas in other cases, 
there is a difference in between. In terms of percentage difference between reconstruction and SLM image 
planes, 15 configurations can be categorized into 5 groups, as follows: Group 1, the group mentioned above. In 
this group best images are expected regardless of source coherence. Group 2 involves five cases: SLM to lens: 
40 mm and CCD is at 63.3 mm, SLM to lens distance is 60 mm and CCD is at 55.5 mm, SLM to lens distance is 
80 mm and CCD can be at both 63.3 mm and 50 mm, SLM to lens distance is 100 mm and CCD is at 55.5 mm. 
Group 3 has four possibilities including: CCD is at 63.3 mm and SLM to lens distances are 20 mm and 100 mm, 
CCD is at 55.5 mm and SLM to lens distance is 40 mm, CCD is at 50 mm and SLM to lens distance is 60 mm. 
Group 4 has two cases: SLM to lens distance is 20 mm and CCD at 55.5 mm, SLM to lens distance is 40 mm 
and CCD at 50 mm. Finally in Group 5 we have the only case of SLM to lens distance 20 mm and CCD at 50 
mm. As the group number increases, the difference between SLM image and CCD planes increase, and we 
expect the degradation in resolution to get worse.  

3. EXPERIMENTAL RESULTS 
The image of the 1951 USAF resolution chart was reconstructed by the laser and LED sources with different 
emission areas. Applying pinholes in front of the LEDs we control the degree of source spatial coherence which 
increases as the pinhole size is decreased. For each group discussed in the previous section, reducing the spatial 
coherence of the sources results in reduction in reconstructed holograms quality, except from Group 1. On the 
other hand, for the high coherence laser source we expect to obtain the same quality for all SLM to lens distances 
and imaging lens to CCD distance combinations. Figure 2 shows cases in which the SLM to lens distances are 60 
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mm and the CCD is 63.3 mm away from the imaging lens (Group 1) for a) a laser source, b) a red LED source 
with 54 µm pinhole size, c) a red LED with 107 µm pinhole size and d) a red LED with 205 µm pinhole size. 
This is one of the three particular combinations where the source extent or spatial coherence does not affect the 
quality of the constructed holograms. On the other hand, figure 3 indicates a case in which the SLM to lens 
distances are 20 mm and the CCD is 50 mm away from the imaging lens for a) a laser source, b) a red LED 
source with 54 µm pinhole size, c) a red LED with 107 µm size pinhole size and d) a red LED with 205 µm 
pinhole size. In these cases the difference between the CCD plane and SLM image plane is highest. Therefore, 
the resolution of the reconstructed holograms is seriously reduced by the increasing LED sizes. 

 
Figure 2. Reconstructed images of USAF resolution target when SLM to lens distance is 60 mm and the CCD to 
imaging lens distance is 63.3 mm for a)a laser source b)a red LED source with 54 µm pinhole size c)a red LED 
with 107 µm pinhole size and d)a red LED with 205 µm pinhole size. 
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Figure 3. Reconstructed images of USAF resolution target when SLM to lens distance is 20 mm and the CCD to 
imaging lens distance is 50 mm a)a laser source b)a red LED source with 54 µm pinhole size c)a red LED with 
107 µm pinhole size and d)a red LED with 205 µm pinhole size. 

 

 

In our experiments, four different light sources were tested on each of 15 different SLM to lens and imaging lens 
to CCD combinations that were categorized in 5 groups. The data is analyzed to determine the effect of the light 
source spatial coherence on the quality of the reconstructed images. The relation between the spatial coherence 
of the sources and contrast for different groups is illustrated in figures 4 to 6 in terms of contrast transfer 
functions. As seen in Figure 4 for group 1 the CTF of the reconstructed images for various sources are almost 
independent from the spatial coherence of the source, as expected. In these special cases the resolution of the 
reconstructed images with LEDs are the same with the laser source images even in higher spatial frequencies. 
Figure 5 shows that the effect of spatial coherence starts to degrade the CTF curve in higher spatial frequencies 
for group three members in LED sources. These trends show that there is a significant difference between the 
contrast of the LED source and the laser source. In group 5 the LEDs image contrast, even in low spatial 
frequencies, drop down sharply in comparison with the high coherence laser source. These results verify that our 
experimental results agree well with our theoretical analysis. 
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