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Abstract This study describes the parametric uncertainty

of artificial neural networks (ANNs) by employing the

generalized likelihood uncertainty estimation (GLUE)

method. The ANNs are used to forecast daily streamflow

for three sub-basins of the Rhine Basin (East Alpine, Main,

and Mosel) having different hydrological and climatolog-

ical characteristics. We have obtained prior parameter

distributions from 5000 ANNs in the training period to

capture the parametric uncertainty and subsequently

125,000 correlated parameter sets were generated. These

parameter sets were used to quantify the uncertainty in the

forecasted streamflow in the testing period using three

uncertainty measures: percentage of coverage, average

relative length, and average asymmetry degree. The results

indicated that the highest uncertainty was obtained for the

Mosel sub-basin and the lowest for the East Alpine sub-

basin mainly due to hydro-climatic differences between

these basins. The prediction results and uncertainty esti-

mates of the proposed methodology were compared to the

direct ensemble and bootstrap methods. The GLUE method

successfully captured the observed discharges with the

generated prediction intervals, especially the peak flows. It

was also illustrated that uncertainty bands are sensitive to

the selection of the threshold value for the Nash–Sutcliffe

efficiency measure used in the GLUE method by employ-

ing the Wilcoxon–Mann–Whitney test.

Keywords Generalized likelihood uncertainty estimation

(GLUE) � Parametric uncertainty � Bootstrap � Artificial
neural networks � Uncertainty measures � Rhine Basin

1 Introduction

Reliable and timely forecasting of streamflow with reason-

able estimates of predictive uncertainty is required for

hydrological activities with regard to controlling, planning,

and operating of water resources and for reducing risks in

decision making (Zhang et al. 2009). Sustainable water

resources management is usually based on evaluating vari-

ous scenarios with possible outcomes. Over- or under-esti-

mation of uncertainty associated with model outputs could

lead to over-design or alleviation of measures to be taken for

possible situations. Artificial neural networks (ANNs) have

frequently been used for streamflow forecasting (e.g., Joth-

iprakash and Magar 2012; Pramanik and Panda 2009;

Tongal and Berndtsson 2016; Wang et al. 2009b; Zeroual

et al. 2016), since they have the capability to reproduce the

highly nonlinear nature of streamflow dynamics (Toth and

Brath 2007) and do not necessitate a priori assumptions

related to normality and homoscedasticity. However, as

indicated by Kasiviswanathan and Sudheer (2013), devel-

opment of an ANN model is stochastic in nature, and dif-

ferent results can be obtained in various model

configurations that weaken the reliability of the outputs of

ANNs. Maier and Dandy (2000) concluded that a major

limitation of ANNs is that the uncertainty associated with

predictions is seldom quantified. One possible reason of this

could be that ANNs have significant degrees of freedom in
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their development. Therefore, few studies have considered

the quantification of uncertainty inherent in the obtained

forecasting results from ANNs. Nevertheless, the quality of

predictions related to the hydrological applications of ANN

could be severely impacted without accounting for uncer-

tainty in predictions that could limit their usability (Ka-

siviswanathan and Sudheer 2013; Kingston et al. 2005).

Thus, to improve the reliability and credibility of outputs of

ANNs, the quantification of the uncertainty associated with

the results produced with ANNs is of utmost importance

(Srivastav et al. 2007).

Generally, three major sources of uncertainties affect the

reliability of the model estimated discharge: input uncer-

tainty resulting from errors associated with data, model

structure uncertainty influenced by an imperfect model

structure, and uncertainty in model parameters, i.e. para-

metric uncertainty (Chen et al. 2013). Bayesian techniques

(Kasiviswanathan et al. 2016; Khan and Coulibaly 2006;

Kingston et al. 2005; Zhang et al. 2009) and bootstrap

methods (Boucher et al. 2010; Kumar et al. 2015; Srivastav

et al. 2007; Tiwari and Chatterjee 2010) are one of the most

employed approaches for construction of prediction inter-

vals of ANN models. The Bayesian approach is based on a

stringent theoretical framework, however, it is computa-

tionally expensive, relies on some hypotheses that have to

be carefully analyzed, and requires the calculation of the

Hessian matrix of the cost function (Kasiviswanathan and

Sudheer 2013; Papadopoulos et al. 2001). Recently,

Bayesian neural networks (BNNs) have been applied for

hydrological modeling. Amongst others, Kingston et al.

(2005) proposed Bayesian training of ANN models to

account for parametric uncertainty in the predictions by

combining traditional ANNs with the adaptive Metropolis

and Gibbs sampling algorithms to obtain a large number of

parameter sets (i.e. weights and biases). While the pro-

posed methodology successfully generated the prediction

limits that indicate the level of uncertainty, it is computa-

tionally intensive and requires complex implementation

and coding. Also, as the authors noted, the results ‘‘may be

biased by the initial weights, which is not statistically

optimal.’’ Zhang et al. (2009) applied an evolutionary

Monte Carlo training algorithm for four BNNs and esti-

mated uncertainty limits of streamflow simulation. How-

ever, as the authors concluded, the 95% uncertainty

intervals generated by all four BNNs failed to include 95%

or more of observed streamflow data. This was partially

attributed to inadequate recognition of all uncertainty

sources and improper definition of error characteristics

associated with different uncertainty sources. Additionally,

there is a question of the effectiveness of the sampling

algorithm of BNNs for generating models observing

complex posterior distributions (Zhang et al. 2009). On the

contrary, the use of the bootstrap method is highly

attractive due to its simplicity and the ease of implemen-

tation. For instance, it involves relatively few assumptions

that led to a relevant error distribution (Selle and Hannah

2010) and does not necessitate the calculation of the Hes-

sian matrix involved in the Bayesian technique (Ka-

siviswanathan and Sudheer 2013). Srivastav et al. (2007)

quantified the parametric uncertainty by using the bootstrap

technique through training of ANN models by resampling

of input–output patterns with replacement. Tiwari and

Chatterjee (2010) followed a similar methodology to

quantify the parametric uncertainty of ANN outputs.

The results of the studies mentioned above indicated that

despite obtaining a good generalization in forecasting, the

developed models failed to capture the peak flow charac-

teristics of hydrographs that limits the usability of the

method in a flood forecasting context. Furthermore, in this

approach, it is implicitly assumed that resampling of input–

output patterns with or without replacement would lead to

parametric uncertainty resulting from the stochastic nature

of input data which may not always be valid. The obtained

uncertainty in outputs simply could stem from the sampling

uncertainty. Thus, to overcome the mentioned disadvantages

of the Bayesian and bootstrap approaches, we will show that

the rarely used (i.e. in ANN modeling) generalized likeli-

hood uncertainty estimation (GLUE) method (Beven and

Binley 1992) for the quantification of the parametric

uncertainty of ANNs could be efficient and promising.

The GLUE method acknowledges multiple parameter

sets rather than one optimal solution that gives accept-

able simulations of the considered system. Many hydro-

logical studies have employed the GLUE method to

quantify uncertainty and evaluate models (see Breinholt

et al. 2013; Tian et al. 2014; Uniyal et al. 2015), however,

there are few applications of the GLUE method to ANN

models. Rogiers et al. (2012) employed the GLUE method

to quantify the uncertainty associated with the hydraulic

conductivity predictions obtained from an ANN model that

uses the entire grain-size distribution. Yu et al. (2015)

proposed the incorporation of the moving least-square with

entropy (MLS-E) method for stochastic sampling in the

GLUE method for uncertainty analysis of flood inundation

modeling and concluded that the proposed method out-

performed moving least squares, quadratic surface

response, and ANN in both the predicted confidence

interval and the most likely value of water depths. Noori

et al. (2010) applied uncertainty analysis for daily carbon

monoxide concentration in the atmosphere by using an

ANN and an adaptive neuro-fuzzy inference system based

on Monte Carlo simulations. The GLUE method has been

criticized for not being formally Bayesian and resulting in

statistically incoherent and unreliable parameter and pre-

dictive distributions (Mirzaei et al. 2015) due to the sub-

jective choice of a likelihood measure and the

994 Stoch Environ Res Risk Assess (2017) 31:993–1010

123



corresponding threshold value to distinguish ‘‘behavioural’’

and ‘‘non-behavioural’’ parameter sets (i.e. the parameter

sets having a likelihood measure above a threshold value

are considered as ‘‘behavioural’’ and vice versa). Addi-

tionally, Jin et al. (2010) claimed that the GLUE method-

ology is not appropriate for parameter sets that have a

correlation among the parameters. However, Beven and

Freer (2001) argued that ‘‘any effects of model nonlinear-

ity, covariation of parameter values and errors in model

structure, input data or observed variables, with which the

simulations are compared, are handled implicitly within

this procedure [GLUE].’’ Besides the disadvantages men-

tioned above, the stochastic nature of the development of

an ANN model including a high number of parameters

could be responsible for a relatively small number of

GLUE applications to ANN models in hydrology.

In this study, we will show that a modified version of the

GLUE method provides a suitable framework for quanti-

fying parametric uncertainty because of the ease of

implementation and the fact that no adjustment of the

existing code of the simulation model is needed. The

answers to the following research questions will be

addressed: (1) could GLUE be efficient for quantifying the

‘‘pure’’ parametric uncertainty of ANN models without

bootstrapping of input data? (2) are there any advantages of

using the GLUE method over the bootstrap technique? (3)

does the uncertainty in forecasted streamflow show sig-

nificant variation among three sub-basins of the Rhine

Basin, namely East Alpine, Main, and Mosel sub-basins,

having different hydro-climatological characteristics? and

(4) how sensitive are the GLUE results to selected

threshold values of the likelihood function?

The remainder of the paper is organized as follows.

Section 2 briefly presents the study area and data. The

methodology employed is described in Sect. 3. Results of

the analyses are presented and discussed in Sect. 4, and

final conclusions are drawn in Sect. 5.

2 Study area and data

The Rhine River has a length of 1233 km and a catchment

area of 185,300 km2 with densely populated and highly

industrialized areas in Western Europe. Being of great

economic and environmental importance for the riparian

countries, the Rhine River is used for various aims, such as

agriculture, hydropower generation, industry and domestic

water use (Middelkoop et al. 2001). The Rhine River,

originating from the Swiss Alps, feeds one of the largest

lakes of Europe, Lake Constance. It forms part of the

French–German border and receives water from several

tributaries such as the Neckar, Main, and Mosel before

flowing into the North Sea (Hurkmans et al. 2007). In

general, the discharge regime of the Rhine is dominated by

rainfall and snow melt from the Alpine glaciers.

In this study, we have selected the East Alpine, Main,

and Mosel sub-basins (Disse and Engel 2001) as case

studies because these basins have different climatological

and geographical characteristics and carrying vast volumes

of water. The Main and Mosel sub-basins are rainfall-

dominated areas while snow storage and snowmelt strongly

affect the discharge regime of the East Alpine. Spatial

characteristics and generated discharges of these tributaries

can be seen below (Tongal et al. 2013) (Table 1).

Daily river flow, precipitation, evapotranspiration, and

temperature data covering the period from January 1993 to

December 2001 were obtained from the German Federal

Institute of Hydrology in Koblenz (Germany) for the East

Alpine (station #6935055), Main (station #6335304) and

Mosel (station #6336050). Selecting a representative

training data set which covers the dynamical patterns to

eliminate the impact of data splitting-variability is essential

for the forecasting performance of ANNs (Melesse et al.

2011). The data set was split into a training data set from 1

January 1993 to 31 December 1999 and a testing data set

from 1 January 2000 to 31 December 2001. The training

dataset was further divided into two sub-groups of which

80% is assigned to a calibration set, and the remaining 20%

assigned to a validation set. To avoid over-fitting of the

training data, an early stopping approach that uses the

validation set was implemented.

3 Methodology

3.1 Artificial neural networks

Artificial Neural Networks are mathematical structures

having interconnected neurons to map the relationship

between input and output variables or to process received

signal(s) to generate output(s). Among different types of

ANNs based on their topology, activation functions, and

training algorithms, multi-layer perceptron feed-forward

neural networks are one of the most frequently used ANNs

(e.g., Lohani et al. 2011; Singh et al. 2009). Practically, an

ANN model with one-hidden-layer including sufficient

neurons is capable of mapping nonlinear dynamical rela-

tionships (Badrzadeh et al. 2016) and provide enough

complexity to map the relationships between input and

output patterns (Hornik et al. 1989). An ANN model with

two hidden layers generally gives less accurate results than

its single hidden layer counterpart (De Villiers and Barnard

1993) only when the number of observations is limited and

in this situation having more additional parameters can

cause over-fitting. Thus, the one-hidden-layer feed-forward

neural network was used in this study. In a typical feed-
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forward neural network with input, hidden, and output

layers, every neuron in each layer is connected to a neuron

located in an adjacent layer using different weights (Gha-

videl and Montaseri 2014). Each neuron receives signals

from the neurons of the predecessor layer with weighted

connections except the input layer to produce the argument

to the transfer function which generates the output of a

neuron. The number of neurons in the input and output

layers is a result of the modeled system/problem, and the

number of neurons in the hidden layer should be deter-

mined. In this study, the number of neurons in the hidden

layer was determined via a trial-and-error procedure. A

typical ANN model can be expressed in a functional form

as follows:

yk ¼ fo
X

j

wjk � fh
X

i

~wijxi þ ~bj

 !
þ bk

" #
ð1Þ

where x is an input vector, wjk is the weight of the link

between the jth hidden neuron to the kth output neuron, ~wij

is the connection weight from the ith neuron in the input

layer to the jth neuron in the hidden layer, bk is bias of kth

output neuron, ~bj is the threshold value or bias of jth hidden

neuron, fh and fo represent the activation function for hid-

den and output neuron, respectively (Badrzadeh et al.

2013). A combination of a hyperbolic tangent function and

a linear transfer function in the hidden and output layer was

used since this is advantageous when extrapolating beyond

the range of training data (Maier and Dandy 2000).

Optimal weights and biases can be found by minimizing

the error between the estimated and observed outputs.

Converging fast, being robust and efficient for training

small to medium-size networks, and being less easily

trapped in local minima (Aqil et al. 2007; Badrzadeh et al.

2013), the Levenberg-Marquart algorithm (Hagan and

Menhaj 1994) with the back-propagation algorithm was

used for optimization. In this two-stage algorithm, the input

signal is propagated through the layers to calculate the

output(s) in the first step, and then the weights and biases

are adjusted to minimize the network error in the second

step.

3.2 GLUE methodology

The assessment and knowledge of uncertainty are of great

significance and essential for a meaningful interpretation of

the model results (Warmink and Booij 2015). A general

framework of uncertainty analysis consists of contexting

and framing, classification, importance assessment, quan-

tification and propagation of uncertainty through a model

(Demirel et al. 2013a). Walker et al. (2003) briefly char-

acterized uncertainty sources as input, model structure,

parameter, and model technical uncertainty. In this study,

due to the high degree of freedom accompanying ANN

model development (Kasiviswanathan and Sudheer 2013),

and a significant part of the prediction uncertainty of an

ANN model can result from the parameters (Kingston et al.

2005) only the parametric uncertainty of ANNs was

considered.

The generalized likelihood uncertainty estimation

(GLUE) method (Beven and Binley 1992) is an extension of

the generalized sensitivity analysis of Spear and Hornberger

(1980) and Hornberger and Spear (1981) within the context

of the estimation and propagation of uncertainty by Baye-

sian Monte Carlo simulations. Based on the equifinality

thesis which emphasizes that there are many acceptable be-

havioural parameter sets that give relatively equal perfor-

mance according to a specific likelihood function, the

modified GLUE method for the parametric uncertainty of an

ANN model will be applied in this study in five steps:

1. Determining the model structure: relevant input param-

eters with their significant lagged observations have

been selected with the help of the stepwise regression

method (see Ghavidel and Montaseri 2014) for the daily

forecasting of discharge. The number of neurons in the

hidden layer has been determined via a trial-and-error

process. Efficiencies of the constructed ANN models in

streamflow forecasting were checked by the mean of the

root mean square error (RMSE) normalized by the mean

discharge values. The mean of the normalized RMSE

values was obtained during the training and testing

periods by running each model 100 times.

2. Reasonably wide ranges for the parameters are selected

based on experience or prior distributions, and a large

number of parameter sets are drawn from the prior

distributions. GLUE can be applied to ANN only if the

distributions of the weights and biases are known a

priori as well as the sampling procedure considers the

correlation between the weights and biases (Srivastav

et al. 2007). Thus, appropriate distributions should be

fitted to weights and biases, and correlated variables

Table 1 Spatial characteristics

and average annual generated

discharges for the period

1993–2001 of three sub-basins

of the River Rhine

Sub-basin Area (km2) Altitude range (m) Mean annual

discharges (m3 s-1)

East Alpine 16,051 143–3270 395

Main 24,833 83–939 192

Mosel 27,262 59–1326 364
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should be drawn from these distributions. The uncer-

tainty in ANN forecasts due to model parameters is a

function of the type and shape of the probability

distributions of the parameters (weights and biases).

Generally, a high number of parameter sets is gener-

ated based on the prior knowledge about the distribu-

tions of parameters. However, since these distributions

are not often known a priori, the uniform distribution

with quite wide ranges is used instead. As mentioned

by Srivastav et al. (2007), this will lead to biased

outputs from ANN models since the parameters of

ANN models do not have a physical meaning, and

therefore, ranges of parameters values can not be

determined a priori. Since the properties of the

probability distributions of ANN parameters can be

determined from the variability of the parameters

during the calibration period (Srivastav et al. 2007),

prior distributions of the parameter sets were identified

in the training period of 01.01.1993–31.12.1999 with

the calibrated 5000 ANN models. This number is

sufficiently large enough since the obtained type of

probability distributions and their parameter values

remained unchanged between the calibrated 1000

ANN models to 5000 ANN models (not shown here)

and reported studies related to obtaining predictive

uncertainty from ANN models usually employed 500

ANN models (Kasiviswanathan and Sudheer 2013) to

1000 ANN models (Talebizadeh et al. 2010). The

Bayesian Information Criterion (BIC) was used to

identify the best-representing parameter distribution:

BIC ¼ �2 ln Lmaxð Þ þ k ln nð Þ ð2Þ

where n is the number of data points, k is the number

of parameters to be estimated, and Lmax is the maxi-

mized value of the log-likelihood function for the

estimated distribution.

3. Defining a likelihood measure l hð Þ to distinguish a

parameter set either as ‘‘behavioural’’ or ‘‘non-be-

havioural’’ through a comparison of the associated

likelihood value with a pre-determined threshold value.

In this study, the widely-used Nash–Sutcliffe efficiency

(NSE) in GLUE analyses (Demirel et al. 2013a) was

used as a likelihood function which is defined as:

NSE ¼ 1�

Pn

t¼1

Qm
t hð Þ � Qt

� �2

Pn

t¼1

Qm
t hð Þ � �Qt

� �2 ð3Þ

where n is the total number of time steps, �Qt is the mean

of observed discharges,Qm
t hð Þ and Qt are the modeled

discharges with parameter set h and observed dis-

charges at a time step t, respectively.

4. Estimating the likelihood weight (wi) for each

behavioural parameter set by, wi ¼ l hð Þ
�PN

k¼1 l hkð Þ
where N is the number of behavioural parameter sets.

5. Finally, the prediction uncertainty of streamflow is

determined by the quantiles of the cumulative distri-

bution using the weighted behavioural parameter sets

obtained from Step 4, for the given certainty level a.
Upper and lower prediction limits can be determined

by quantiles of 1� a=2ð Þ and a=2ð Þ where a is

assumed 0.05 in this study.

3.3 Indices for assessing the prediction bounds

The prediction bounds corresponding to a confidence level

were evaluated based on the quantitative measures per-

centage of coverage (POC) (Kasiviswanathan and Sudheer

2016), average relative length (ARIL) (Jin et al. 2010),

and average asymmetry degree (AAD) (Xiong et al.

2009). The POC assess the number of observed stream-

flows that falls within the prediction band where 100%

indicates that all observed values are covered by the

prediction bands. While Kasiviswanathan and Sudheer

(2016) considered a POC value of an ideal prediction band

as 100%, Zhang et al. (2009) preferred the uncertainty

interval with a POC coefficient close to the expected

proportion (i.e., 95%) which also is preferred in this study.

The ARIL shows the bandwidth of the prediction bands

for the discharge. The AAD shows the asymmetrical

behaviour of prediction bands and could take values

between 0 and 1. An AAD value between 0 and 0.5 means

that observed values mainly lie between the corresponding

upper and lower bounds. If it is equal to 0, which is the

ideal case, then the observed value is equal to the middle

point value of the prediction bounds at each step. If it is

larger than 0.5, the majority of observed values either lie

above or below the upper and lower bounds of the

hydrograph, respectively. Formulas are presented in

Appendix 2.

4 Results and discussion

4.1 Determination of input and model structures

In this study, typical one-hidden-layer feed-forward ANN

models were constructed for forecasting one-day ahead

streamflows based on precipitation (P), evapotranspiration

(ET), temperature (T), and discharge (Q) for three Rhine

sub-basins, namely East Alpine, Main, and Mosel. The

main steps when building a neural network are choosing

significant input variables with significant lags and iden-

tifying the optimal network structure. The forward
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stepwise regression method was applied to determine the

most significant input combination. In this method, input

variables are subsequently added to the single best input

variable up to the allowed number of antecedent values to

obtain an improvement in the model performance, i.e.

adjusted-R2. The results showed that the adjusted-R2

value, which takes into account the number of parameters

of the model and evaluates whether the added new

parameter improves the model more than would be

expected by chance, was not statistically changed by

adding more inputs than the input combination of

Qt�1,Qt�2,Pt,Pt�1 for the East Alpine, Qt�1,Qt�6,Pt�1,Tt�7

for the Main, and Qt�1,Qt�2,Qt�3,Pt�1,Tt�6 for the Mosel

sub-basins. Since there is not a systematic or standard

procedure to determine the number of hidden neurons, the

number of hidden neurons was determined by a trial-and-

error procedure similarly to Chiang et al. (2004), Chang

et al. (2007), Jain et al. (2004) and Wang et al. (2009a)

by varying the number from 2 to 10. This is because too

many hidden neurons may lead to over-fitting, reduce the

generalization capabilities and increase the training time

without significant improvement of model performance

(Chang et al. 2007; Ranjithan et al. 1993). The final

structures of the ANN models are 4-4-1, 4-5-1, and 5-7-1

for the East Alpine, Main, and Mosel sub-basins with a

total of 25, 31, and 50 parameters (weights and biases),

respectively.

Efficiencies of the constructed ANN models in streamflow

forecasting were checked with the mean of the RMSE nor-

malized by the mean discharge values and the NSE obtained

during the training and testing periods (Table 2) by running

each model 100 times. The initial weights of each ANN

model were randomly generated between -1 and ?1.

4.2 Determination of distributions of model

parameters

Regarding the results obtained from the optimal ANN

models, it can be concluded that the obtained model

structures are appropriate for forecasting of streamflows.

Parametric uncertainty is related to the accuracy and rep-

resentativeness of the model parameters, and in terms of

‘‘equifinality’’, different parameter sets can represent the

behaviour of the modeled system equally. Prior distribu-

tions of the parameter sets were determined in the training

period of 01.01.1993–31.12.1999 with the calibrated 5000

ANN models.

The obtained distributions and parameters can be seen in

Fig. 1 for the three sub-basins. In these figures, for the sake

of a clear illustration, in cases where the whiskers would

extend more than three times the interquartile range (i.e.,

the difference between the third and the first quartile), they

are truncated, and the remaining outliers are indicated by

black circles.

Most of the parameters are found to be following the t

location-scale distribution (Elipot et al. 2016) with varying

location, scale, and shape values except three out of 25

parameters for the East Alpine sub-basin and seven out of

50 parameters for the Mosel sub-basin that follow a logistic

distribution. Here, BH1(Fig. 1) is the bias parameter of

hidden neuron#1, WI1H1 indicates the weight between

input neuron#1 and hidden neuron#1, and WH1O1 is the

weight between hidden neuron#1 and output neuron#1. As

can be seen from the tables in the Appendix and Fig. 1,

defining prior ranges for the weights and biases could be

unfeasible because of the rather wide ranges and variations

among the variables. Similarly to the normal distribution,

the t and logistic distributions are symmetric and bell-

shaped but have heavier tails meaning that they are more

prone to producing values that fall far from their means.

The main reason for obtaining distributions with heavy

tails may be the large variability of flow values. For

instance, flow values vary between 162 to 1167 m3 s-1, 3.0

to 998 m3 s-1, and 37.40 to 4020 m3 s-1 for the East

Alpine, Main, and Mosel sub-basins, respectively.

4.3 Uncertainty estimation of ANN models due

to parametric uncertainty

Behavioural parameter sets can be explored with the help

of Monte Carlo simulation methods. Usually, due to lack

of prior distributions, parameter sets are uniformly gen-

erated from feasible ranges (Chen et al. 2013; Zhang and

Li 2015). Latin hypercube sampling generates well-dis-

tributed parameters in a multi-dimensional space and

Table 2 Performances of the

optimal ANN models during the

training and testing periods

Sub-basins Training Testing

East Alpine Main Mosel East Alpine Main Mosel

RMSE= �Q 0.026 0.256 0.239 0.016 0.241 0.208

NSE 0.989 0.874 0.963 0.995 0.870 0.938

cFig. 1 Box plots of the parameters obtained from 5000 ANNs for the

a East Alpine, bMain, and cMosel sub-basins. The median values are

shown as a thick line within each box. Corresponding descriptive

statistics and parameters of the distributions are available in the

Appendix
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reduces the number of runs (Jung et al. 2012). However,

random sampling in the high-dimensional parameter

space with significant correlations among the variables

may not guarantee that even with a large number of

simulations, the best parameter set can be found. Thus, in

this paper, based on the correlation matrix obtained from

the weights and biases of the ANN models, we generated

125,000 correlated normal random parameters from a

multivariate normal distribution. Then, these normal

random parameters were placed into the probability den-

sity function of the normal distribution to find the

probabilities. Finally, in total 125,000 parameter sets were

drawn from the estimated probability distributions based

on these calculated probabilities without undergoing fur-

ther training. To investigate the influence of the threshold

value used in GLUE on the results, threshold values for

NSE of 0.6 and 0.65 were selected (Gong et al. 2011).

Predictive uncertainty in forecasted streamflow resulting

from parametric uncertainty represented by 95% uncer-

tainty intervals can be seen in Fig. 2, and the corre-

sponding POC, ARIL, and AAD uncertainty measures are

given in Table 3.

Sub-
basins NSE=0.6 NSE=0.65

Ea
st

 A
lp

in
e

M
ai

n
M

os
el

0 100 200 300 400 500 600 700
Days

0

200

400

600

800

1000

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

0 100 200 300 400 500 600 700
Days

0

200

400

600

800

1000

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

0 100 200 300 400 500 600 700
Days

0

400

800

1200

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

0 100 200 300 400 500 600 700
Days

0

400

800

1200

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

0 100 200 300 400 500 600 700
Days

0

1000

2000

3000

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

0 100 200 300 400 500 600 700
Days

0

1000

2000

3000

D
is

ch
ar

ge
 (m

3 s
-1
)

Lower CI
Upper CI
Observed
Median

Fig. 2 Uncertainty in forecasted daily discharge due to parametric uncertainty of ANN models quantified by the GLUE method for a threshold

value of 0.6 and 0.65
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Significant information about the influence of parame-

ters on the model outputs can be obtained through wide

parameter ranges, but a large number of model simulations

may result in a small number of behavioural parameter sets

(Gong et al. 2011). A total of 1235, 87, and 72 behavioural

parameter sets were obtained when the threshold value was

equal to 0.6, and for the threshold value of 0.65, a total of

915, 49, and 41 behavioural parameter sets have been

obtained for the East Alpine, Main, and Mosel sub-basins,

respectively. Possible reasons for obtaining a relatively

small number of behavioural parameter sets for the Main

and Mosel sub-basins could be the complex dynamics of

river flows that are difficult to be captured by an ANN

model and a high number of correlated parameters with

different ranges and distributions (Fig. 1). However, when

using threshold values of 0.6 and 0.65, sufficient parameter

sets (C40) were obtained (Gong et al. 2011). Furthermore,

a decrease in the number of behavioural parameter sets was

found as the threshold values increased, similarly to Gong

et al. (2011) and Breinholt et al. (2013).

In the estimation of uncertainty bands and measures in

Fig. 2 and Table 3, the intervals at the 95% confidence

level were considered by finding the 2.5th and 97.5th

percentiles of the associated distribution of the simulation

results. According to Fig. 2, all models consistently well

predict the dynamical behaviour of streamflow during the

testing period. It is well known that ANNs are less capable

of capturing peak flows, however, the models sufficiently

generated 95% confidence intervals that capture extreme

flows. To show the superiority of the proposed method for

estimating the uncertainty bands, the bootstrap method that

is based on resampling with replacement and the direct

ensemble method were applied (Fig. 3; Table 4). In the

former method, a set of 100 bootstrap samples of the

available training data set was generated and ANN models

were trained using these samples, then the performance of

the trained ANN models was assessed through the obser-

vation pairs that are not included in a bootstrap sample in

the testing phase. More information can be found in Tiwari

and Chatterjee (2010). As indicated by Lee and Kang

(2016), there is not a theoretical guideline to produce

ensemble output for ANN models. To avoid including

additional sources of uncertainty such as sampling

uncertainty associated with the observations, the direct

ensemble method employs the original 5000 ANN models

that were trained with different random initial weights.

These models were used for the evaluation of the ensemble

output and to obtain uncertainty estimates (see Boucher

et al. 2010; Lee and Kang 2016).

As can be seen from Fig. 3 and Table 4, most of the

observed values from the direct ensemble method lie out-

side the confidence intervals, and very narrow uncertainty

bands were obtained compared to the proposed GLUE

method and the bootstrap method, similarly to Kumar et al.

(2015) and Tiwari and Chatterjee (2010). In contrast to the

first order uncertainty analysis and the bootstrap method

conducted by Kasiviswanathan and Sudheer (2013), and

Srivastav et al. (2007) respectively, peak flows were well

captured by the GLUE and bootstrap methods. The boot-

strap method is based on resampling of data with

replacement and training an individual network on each

resampled instance of the original training data set with

different random initial weights by assuming this would

lead to parametric uncertainty. In the ensemble method,

only the uncertainty stemming from the training algorithm

was considered since there is not any execution involved in

the training phase such as shuffling data similarly to the

bootstrap method. Only the outputs from 5000 ANNs were

pooled together in order to generate an ensemble of

hydrographs where uncertainty can be represented. Thus,

we can conclude that the proposed method can be useful

for the quantification of parametric uncertainty in ANN

models.

For the East Alpine, Main, and Mosel sub-basins, the

estimated percentages of coverage are 100, 99.31, and

99.03% for a threshold value of 0.6, and 100, 98.89, and

96.39% for a threshold value of 0.65, respectively. A better

uncertainty estimate will result in a smaller average width

with more values captured within the prediction band—

maximum POC (Kasiviswanathan and Sudheer 2016).

However, we preferred a better uncertainty interval with a

POC coefficient close to the expected proportion (i.e.,

95%) similarly to Zhang et al. (2009). While the obtained

POC values for the GLUE method are 100, 98.89, and

96.39% for a threshold value of 0.65, POC values for the

bootstrap method are 85.58, 96.53, and 91.40%. It is evi-

dent that the different approaches yielded various 95%

uncertainty intervals. For instance, obtained uncertainty

intervals from the bootstrap and direct ensemble methods

are narrower than the GLUE method. However, the boot-

strap method yielded better uncertainty intervals for the

East Alpine basin and slightly better for the Main basin by

considering the POC values. To some extent, one of the

main drawbacks of the GLUE method is the subjectivity in

choosing the likelihood function (Uniyal et al. 2015; Zhang

et al. 2015). In our study, for the GLUE method, selection

Table 3 Comparison of uncertainty estimates for different threshold

values

Sub-basins NSE = 0.6 NSE = 0.65

POC (%) ARIL AAD POC (%) ARIL AAD

East Alpine 100 0.531 0.076 100 0.500 0.079

Main 99.31 1.319 0.115 98.89 1.144 0.133

Mosel 99.03 1.975 0.139 96.39 1.711 0.175
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of 0.6 and 0.65 as threshold values is directly related to the

sufficient number of behavioural parameter sets (� 40) to

construct the uncertainty bands (Gong et al. 2011). To

investigate the performance of the GLUE analysis,

threshold values of 0.8 and 0.89 were also used (not shown)

only for the East Alpine basin since it has a sufficient

number of behavioural parameters. 217 and 41 behavioural

parameter sets were obtained for the East Alpine basin,

respectively. While narrower uncertainty bands have been
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Fig. 3 Uncertainty in forecasted daily discharges from the ensemble and bootstrap methods

Table 4 Comparison of uncertainty estimates for the ensemble and

bootstrap methods

Sub-basins Ensemble Bootstrap

POC (%) ARIL AAD POC (%) ARIL AAD

East Alpine 82.80 0.075 0.295 85.58 0.036 0.270

Main 46.03 0.318 0.597 96.53 0.979 0.168

Mosel 55.62 0.286 0.533 91.40 0.980 0.209
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achieved with these values of NSE, no significant perfor-

mance gain was obtained for the uncertainty indices except

ARIL. The POC, ARIL, and AAD values are 100%, 0.378,

and 0.103 for a threshold value of 0.8 and 99.44%, 0.255,

and 0.142 for a threshold value of 0.89. Thus, one possible

reason for obtaining the relatively small number of beha-

vioural parameters and wider uncertainty intervals could be

the proposed sampling methodology. In future work, the

efficiencies of other sampling algorithms such as evolu-

tionary Monte Carlo algorithm (Liang 2005)–an advanced

Markov Chain Monte Carlo method–will be investigated.

The highest uncertainty arising from parametric uncer-

tainty was obtained for Mosel sub-basin and the lowest for

the East Alpine sub-basins. This can also be seen from the

other uncertainty measures, i.e. ARIL, and AAD. The

highest ARIL value was obtained for the Mosel and the

lowest for the East Alpine for threshold values of 0.6 and

0.65. AAD values less than 0.5 imply a high degree of

symmetry around observed values, in contrary values lar-

ger than 0.5 denote more asymmetrical uncertainty bands.

The highest values of AAD were obtained for the Mosel for

both threshold values (Table 3), but they are all smaller

than 0.2 indicating a high degree of symmetry. Our results

are in line with Jin et al. (2010) who employed a simple

conceptual water balance model with the use of GLUE and

a Bayesian method to quantify the parameter uncertainty of

monthly runoff. The authors found ARIL and POC values

of 1.012 and 91% for GLUE and 1.169 and 89% for the

Bayesian method and these are close to ours. Furthermore,

Kasiviswanathan and Sudheer (2016) obtained values of

98.14, 46.58, and 97.17% for POC using the bootstrap,

Bayesian, and prediction interval methods and employing

an ANN model by considering both rainfall and discharge

values as input.

Chen et al. (2013) employed the GLUE method for three

conceptual hydrological models for daily streamflow sim-

ulation (for the period of 1960–2011) for a headwater

region of the Yellow River, China and obtained ARIL

values of 1.34, 1.21, and 0.91 for a threshold value for NSE

of 0.6 and 1.13, 0.98, and 0.73 for a threshold value for

NSE of 0.7. They found AAD values of 0.33, 0.43, and

0.53 for a threshold value for NSE of 0.6 and 0.43, 0.54,

and 0.71 for a threshold value for NSE of 0.7. Compara-

tively, it is clear that the ARIL and AAD values obtained

from the GLUE method for the ANN models (Table 3) are

promising.

The main reason for obtaining the highest prediction

uncertainty resulting from parametric uncertainty for the

Mosel sub-basin could stem from the basin dynamics and

differences in the characteristics of the training and testing

periods. The mean annual hydrograph of the sub-basins

could be informative for the description of basin charac-

teristics as well as annual variations in temperature,

precipitation, and snowpack (Kunkel and Pierce 2010). The

Mosel and Main are rainfall-dominated sub-basins while

snowmelt processes are dominant in the East Alpine

(Demirel et al. 2013b). The annual hydrograph of the East

Alpine (Fig. 4) is a ‘‘simple’’ hydrograph that shows clear

rising and falling limbs, whereas the Mosel and Main show

‘‘complex’’ hydrograph features with fluctuations in both

rising and falling limbs (Kunkel and Pierce 2010). The

corresponding coefficients of variation (defined as the

standard deviation divided by the mean) for the training

period are 0.42, 0.72, and 1.25 and for the testing period

are 0.30, 0.69, and 0.83 for the East Alpine, Main, and

Mosel, respectively. Also, the highest interquartile ranges

were obtained for the Mosel sub-basin as 273.5 and

210.6 m3 s-1 in the training and testing periods relatively

to 168 and 195 m3 s-1, 112 and 141.3 m3 s-1 in the

training and testing periods for the East Alpine and Main

sub-basins, respectively.

These characteristics show that the uncertainty is pro-

portional to the variability of the flow similarly to Kasi-

viswanathan and Sudheer (2013). As noted by Tian et al.

(2014), this is mainly due to the fact that less similar

observations are found as the discharge becomes more

extreme, and lack of information leads to larger uncertainty

ranges. Furthermore, the flow regime of the Rhine River is

influenced by snowmelt and precipitation runoff from the

Alps in the summer months and by precipitation runoff

from the uplands in winter that leads to the average dis-

charge maxima shift from summer to winter when moving

downstream the Rhine (Disse and Engel 2001). Further

away from the Alps, the influences of the oceanic climate

and less anticipated precipitation show themselves as

stochastic variations in monthly hydrographs (Uehlinger

et al. 2009). Thus, more irregular flows can be observed in

the Main and Mosel sub-basins that are influenced by both

rainfall and snowmelt. Additionally, losses, attenuation,

ponding, surface and subsurface storages, and travel time
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Fig. 4 Long-term mean annual hydrographs for the East Alpine,
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can be influencing factors for the uncertainties in the out-

puts of the ANN models. Further, socio-economic devel-

opment and regulation along the Rhine River have

contributed to stochastic variations in monthly hydrographs

by deteriorating riverine habitats, and by changing the

morphological dynamics, i.e. the Main and Mosel sub-

basins are more regulated and industrialized than the East

Alpine sub-basin. Finally, the Wilcoxon–Mann–Whitney

test (Wilcoxon 1945) can be used to identify whether two

sub-sets of a time series are taken from the same distri-

bution. The results (not shown) indicated that there are

significant differences between training and testing periods

of the East Alpine and Mosel sub-basins. Thus, having the

highest coefficient of variation and showing the most

complex-hydrograph features, the highest prediction

uncertainty resulting from parametric uncertainty was

obtained for the Mosel sub-basin.

As noted by Chen et al. (2013), decreasing ARIL, POC,

and increasing AAD as a function of NSE, could be a clue

for the sensitivity of GLUE estimates to the selection of the

threshold value of the NSE. To confirm this, we applied the

Wilcoxon–Mann–Whitney test (Wilcoxon 1945) for the

lower and upper prediction intervals for the threshold

values 0.6 and 0.65 at a 5% significance level. In this test,

the null hypothesis is that the lower and upper percentiles

for different threshold values come from identical popu-

lations, and there is not any statistically meaningful dif-

ference between them at a 5% significance level. All the

obtained p values except for the lower prediction intervals

of the Main basin are lower than 0.05 (not shown here), and

the null hypothesis is rejected for all rivers. This indicates

that the GLUE uncertainty bands are sensitive to the

selection of the threshold value for the studied rivers

similarly to Chen et al. (2013) and Jin et al. (2010).

Finally, it should be noted that parametric uncertainty is

directly related to the model structure. In this study, we

have shown that the stepwise regression method could be

employed to determine the optimal input structure among

the input variables. Some studies, such as Wang et al.

(2013) and Tiwari and Chatterjee (2011), selected the input

structure of ANN models only based on the partial auto-

correlation function. We intend to investigate the model

structure uncertainty resulting from well-recognized input

determination methods, such as the partial mutual infor-

mation function (May et al. 2008), and the gamma test

(Stefánsson et al. 1997), in future work.

5 Conclusions

Quantification of uncertainty resulting from ANN model

parameters is helpful for modelers and policy makers while

improving the reliability of forecasts. The uncertainty in

the parameters that govern the functional relationship

between input and output data is a significant constituent of

the prediction uncertainty of ANNs’ outputs (Kingston

et al. 2005). This study employs the Generalized Likeli-

hood Uncertainty Estimation (GLUE) approach to quantify

the parametric uncertainty of ANN models for three sub-

basins of the Rhine Basin, namely the East Alpine, Main,

and Mosel. The input structures of ANN models were

determined with the stepwise regression method consider-

ing precipitation, evapotranspiration, temperature, and

discharge variables. The final ANN structures were found

to be 4-4-1 (input-hidden-output neurons), 4-5-1, and 5-7-1

for the East Alpine, Main, and Mosel, respectively. The

prior distributions for the weight and bias parameters of

ANN models were determined in the calibration period of

01.01.1993–31.12.1999 with the calibrated 5000 ANN

models and using the Bayesian Information Criterion. One

of the largest parameter sets for ANN models in the liter-

ature—in total 125,000 samples for each model—were

drawn from these estimated probability distributions to

quantify the uncertainty intervals. The influence of the

threshold level to distinguish behavioural and non-be-

havioural parameter sets in GLUE was tested by selecting

two threshold values of 0.6 and 0.65 for the Nash–Sutcliffe

criterion. The results of the GLUE method were compared

with the direct ensemble and the bootstrap techniques. The

results showed that the GLUE method successfully cap-

tured the observed discharges with the generated prediction

intervals, especially the peak flows. By employing the

Wilcoxon–Mann–Whitney test, it was found that uncer-

tainty bands are sensitive to the selection of the threshold

value for the studied rivers. Uncertainty measures such as

the percentage of coverage, average relative length, and

average asymmetry degree were used to present the beha-

viour of parametric uncertainty for three sub-basins with

different hydro-climatic characteristics. The highest pre-

diction uncertainty due to parametric uncertainty was

obtained for the Mosel and the smallest one for the East

Alpine sub-basin. This is mainly because the Mosel sub-

basin is a rainfall-dominated sub-basin with the highest

coefficient of variation for streamflow and showing com-

plex-hydrograph features with fluctuations in rising and

falling limbs, whereas the East Alpine sub-basin has the

smallest coefficient of variation and shows relatively sim-

ple hydrograph features with clear rising and falling limbs.

Overall, the novelty of this paper is that it addresses the

‘‘pure’’ parametric uncertainty of ANN models through the

modified GLUE technique without complex calculations

and without altering existing codes of ANN models. Fur-

thermore, the method utilizes correlated parameter sets

defined from prior distributions to generate uncertainty

bands, contrary to Jin et al. (2010) who argued that the

GLUE methodology is not appropriate for parameter sets
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that have correlated parameters. Additionally, we com-

pared the obtained uncertainty bands from the GLUE

method with the direct ensemble and the bootstrap method

in three river basins that have distinct hydro-climatic fea-

tures to the best of our knowledge for the first time. Some

limitations and future directions related to the proposed

methodology are:

1. The model structure uncertainty was not addressed in

this study, and it would be worthwhile to quantify both

parametric and model structure uncertainties besides

the effect of different training algorithms on ANN

outputs with the GLUE methodology.

2. A relatively small number of behavioural parameters

was obtained for the Main and Mosel basins. The main

reason for this could be that relatively high ranges of

the parameters and a high number of outliers were

obtained in the training phase. One possible solution

could be employing outlier analysis (Ng et al. 2007) to

remove outliers that complicate the analyses.

3. We only considered one-day-ahead forecasts of the

discharge. Confidence intervals for multi-day-ahead

(different lead times) forecasts could be investigated in

a future study employing the proposed methodology.

4. Finally, having gained more interest in recent years,

copulas (e.g., Klein et al. 2016; Zhang et al. 2016)

could be integrated into the GLUE framework to

generate multivariate joint probability distributions for

generating parameter sets.
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Appendix 1

Obtained distributions and parameters of the ANN models

for the East Alpine, Main, and Mosel sub-basins from the

5000 ANNs during the training period can be found below

Tables 5, 6, 7.

Table 5 Characteristics of

probability distribution

functions of ANN parameters

for the East Alpine sub-basin

Parameter Min. Max. Std. Distribution type l-location r-scale m-shape

BH1 -1349.631 319.232 25.234 t-location scale 0.004 2.208 1.548

BH2 -211.046 1374.895 22.219 Logistic 0.148 0.490 –

BH3 -1182.187 455.573 20.104 t-location scale -0.012 0.453 0.916

BH4 -513.615 522.634 15.004 t-location scale 0.022 1.512 1.328

WI1H1 -1320.070 392.985 27.045 t-location scale 0.008 0.759 0.798

WI1H2 -1101.213 757.575 21.483 t-location scale 0 0.072 0.350

WI1H3 -512.236 1073.786 19.932 Logistic 0.097 0.281 –

WI1H4 -472.254 427.343 13.091 t-location scale 0.004 0.229 0.550

WI2H1 -1491.685 580.553 26.430 t-location scale -0.003 0.515 0.676

WI2H2 -251.849 1469.365 23.615 Logistic 0.140 0.408 –

WI2H3 -965.518 224.522 18.208 t-location scale 0 0.028 0.319

WI2H4 -109.449 516.139 12.598 t-location scale 0 0.127 0.436

WI3H1 -926.510 248.579 23.453 t-location scale 0.016 1.366 0.973

WI3H2 -455.008 735.731 22.739 t-location scale 0.017 0.868 0.871

WI3H3 -1752.432 759.109 29.723 t-location scale -0.005 0.728 0.857

WI3H4 -588.107 424.568 21.086 t-location scale -0.013 1.080 0.957

WI4H1 -2802.096 662.573 44.141 t-location scale -0.010 1.471 1.065

WI4H2 -551.249 749.541 20.278 t-location scale -0.062 1.261 1.163

WI4H3 -744.712 516.253 17.227 t-location scale -0.039 1.212 1.171

WI4H4 -420.231 586.536 18.178 t-location scale 0.003 1.388 1.140

BO1 -151.337 144.314 6.539 t-location scale -0.291 0.296 0.955

WH1O1 -144.686 267.398 6.683 t-location scale 0 0.027 0.331

WH2O1 -85.534 74.219 2.778 t-location scale 0 0.026 0.325

WH3O1 -20.937 18.049 1.920 t-location scale 0 0.023 0.301

WH4O1 -224.791 116.138 5.125 t-location scale 0 0.020 0.314
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Table 6 Characteristics of

probability distribution

functions of ANN parameters

for the Main sub-basin

Parameter Min. Max. Std. Distribution type l-location r-scale m-shape

BH1 -683.212 589.537 24.127 t-location scale -0.008 2.629 1.375

BH2 -320.791 1699.428 34.644 t-location scale 0.019 1.542 1.270

BH3 -349.429 397.705 13.279 t-location scale 0.017 0.989 1.250

BH4 -619.337 982.353 20.652 t-location scale -0.017 1.195 1.302

BH5 -682.059 1030.992 27.118 t-location scale -0.032 1.948 1.423

WI1H1 -924.755 432.781 23.427 t-location scale 0.006 1.368 1.002

WI1H2 -458.918 1338.989 27.794 t-location scale 0.012 1.159 1.098

WI1H3 -504.678 627.903 16.825 t-location scale 0.006 0.964 1.151

WI1H4 -640.230 202.965 13.568 t-location scale -0.005 0.927 1.148

WI1H5 -474.062 432.346 18.661 t-location scale 0.017 0.971 1.036

WI2H1 -658.149 758.559 20.384 t-location scale -0.002 0.727 0.765

WI2H2 -215.007 611.492 15.141 t-location scale -0.005 0.453 0.725

WI2H3 -410.246 294.656 10.761 t-location scale -0.002 0.304 0.695

WI2H4 -891.969 435.382 16.073 t-location scale 0.005 0.298 0.685

WI2H5 -471.137 500.351 15.746 t-location scale -0.002 0.403 0.728

WI3H1 -543.759 830.040 26.043 t-location scale 0.004 1.624 1.035

WI3H2 -739.435 1158.707 28.521 t-location scale -0.008 1.493 1.264

WI3H3 -787.871 321.552 16.186 t-location scale -0.061 1.215 1.286

WI3H4 -880.197 613.996 22.631 t-location scale 0.025 1.188 1.317

WI3H5 -217.318 1654.076 31.115 t-location scale 0.054 1.324 1.306

WI4H1 -682.527 715.107 28.028 t-location scale 0.012 1.955 1.050

WI4H2 -275.794 1358.049 27.385 t-location scale 0.042 1.923 1.306

WI4H3 -678.348 1162.095 24.345 t-location scale 0.044 1.828 1.538

WI4H4 -1393.968 1767.874 35.365 t-location scale -0.091 1.867 1.623

WI4H5 -779.642 1818.805 34.131 t-location scale -0.029 1.887 1.456

BO1 -79.253 156.389 6.694 t-location scale 0.090 0.457 1.337

WH1O1 -125.346 156.567 6.434 t-location scale -0.006 0.227 0.894

WH2O1 -51.990 83.112 2.578 t-location scale 0.006 0.271 1.273

WH3O1 -16.814 40.455 1.286 t-location scale -0.012 0.332 1.705

WH4O1 -28.173 20.683 1.085 t-location scale 0 0.315 1.743

WH5O1 -43.071 60.129 1.677 t-location scale 0.002 0.244 1.235

Table 7 Characteristics of

probability distribution

functions of ANN parameters

for the Mosel sub-basin

Parameter Min. Max. Std. Distribution type l-location r-scale m-shape

BH1 -2886.613 856.977 58.737 t-location scale 0.009 2.640 1.185

BH2 -5071.765 874.094 88.089 t-location scale -0.029 1.768 1.172

BH3 -2353.503 2907.875 64.321 t-location scale -0.009 0.995 1.026

BH4 -1799.962 544.568 31.301 t-location scale 0.006 0.630 0.864

BH5 -1349.263 1170.563 36.905 t-location scale -0.013 0.853 1.006

BH6 -1689.360 4806.102 88.984 Logistic 1.054 1.578 –

BH7 -767.212 3135.727 75.960 t-location scale 0.046 2.304 1.450

WI1H1 -7258.186 851.701 107.736 t-location scale -0.002 1.315 0.974

WI1H2 -992.160 579.006 30.938 t-location scale 0.006 1.140 1.060

WI1H3 -1045.615 11,631.250 167.692 Logistic -0.044 4.803 –

WI1H4 -606.228 1371.066 25.852 t-location scale 0.019 0.988 1.133

WI1H5 -2832.963 1683.853 57.462 Logistic 0.067 0.832 –

WI1H6 -5960.588 2806.027 100.869 t-location scale 0.031 0.939 1.045

WI1H7 -1967.980 4524.261 75.098 t-location scale 0.037 0.949 1.029

WI2H1 -3232.541 3986.939 84.026 t-location scale 0.013 0.770 0.751
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Appendix 2

The formulas of the indices for assessing the prediction

bounds can be found below Table 8:

where n is the number of time steps used for con-

structing the prediction bands and ci denotes whether

the corresponding observation is covered by the pre-

diction band being 1 or 0 if the observed value is

contained in the prediction band or not, L
upper
t and Llowert

are the upper and lower prediction boundary values of

the 95% confidence interval, and Qt is the observed

value at time t.

Table 7 continued
Parameter Min. Max. Std. Distribution type l-location r-scale m-shape

WI2H2 -1259.663 1195.962 47.691 t-location scale -0.009 0.588 0.750

WI2H3 -386.260 28,733.715 407.987 t-location scale -0.013 0.516 0.801

WI2H4 -1073.225 419.939 20.625 t-location scale -0.003 0.471 0.784

WI2H5 -1455.134 1232.454 31.261 t-location scale 0.004 0.451 0.798

WI2H6 -4178.986 977.456 66.826 t-location scale 0.001 0.549 0.855

WI2H7 -381.879 12,376.559 188.037 Logistic -0.660 4.953 –

WI3H1 -3119.147 1031.327 63.249 t-location scale 0.010 1.368 0.831

WI3H2 -3628.393 906.327 81.645 t-location scale -0.018 1.177 0.880

WI3H3 -1574.110 37,213.235 527.875 Logistic 5.782 5.878 –

WI3H4 -1481.417 827.796 33.485 t-location scale -0.005 0.956 0.941

WI3H5 -2433.331 562.668 45.677 t-location scale 0.031 0.944 0.977

WI3H6 -2857.293 1324.393 59.992 t-location scale -0.025 1.016 0.974

WI3H7 -3860.969 1588.180 67.511 t-location scale 0.032 1.092 0.993

WI4H1 -2256.734 4728.910 112.160 t-location scale 0.008 1.754 0.858

WI4H2 -600.348 2156.845 58.668 Logistic -0.273 1.246 –

WI4H3 -90,549.263 2010.136 1281.771 t-location scale -0.008 1.607 1.010

WI4H4 -1057.643 2387.116 47.866 t-location scale 0.041 1.598 1.028

WI4H5 -1039.639 2136.490 48.305 t-location scale -0.0053 1.582 1.069

WI4H6 -5962.084 4528.906 122.048 t-location scale 0.021 1.576 1.032

WI4H7 -834.956 3763.819 64.305 t-location scale -0.014 1.620 1.020

WI5H1 -2020.975 2196.225 68.694 t-location scale -0.083 2.067 0.967

WI5H2 -3575.283 1395.080 69.420 t-location scale -0.006 2.049 1.073

WI5H3 -15,562.983 1102.789 227.893 t-location scale -0.024 1.947 1.200

WI5H4 -2138.042 822.239 42.914 t-location scale 0.009 1.839 1.212

WI5H5 -787.467 2316.485 62.468 Logistic 0.784 0.867 –

WI5H6 -3125.135 3220.543 89.209 t-location scale -0.040 1.895 1.197

WI5H7 -3371.017 2265.586 69.618 t-location scale 0.041 2.058 1.206

BO1 -1445.138 153.180 31.591 t-location scale -0.205 0.176 0.702

WH1O1 -1445.016 537.635 26.993 t-location scale 0.001 0.095 0.626

WH2O1 -1017.548 314.163 16.068 t-location scale -0.001 0.106 0.736

WH3O1 -12.908 71.698 1.515 t-location scale -0.002 0.109 0.803

WH4O1 -30.426 64.610 1.230 t-location scale 0.001 0.091 0.699

WH5O1 -8.934 39.661 0.877 t-location scale 0.001 0.084 0.675

WH6O1 -35.817 41.999 1.435 t-location scale 0.001 0.080 0.682

WH7O1 -104.115 113.796 4.616 t-location scale 0.001 0.087 0.684
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