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Abstract
Predicting runoff hot spots and hot‐moments within a headwater crop‐catchment is of the utmost

importance to reduce adverse effects on aquatic ecosystems by adapting land use management to

control runoff. Reliable predictions of runoff patterns during a crop growing season remain chal-

lenging. This is mainly due to the large spatial and temporal variations of topsoil hydraulic proper-

ties controlled by complex interactions between weather, growing vegetation, and cropping

operations. This interaction can significantlymodify runoff patterns and few process‐basedmodels

can integrate this evolution of topsoil properties during a crop growing season at the catchment

scale. Therefore, the purpose of this study was to better constrain the event‐based hydrological

model Limburg Soil Erosion Model by incorporating temporal constraints for input topsoil proper-

ties during a crop growing season (LISEM). The results of the temporal constraint strategy (TCS)

were compared with a classical event per event calibration strategy (EES) using multi‐scale runoff

information (from plot to catchment). The EES and TCS approaches were applied in a loess catch-

ment of 47 ha located 30 km northeast of Strasbourg (Alsace, France). A slight decrease of the

Nash–Sutcliffe efficiency criterion on runoff discharge for TCS compared to EES was

counterbalanced by a clear improvement of the spatial runoff patterns within the catchment. This

study showed that limited agronomical and climatic information added during the calibration step

improved the spatial runoff predictions of an event‐based model. Reliable prediction of runoff

source, connectivity, and dynamics can then be derived and discussedwith stakeholders to identify

runoff hot spots and hot‐moments for subsequent land use and crop management modifications.

KEYWORDS

calibration, equifinality, hot spot, Manning's coefficient, saturated hydraulic conductivity, soil

surface characteristics
1 | INTRODUCTION

Runoff is the main driver of soil losses (Garcia‐Ruiz, Nadal‐Romero,

Lana‐Renault, & Begueria, 2013) and nutrient (Outram, Cooper,

Sunnenberg, Hiscock, & Lovett, 2016) and pesticide (Doppler, Luck,

Camenzuli, Krauss, & Stamm, 2014) off‐site transport in agricultural

catchments with adverse effects on society (Boardman & Vandaele,

2016), biodiversity, and ecosystem functioning (Hasenbein, Lawler,

Geist, & Connon, 2016). Therefore, assessing and predicting the runoff

hot spots, that is, areas that contribute disproportionally to runoff, and

hot‐moments are of the utmost importance to control runoff through

adapted land use, mitigation measures, or agricultural practices in a

catchment.
td. wileyonlinelibra
Runoff hot spots in agricultural catchments are highly dynamic and

largely influenced by the structural evolution of soils due to agricultural

practices (Doppler et al., 2014; Pare, Andrieux, Louchart, Biarnes, &

Voltz, 2011). Topsoil saturated hydraulic conductivity (Ksat) directly

controls infiltration versus runoff partitioning with rainfall intensity

(Pare et al., 2011). Ksat exhibits higher values after tillage and gradually

decreases up to one order of magnitude due to breakdown of aggre-

gates caused by rainfall and the clogging of larger pores, especially in

silty loam soils (Chahinian, Voltz, Moussa, & Trotoux, 2006; Zeng,

Wang, Zhang, & Zhang, 2013). Ksat can also be affected by organisms

such as soil fauna (Capowiez et al., 2009) and biological crusting

(Rodriguez‐Caballero, Canton, & Jetten, 2015). The runoff connectivity

is controlled by Ksat patterns (Harel & Mouche, 2014), as well as by
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macrotopography, for example, berms, embankments, ditches

(Levavasseur, Bailly, Lagacherie, Colin, & Rabotin, 2012), hedges

(Gascuel‐Odoux et al., 2011), detention ponds (Chrétien, Gagnon,

Thériault, & Guillou, 2016), and by microtopography resulting from till-

age or wheel tracks (FpMasters, Rohde, Gurner, & Reid, 2013). The

runoff dynamic, that is, the flow discharge, is controlled by the slope,

the surface roughness and the hydraulic resistance expressed by the

Manning's coefficient (n). During a growing season, rainfall events are

expected to progressively smooth the soil roughness after tillage while

crop growth maintains and increases hydraulic resistance (Li & Zhang,

2001). Knowledge and understanding of spatial heterogeneity and

temporal dynamics of soil surface and hydrodynamic characteristics

is therefore crucial for predicting runoff in agricultural catchments.

However, after 50 years of process‐based model developments

(Fatichi et al., 2016; Freeze & Harlan, 1969), even if temporal varia-

tions of topsoil properties during a growing season are known, few

process‐based models integrate them at the catchment scale. Continu-

ous physically‐based hydrological models such as CATchment HYdrol-

ogy (Muma, Gumiere, & Rousseau, 2014), MIKE‐SHE (Zhang, Madsen,

Ridler, Refsgaard, & Jensen, 2015), or Soil & Water Assessment Tool

(Her, Chaubey, Frankenberger, & Smith, 2016) can provide runoff pat-

terns, connectivity, and dynamics but only with fixed Ksat and n values

for each soil‐land use combination for an entire season. Continuous

models are not usually designed to predict the runoff from single

events and generally lack sufficient spatial and temporal details (Yin

et al., 2016). They are generally not suitable to describe soil erosion

with sufficient detail within small catchments (Pandey, Himanshu,

Mishra, & Singh, 2016). On the contrary, the strength of the event‐

based models is their ability to address runoff‐infiltration and soil ero-

sion processes on a physical basis at the catchment scale at high spatial

and temporal resolution (Pandey et al., 2016; Starkloff & Stolte, 2014).

Event based models need to be properly initialised for each event.

The estimation of soil moisture, Ksat, and n requires external informa-

tion (Berthet, Andreassian, Perrin, & Javelle, 2009; Tramblay et al.,

2010) or a calibration step for each rainfall–runoff event (Baartman,

Jetten, Ritsema, & de Vente, 2012; Cuomo, Della Sala, & Novita,

2015; Kalantari et al., 2015), which may jeopardize the predictive

capacity of the model. In a landscape with many land uses, calibration

steps may also hamper the selection of a unique set of spatial param-

eters that best describe the catchment dynamics and may lead to

“equifinality“ as a result of over‐parameterisation (Beven, 2006; Kirch-

ner, 2006). Thus, providing process‐based models with relevant

agronomical data before calibration still remains a challenge. As an

example, significant development in the event‐based model STREAM,

proposed using expert‐based tables to initialise Ksat values depending

on crop cover and crusting stage (Evrard et al., 2009). Unfortunately,

the expert‐based approach may reduce the model's ability to transfer

to other catchments (Evrard et al., 2009). Temporal rules for including

changing topsoil properties during a crop growing season are needed

to improve the prediction of runoff patterns, connectivity, and dynam-

ics at the event scale.

Therefore, the purpose of this study was to properly initialise a

hydrological event‐based model during a growing season and to deter-

mine rules (or constraints) for future modelers to decide which param-

eters need to be calibrated and how. These constraints were
developed to explicitly integrate links between crop management

techniques and variability of soil surface properties over time. The

results of the temporal constraint strategy (TCS) were compared with

a classical event per event calibration strategy (EES). Both calibration

strategies were performed with the nonlinear “Parameter ESTimation”

(PEST) package (Mbonimpa et al., 2015) on the event based hydrolog-

ical model Limburg Soil Erosion Model (LISEM) (Baartman et al., 2012).

The EES and TCS approaches were applied to a 47 ha catchment

located 30 km northeast of Strasbourg (Bas‐Rhin, France). The

improvement of predictions was assessed for the spatial runoff pat-

terns and connectivity using multi‐scale runoff information at the out-

lets of a 77 m2 plot, a 6 ha upstream subcatchment and the 47 ha

catchment.
2 | MATERIAL AND METHODS

2.1 | Site description

The47hacatchment is located30kmnortheastof Strasbourg (Bas‐Rhin,

France). The mean annual temperature is 11.7°C, with a mean annual

rainfall of 605 mm (±141 mm) and evapotranspiration of 820 mm

(±28 mm) (2005–2011, Meteo France station in Waltenheim sur Zorn,

7 km from the study site). The slope varies slightly with a mean of

5.7% ± 2.9%, with 3.7% of the catchment surface with a slope between

0 and 2%, 37.8% with a slope between 2 and 5%, 56.4% with a slope

between 5 and 10%, and 2.1% with a slope higher than 10% (Figure 1).

Thealtituderangesbetween190and230m.Water flows inopenditches

to the catchment outlet (P0 in Figure 1)where it enters a 50 cmdiameter

pipe and flows under the road, which prevents outflow greater than

550L s−1. Since1950, thecatchmenthasbeenequippedwitha tile drain-

age system at 80 cm depth. Only one drain outlet (Figure 1) was flowing

during the study period. No flowwas observed in the other drain outlets

during the study period. Arable land (88%) dominates the catchment,

which was planted in corn (68%), winter wheat (16%), and sugar beet

(4%)as theprincipal crops in2012.Theroadnetwork is3.5%of thecatch-

ment surfacedivided intodirt roads (1.2%), grass roads (1.7%), andpaved

roads (0.6%).

The spatial variability of the soil was characterised by 30 surface

soil samples (0–20 cm) collected in April 2011 and by six 2 m deep soil

profiles collected in November 2012. The main soil type is calcareous

brown earth and calcic soils on hillsides and colluvial calcic soils in

the central thalweg. The grain size distributions of the soil surface

within the catchment had low variation (n = 30 samples; mean ± SD

in percent): clay 30.8 ± 3.9, silt 61.0 ± 4.5, and sand 8.5 ± 4.2. The soil

characteristics were CaCO3 1.1 ± 1.6%, organic matter 2.16 ± 0.3%,

pH KCl 6.7 ± 0.8, phosphorus 0.11 ± 0.04 g kg−1, and CEC

15.5 ± 1.3 cmol+ kg−1. A compacted layer (plough pan) was observed

at a depth between 20 and 30 cm.

Overall, the soil characteristics indicate little variability within the

catchment. Information on cropping operations (types and dates) was

obtained through questionnaires addressed to the five farmers within

the catchment. The farmer's practices consisted in conventional tillage

(plowing in winter and seedbed preparation by harrowing) and the

application of chemical fertilizers and pesticides. They often shared



FIGURE 1 The study catchment with the experimental setup and the topography (a) and the Landuse map for 2012 (b) superimposed with the 2‐m
dem hillshade
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the same equipment for tillage operations. None of the farmers applied

conservation tillage techniques. Only one farmer applied animal

manure as fertilizer every 3 years (2.5 ha, i.e., 5.3% of the catchment

surface). The crop management practices (types and dates) differed

between crops but very little between farmers. The study catchment

was prone to significant mudflows nearly every year (Heitz, Flinois, &

Glatron, 2012), and the soil was sensitive to soil crusting and compac-

tion. In 2009, five vegetal barriers were installed in the flow path to

decrease the water velocity and to retain soil particles during large

events (Figure 1). Except the one furthest downslope, they have been

completely filled up and aren't functional anymore and haven't been

for several years. Opened ditches were also dug to move excess water

rapidly to the catchment outlet. Rainfall and runoff discharges were

continuously monitored between March 12 and August 14, 2012,

which corresponded to the main part of the growing season for sugar

beet and corn crops.
2.2 | Field measurements

The catchment was equipped with 2 tipping bucket rain gauges and

3 cumulative rain gauges (Figure 1). Based on the five rain gauges, a

low spatial variation of the rainfall was observed within the catch-

ment (±3.5 mm on a weekly basis). Therefore, the rainfall was con-

sidered to be homogeneous for the event‐based simulation. Water

discharge was measured at 3 nested scales, a 77 m2 plot outlet (P2

in Figure 1), a 6 ha subcatchment outlet (P1), and the 47 ha catch-

ment outlet (P0 in Figure 1) in order to better investigate runoff gen-

esis, connectivity, and dynamics. The first detector measured

discharge from a sugar beet plot in the uphill region of the catch-

ment (P2, Figure 1) using a Venturi channel combined with an
ultrasonic surface water level sensor (ISMA, Forbach, France). This

provided key information on runoff activation for spring‐crops (sugar

beet and corn), which covered 72% of the catchment. Indeed, from

March to July, sugar beet and corn emerged conjointly from bare soil

to progressively cover 100% of the soil with vegetation. The second

detector was installed in a pipe under a road controlling 6 ha (P1,

Figure 1) using a pressure sensor data logger compensated with

barometric pressure (Orpheus Mini, OTT, Kempten, Germany). Due

to plot border overflowing and sedimentation in the pipe for the

largest runoff events, the measuring devices at P1 and P2, respec-

tively, were mainly used as “runoff event detector”. At the catch-

ment outlet (P0, Figure 1), a Doppler flowmeter (2150 Isco,

Lincoln, Nebraska, USA) measured outflow with a precision for water

volume of 3%. These 3 locations provided relevant multi‐scale infor-

mation on runoff genesis, connectivity, and dynamics for the subse-

quent model calibration step.

Each week, soil samples were collected from P2 to measure soil

water content. Soil samples were collected from 20 subsections in

P2 and composited. Nine rainfall events that each yielded more than

10 m3 of runoff (runoff coefficient between 0.2 and 40.8%) at the out-

let of the catchment were observed during the study period (Table 1).

The first runoff event was observed on May 2 simultaneously with

crusting of the topsoil. After runoff events, runoff patterns and path-

ways were mapped on the basis of traces such as incisions and sedi-

ment deposition. Based on the constant‐slope method for

hydrograph separation (McCuen, 2004), the contribution of the artifi-

cial drain (Figure 1) was quantified. This contribution was

8.59 ± 6.65% of the total discharge for the 9 major runoff events

(>10 m3) and 33% for the total observation period. Soil erosion is a

major problem in this catchment and has helped to focus this study



TABLE 1 Meteorological and hydrological characteristics of the 9 runoff events yielding at least 10 m3 at the outlet of the catchment and occurring
from May 2 to August 15, 2012

Unit May 2 May 21 May 23 June 7 June 11 June 12 July 10 July 08 July10

Rainfall amount [mm] 16.2 54.4 3.8 10.8 5.8 10.8 12.8 11.0 6.2

Rainfall duration [min] 179 204 29 106 20 180 30 164 41

6 min‐peak rainfall intensity [mm h−1] 38 72 26 56 50 20 40 16 46

Total discharge [m3] 22.2 10567.9 143.6 208.0 147.6 408.3 227.4 79.0 23.2

Estimation of drainage contribution [%] 22.5 1.5 13.7 3.5 5.3 6.2 4.8 13.3 6.5

Runoff event duration [min] 75 413 55 98 84 193 91 179 38

Runoff coefficient [%] 0.2 40.8 7.0 4.0 6.5 5.8 3.6 1.3 0.7

Maximum outflow [L s−1] 11.2 b 105.0 131.0 0.7 125.0 229.0 30.5 20.2

Peak time dischargea [min] 184 b 27 84 19 53 34 90 10

aTime after beginning of rainfall event
bFlood retention
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on runoff genesis with respect to runoff processes when rainfall

exceeds infiltration capacity (Hortonian flow).

2.3 | Hydrological event‐based model: LISEM

Limburg Soil Erosion Model was used for this study for 3 reasons. First,

it is a process‐based model, designed for event‐based runoff and ero-

sion predictions from small‐ to medium‐sized catchments (<100 km2).

Second, LISEM was primary developed to describe agricultural land-

scape components with tillage directions, crusted and compacted

zones and soil surface structure (Liu, Xu, & Ritsema, 2003). Finally,

LISEM has been validated in various agricultural contexts and hydro-

logical conditions (Baartman et al., 2012; Hessel, van den Bosch, &

Vigiak, 2006; Hessel & Jetten, 2007; Kalantari et al., 2015; Sheikh,

van Loon, Hessel, & Jetten, 2010). The theory and structure of LISEM

were previously described (Baartman et al., 2012; De Roo, Wesseling,

& Ritsema, 1996). Briefly, rainfall interception by vegetation is first cal-

culated based on a canopy storage function (De Jong & Jetten, 2007).

Then, the water partitioning between infiltration and runoff can be cal-

culated by different equations depending on the data availability and

objective of the simulation: Richard's equation (Kværnø & Stolte,

2012), Smith and Parlange's equation (Smith & Parlange, 1978), or

Green and Ampt's equation for one or two soil layers (Kutílek &

Nielsen, 1994). Here, infiltration was calculated by the Green and

Ampt equations (Equation 1) because of (a) easier data requirement,

(b) large existing expertise on the parametrisation, and (c) consistent

results for Hortonian runoff.

qinf ¼ −Ksat 1þ ψþ hð Þ θsat−θið Þ
F

� �
(1)

where qinf is the infiltration rate [m s−1], Ksat is the saturated hydraulic

conductivity [m s−1], F is the cumulative infiltration from the beginning

of the event [m], ψ is the average matrix suction at the wetting front

[m], h is the depth of the water layer at the soil surface [m], θsat is

the saturated water content [−], and θi is the initial water content of

the layer [−]. The maximum depression storage in the microrelief is

estimated based on the random roughness index (RR, essentially the

standard deviation of microrelief height differences in centimeter)

and empirical equations from Kamphorst et al. (2000). Once the
maximum depression storage is exceeded, runoff is generated. Runoff

is routed over a user defined network that connects cells in 8 direc-

tions using a 1‐D kinematic wave approximation based on Manning's

equation for velocity (Equation 2; Chow et al., 2013).

∂Q
∂x

þ ∂

∂t
nffiffiffi
S

p P
2
3

� �0:6
¼ qsur (2)

whereQ is the discharge [m3 s−1], n is theManning's coefficient [s/m1/3],

S is the sineof the slopegradient [−],P is thewetperimeter [m], andqsur is

the infiltrationsurplus [m2 s−1]. In this study, LISEMrefers toversion1.79

of OpenLISEM (http://blogs.itc.nl/lisem/, 2014).

2.4 | Model setup, input data, and parameters

Two Digital Elevation Models (DEM), at 0.5 and 2 m resolution, were

extractedwith ArcGIS 10.1 (ESRI, Redlands, United States) from airborne

Light Detection And Ranging (LIDAR) measurements (8 points per m2

with a vertical accuracy of 15 cm). For practical reasons (running time

and data availability), the 2 m resolution was adopted for all the maps

used by LISEM. The drainage direction extracted from a 0.5 m DEM

was “burned” onto the 2 m DEM (Thomas et al., 2017), in order to

account for the effects of small‐sized topographic features, such as till-

age furrows and ditches, on flow directions. The 2 m drainage direction

was manually modified to enable the flow through the pipes under the

roads at P0 and P1. Green and Ampt's equations for two layers were

used to represent the layer influenced by tillage and the layer

underneath. The soil profile was discretised in two layers at 0–25

and 25–175 cm (noted with subscripts 1 and 2, respectively). 1 min

resolution rainfall data were obtained from the tipping bucket rain

gauge near the outlet of the catchment (Figure 1) and a 10 sec time

step was used for all the simulations. Ten different land uses were

determined in 2012: corn, wheat, sugar beet, dirt road, asphalt road,

grass road, grass strip, ditch, fallow land, and hedge.

Due to the high temporal variability of soil surface states and crop

development, one common dataset for all runoff events lead to very

poor modelling results (Baartman et al., 2012; Hessel, Messing, Chen,

Ritsema, & Stolte, 2003). Therefore, initial values of vegetation and soil

parameters of each LISEM simulation had to be estimated. Parameter

values and estimation methods are detailed in Table 2 and Table 3.

http://blogs.itc.nl/lisem/
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TABLE 3 Saturated hydraulic conductivity and Manning's coefficient
for plot margins

Catchment
surface [%]

Ksat
[mm h−1]

Manning's
coefficient [−]

Grass strip 1.4 35 0.5

Dirt road 1.2 3 0.02

Grass road 1.7 5 0.05

Asphalt road 0.6 0.001 0.011

Ditch 0.2 20 0.1

Fallow land 1.6 20 0.2

Hedge 0.3 50 0.2
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Except Ksat1, Green and Ampt parameters (θi1,2, θsat1,2, Ψ1,2, soildep1,2,

Ksat2) were assumed to be homogeneouswithin the catchment. The sur-

face parameters, that is, the vegetation parameters,RR, n, andKsat1were

assumed to only vary according to the crop types because spatial varia-

tion of soil types, slope and crop management techniques were limited

within the catchment. Plot margins such as vegetal barriers, ditches, or

roads were explicitly integrated in the 2 m land use map and parame-

trized (Table 3). The temporal variation of vegetation cover was calcu-

lated according to a sigmoidal curve based on the growth equation of

Hunt (1982). Crop height and Leaf Area Index were estimated based

on LISEM guide abacus (De Roo, Wesseling, Jetten, & Ritsema, 1995).

The temporal variation of RR was calculated based on the equations of

Potter (1990) and the approach adopted in WEPP (Alberts et al.,

1995). Initial random roughness (RRi [cm]),that is, just after a tillage oper-

ation, is calculated according to the following equation:

RRi ¼ RRi−toolfsoil
100þ 0:5Cresi

100
: (3)

RRi‐tool is the reference random roughness depending on the till-

age implement (Alberts et al., 1995). This value is then corrected for

texture effects using the soil roughness factor (fsoil; >1 for clay soils,

1 for silty soils, and <1 for sandy soils; USDA, 2003) and for the effects

of crop residues cover (Cresi). Then the dynamics of RR over time (t) for

a bare soil is calculated as follows:

RRbare soil;t ¼ RRi e
−PcumSstab ; (4)

where Pcum is the cumulated rainfall since the last agricultural practice

[mm] and Sstab is a soil structural stability parameter, estimated via the

French slaking index (Rémy & Marin‐Laflèche, 1974). We assumed

here that RR for the surface covered by plant residues is not impacted

by the rainfall:

RRresi ¼ RRi: (5)

A final random roughness (RRt) can be calculated by a weighted

average between RRresi and RR bare soil, t according to the cover fraction

of plant residues (Cresi):

RRt ¼ 100−Cresið ÞRRbare soil;t þ CresiRRresi

100
: (6)

We further assumed that RR remains always larger than 0.5 cm.

For the deeper soil layer (25–175 cm), the Green and Ampt
parameters (Ksat2, θsat2, ψ2, and θi2) were assumed constant during

the season (March–August 2012). Ksat2 and θsat2 were estimated with

soil laboratory protocol, ψ2 with a pedotransfer function (Saxton &

Rawls, 2006) and θi2 was estimated using the pF curve based on

the chosen ψ2 value (Table 2). For the topsoil layer (0–25 cm), the

measured local topsoil water content (0–3 cm) could not be used

directly in the model for θi1 because it represents the water content

of a very thin soil surface layer compared to the topsoil layer repre-

sented in LISEM (0–25 cm). θi1 was therefore calibrated and com-

pared with the temporal variations in measured topsoil water

content and with estimations based on the soil moisture depletion

model from Kohler and Linsley (1951). Ksat1 and n were calibrated

according to the different crops within the catchment.

The two calibration strategies were applied and developed in the

following sections: (a) An event per event calibration strategy (EES)

consisting in calibrating parameters independently for each runoff

event as classically performed in the literature (Baartman et al., 2012;

Cuomo et al., 2015; Hessel et al., 2003; Kalantari et al., 2015) and (b)

a calibration with additional constraints on expected temporal evolu-

tion of Ksat1 and n for the successive events (TCS).

2.4.1 | Event per Event calibration Strategy (EES)

The EES consisted in calibrating ten LISEM parameters (Ksat1 and n for

corn, sugar beet, wheat, and plot margins; Ψ1 and θi1) within their

physically‐realistic ranges (De Roo et al., 1995; Table 2). EES was used

as a reference for the evaluation of the benefits obtained with the

more constrained calibration method (TCS).

2.4.2 | Temporal Constraint calibration Strategy (TCS)

To reduce the dimensionality of the parameter calibration problem and

improve consistency in runoff prediction, a TCS was developed with

five supplementary constraints (Table 2):

1. Ψ1 was considered a constant because it has been shown that the

Green and Ampt model could not be improved by calibratingΨ1 in

addition to Ksat1 (Van den Putte et al., 2013). Because LISEM is

sensitive to Ψ1 (Cuomo et al., 2015; Hessel et al., 2003), the con-

stant value was carefully chosen and estimated with the

pedotransfer function of Saxton and Rawls (2006).

2. Ksat1 and n for the plot margins, such as the road, buffer strip and

ditch, were fixed over time (De Roo et al., 1995) and were not cal-

ibrated because their soil surface presented less temporal variabil-

ity than agricultural plots (Table 3);

3. Ksat for winter wheat was considered constant during the investi-

gated period because wheat was fully developed in March and

was not harvested until after the last event on July 10 (De Roo

et al., 1995).

4. Ksat for corn and sugar beet were predicted to decrease during the

growing season (Equations 7, 8, and 9), as previously observed

(Van den Putte et al., 2013; Zeng et al., 2013).

5. n increased for winter wheat and decreased for spring‐planted

row crops like corn and sugar beet until mid‐June (progressive

surface smoothing due to aggregate degradation and crusting pro-

cesses) and then increased as the vegetation tended to dominate
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the resistance processes (Equation 10; O'Hare et al., 2010; Van

den Putte et al., 2013).

The temporal evolution of soil saturated hydraulic conductivity

(Ksat,t, [mm h−1]) was determined in two steps: the saturated hydraulic

conductivity of the soil matrix (Ksat,mtr) was estimated based on the

pedotransfer function of Cosby, Hornberger, Clapp, and Ginn (1984),

which only depends on the soil texture. The soil tillage and progressive

soil clogging under the influence of rainfall were then considered

(Equation 7).

Ksat;t ¼ Ksat;mtr þ 100 DAmtr−DAtð Þ; (7)

where the consolidated bulk density (DAmtr [g cm
−3]) is estimated using

the pedotransfer function of Riley (1996) as a function of depth, tex-

ture, and organic matter content and the time dependent bulk density

(DAt [g cm−3]). The two effects impacting DAt are the rainfall impact

and the soil tillage. For days with tillage, DAt is estimated as follows

(Equation 8):

DAt ¼ DAt−1−FpDAt−1 þ 2
1þ fsoil

Fp
2
3
DAmatr ; (8)

where DAt‐1 is the bulk density of the previous day [g cm−3] and Fp the

soil fraction, which is impacted by the tillage operation. For days with-

out tillage, the bulk density for a bare soil (DAbare soil , t) without residue

cover is estimated by the following equation:

DAbare soil; t ¼ DAbare soil;t−1 þ DAmatr−DAbare soil; t−1

� �
1−e−

Pj
Sstab

� �
; (9)

where Pj is the daily rainfall [mm].

The estimation of Manning's n was based on a modification of the

general model n = f (soil surface irregularity, obstructions, vegetation

cover, and characteristics) as described by Phillips (1989) using:

n ¼ nsoil þ nresidue þ cover × n veg: (10)

With nsoil [s/m
1/3], the Manning's coefficient of bare soil, equal to

one tenth of the random roughness [cm], nresidue [s/m
1/3] equal to 0.01

in case of less than 5% crop residue cover (which corresponds to a con-

ventional tillage), cover fraction [−] (0 to 1), and nveg equal to

0.127*crop parameter (the latter takes into account the spatial struc-

ture of the obstructions caused by the crops and was set to 0.6 for

wheat, 0.3 for sugar beet, 0.15 for corn and corresponds to non‐sub-

merging overland flow and crops sowed parallel to the slope).

2.5 | Model calibration and sensitivity analysis

The calibration was focused on the outflow dynamics, that is, the

observed hydrograph, at the outlet of the catchment for EES and

TCS for each runoff event, except for one. For May 21, the calibration

was based on the total runoff discharge volume and on the first

150 min of the hydrograph, because water storage occurred behind

the dike at the outlet of the catchment and modified the natural peak

flow. Limburg Soil Erosion Model calibration has often been done man-

ually (Baartman et al., 2012; Hessel et al., 2003; Kværnø & Stolte,
2012). However, automatic calibration may help to increase prediction

accuracy, to minimize modeler subjectivity, to be repeatable, and to

compare more objectively two different methods of calibration with

similar input parameters and different calibration settings (Doherty,

2013; Kalantari et al., 2015). The nonlinear PEST package is one of

the most commonly used calibration tools in hydrological modeling

and/or contaminant transport modeling problems (Bahremand & De

Smedt, 2010; Kim, Benham, Brannan, Zeckoski, & Doherty, 2007;

Mbonimpa et al., 2015; Wang & Brubaker, 2014). It applies a robust

Gauss Marquardt Levenberg algorithm, which combines the advan-

tages of providing fast and efficient convergence towards the mini-

mum of the objective function that is the sum of the weighted

square deviation between the measured and predicted hydrographs

(Bahremand & De Smedt, 2010). Research on improving calibration

results by using different PEST settings (number of adjustable parame-

ters, range of values, weights assigned to each observations, etc)

remains scarce (Doherty, 2013; Fienen, Muffels, & Hunt, 2009).

Because the optimization procedure can get stuck in local minima, ini-

tial conditions to preset the model are crucial and must be accurately

estimated before calibration (Cullmann, Krausse, & Saile, 2011). Under-

standing and controlling PEST settings would increase the probability

in finding a global minimum of the objective function and dramatically

decrease the calibration time compared to global calibration (Wang &

Brubaker, 2014). In order to increase the probability in finding a global

minimum for EES and TCS (Mbonimpa et al., 2015), the best “real” set

of parameters was selected relying on measured parameters, expert

knowledge, or physical laws (Table 2 and Table 3) and PEST was run

to optimize input parameters within a realistic and restricted range of

values (Table 2).

To assess the parameters that most significantly influenced the

model results, a sensitivity analysis that varied one factor at a time

was performed using the SENSAN component of PEST (Doherty, Steel,

& Parrish, 2012). It was performed by increasing and decreasing each

individual parameter by 20% and examining the model output in terms

of total discharge. The one factor at a time method overlooks the inter-

actions and nonlinear effects of the input parameters instead of global

sensitivity analysis (Saltelli & Annoni, 2010). However, it determines

the influence of the input parameters on the total discharge predic-

tions (Sheikh et al., 2010).

2.6 | Evaluation criteria and data analysis

The predicted and observed total discharge, peak discharge, and

peak time of discharge were first compared at the outlet of the

catchment. The predicted and observed hydrographs were com-

pared qualitatively (visual comparison) and quantitatively based on

a multi‐criteria analysis. Three criteria were calculated for compari-

son: (a) the Nash–Suttcliff Efficiency coefficient (NSE), (b) Kling–

Gupta efficiency (KGE), and (c) the bias indicator (BIAS; Milella,

Bisantino, Gentile, Iacobellis, & Liuzzi, 2012). The NSE [−] and

KGE [−] measure how well the predicted values match the

observed (Equation 11)

NSE ¼ 1−
∑n
i¼1 Qiobs−Qisimð Þ2

∑n
i¼1 Qiobs−Qobs

� �2 ; (11)
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where i is the time step, Qiobs is the observed outflow at i, Qisim is

the predicted outflow at i, and Qobs is the average observed out-

flow during the event. KGE (Gupta, Kling, Yilmaz, & Martinez,

2009) is estimated as follows (Equation 12):

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2 þ α−1ð Þ2 þ β−1ð Þ2

q
; (12)

where r is the linear correlation coefficient between the simulated

and observed discharge. α and β are determined as follows: α ¼ σsim
σ0bs

;

FIGURE 2 Rainfall intensity (mmmn‐1), observed discharge (L s‐1) together w
event and temporal constraint strategy (EES and TCS) for the nine runoff even
influenced by a sluice gate)
β ¼ μsim
μ0bs

; where σ is the standard deviation, μ is the mean value.

Bias indicator measures whether the predicted values consistently

over or under estimate the observed values [%] (Equation 13):

BIAS ¼ 100×
∑n
i¼1 Qisim−Qiobsð Þ

∑n
i¼1Qiobs

: (13)

Considering the complexity of the interactions among physical

processes, performing the validation at the outlet can mask important
ith predicted discharge according to the calibration strategies: event per
ts within the catchment (measured outflow for May 21 was hydraulically
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spatial variation in the catchment (Lee, Tachikawa, Sayama, & Takara,

2012). Therefore, predicted spatial runoff patterns and connectivity

were compared with information collected with internal detectors

(P1 and P2, Figure 1) and from direct observations on runoff traces.

The calibrated parameters and their sensitivity were compared to field

measurements using the paired nonparametric Wilcoxon signed rank

test and the Spearman rank correlation test. Statistical tests were per-

formed using the R software (R development Core Team, 2008;

version 2.6.2).
3 | RESULTS

3.1 | Event per event calibration strategy (EES)

The observed hydrographs at the catchment outlet were predicted

well by LISEM with EES (Figure 2), resulting in NSE and KGE values

ranging from 0.4 to 0.97 (Table 4). On the contrary, spatial runoff pat-

terns and connectivity were not adequately simulated, particularly for

May 2 and May 21. Although observed runoff occurred at the two

internal control points (P1 and P2, Figure 1) for these 2 events, only

the runoff at P1 was predicted by EES. According to the LISEM
TABLE 4 Comparisons of measured and predicted runoff events with TC
discharge [min], and evaluation criteria (BIAS, KGE, and NSE) for EES and T
EES and TCS)

Total discharge [m3] Pe

Obs TCS % Diff Obs

May 2 17 26.2 54.1 16

May 21 10411 5800.4 −44.3 a

May 23 124 165.2 33.3 105

June 7 201 179.8 −10.5 131

June 11 140 137.1 −2.1 129

June 12 383 177.4 −53.7 125

July 7 217 232.6 7.2 229

July 8 69 40.0 −42.0 30

July 10 22 8.1 −63.2 37

BIAS (%) KGE

EES TCS EES

Note. BIAS = bias indicator; EES = event calibration strategy; KGE = Kling–Gup
strategy.
aflood retention
bbetween the beginning of the rainfall and the flooding of the pipe
predictions for the 9 runoff events, an average of 63% of the agricul-

tural land planted in cereals triggered runoff and were hydrologically

connected via surface runoff to the outlet of the catchment, whereas

the field observations revealed that runoff mostly occurred on the bare

soil associated with the corn and sugar beet plots (see pictures in

Figure 3). For the 9 runoff events, measured total volumes were sys-

tematically under‐predicted by EES, as emphasised by the negative

BIAS values (Table 4).

As expected for the event‐based calibrations (Van den Putte et al.,

2013), equifinality was observed. The Ksat1 and Ψ1 parameters as well

as the Ksat parameters for the different land uses compensated for each

other. For example, the calibrated Ksat wheat increased from 4 to

60 mm h−1 between June 11 and June 12, whereas in the same time

period, Ksat corn decreased from 60 to 6 mm h−1. This is clearly unrealis-

tic in only 1 day for an entire field.

The parameters obtained with EES were therefore highly interde-

pendent and not consistent with agronomical knowledge. These results

highlighted the weakness of calibrations performed independently for

each event when temporal evolution of topsoil properties is not used

as is often the case (Baartman et al., 2012; Hessel et al., 2003). The

results of the TCSwere then analysed in terms of spatial runoff patterns,

connectivity, and dynamics compared to those obtained with the EES.
S in terms of total discharge [m3], peak discharge [L s−1], peak time
CS approaches for each runoff event (in grey the best value between

ak discharge [L s−1] Peak time discharge [min]

TCS % Diff Obs TCS % Diff

16.6 3.6 184 188.6 2.5

1929.0 a a 235.3 a

96.6 −8.7 27 26.5 −1.9

156.0 16.0 84 82.3 −2.0

127.8 −0.9 19 20.5 7.9

125.1 0.1 53 57.2 7.9

228.1 −0.4 34 33.8 −0.6

30.0 0.0 90 111.6 24.0

7.6 −79.5 10 13.2 32.0

(−) NSE (−)

TCS EES TCS

ta efficiency; NSE = Nash–Suttcliff efficiency; TCS = temporal constraint



FIGURE 3 Comparison of the predicted runoff pathways for May 21 with the pictures of that day within the headwater catchment. The blue color
range represents the cumulated runoff passed on each cell [log mm]
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3.2 | Temporal constraint calibration strategy (TCS)

The predicted runoff dynamic at the catchment outlet was slightly

degraded from EES to TCS (Table 4). The NSE criterion was always

lower than the NSE criterion obtained by the EES reflecting impact of

higher constraints on parameters of LISEM. The KGE criterion was

improved only for 3 events (in grey in Table 4). For May 2 and July

10, LISEM could reproduce two peaks with the TCS compared to the

EES results (Figure 2), indicating that the spatial runoff patterns and

connectivity were probably better represented. Although the predic-

tion of runoff dynamics was impacted by stronger constraints during

calibration, the spatial runoff patterns and connectivity were

significantly improved. Indeed, the runoff dynamics, that is, peak time

and peak value, observed for the 9 events at P1 and P2 were simulated

by LISEM (data not shown). Moreover, for the largest event (May 21),

the predicted runoff connectivity within the catchment corresponded

to the field observations (Figure 3). Fifty‐four percent of the catchment

surface was hydrologically connected to the outlet via surface runoff

according to the LISEM runoff patterns for the 9 events studied. As

observed in the field, wheat, alfalfa, and oat plots were not primary

contributors to the predicted runoff with only 2% of the cereal areas

connected via surface runoff. LISEM predictions showed that 50% of

dirt, 35% of grass, and 100% of asphalt road surface triggered runoff

in average over the 9 runoff events. Road surface (dirt, grass, and

asphalt) represented 2.4% of the catchment surface, which triggered

runoff, with only 1.8% hydrologically connected to the outlet. For
May 2 and May 21, runoff crossed the roads to reach directly the

thalweg (Figure 3) showing that the impact of slope on spatial runoff

patterns was predominant against the role of the roads. The slight

decrease of the NSE criterion based on the discharge prediction was

counterbalanced by an improvement in the prediction of the runoff

pathways. The associated runoff volume results were mixed with an

improvement of the BIAS indicator for 4 events but a decrease for

the others (Table 4).

The temporal variation of the calibrated value of θi1 (0–25 cm)

follows the same tendency as the measured topsoil water content

(0–3 cm; Figure 4). The calibrated Ksat values varied between 0.7 and

1.5 mm h−1 and were in the range of values obtained in previous stud-

ies for temperate catchments with crusting soil (Risse, Nearing, &

Zhang, 1995). Despite the constraint rules, a small increase of Ksat for

corn and sugar beet values was necessary for June 7 to improve the

predictions of runoff at the outlet (Figure 4). An increase of Ksat has

been observed during an agricultural season (Mubarak et al., 2009).

The need for an increase in Ksat on June 7 could partly be a result of

the restructuring of the soil after the intensive rainfall event of May

21 and of the soil drying cycle (Mubarak et al., 2009).
3.3 | Sensitivity analysis

A sensitivity analysis was conducted for each event to quantify the

impact of parameters over time on the total discharge and to invest



FIGURE 4 Temporal changes of initial water content, saturated hydraulic conductivity and manning coefficient related to the daily rainfall from
May 2 to July 10 2012 with the TCS calibration strategy. The depletion model values for initial water content (Kohler & Linsley, 1951) and the
prediction of the Manning's coefficient based on Equation 6 are represented for comparison purposes
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more efforts in the calibration method focused on the most influential

parameters. A sensitivity analysis of the 21 parameters of LISEM was

assessed for the TCS calibrated parameters and the results are pro-

vided in Figure 5.

The results showed that the Green and Ampt parameters for the

topsoil layer were the major parameters that influenced the total dis-

charge for the 9 runoff events: in decreasing order of influence

θsat1 > θi1 > Ksat1 > Ψ1 (Figure 5). This was previously shown by other

authors (Sheikh et al., 2010; Zeng et al., 2013). Ksat2, Ψ2, and soildep2

were relatively insensitive to the total discharge (from −2 to 2%

of the total discharge for 20% of the change) for the 9 runoff events

(Figure 5). Those parameters would probably be more sensitive for

events when excess saturation runoff occurred. Altogether, these

results underlined that the in situ characterisation of soil properties

has to be focused on the topsoil layer, which controls Hortonian runoff

patterns in event‐based models such as LISEM.

The impact of vegetation interception ranged from 0.8% of the

total rainfall for the May 21 event to 19.8% for the July 10 event. This

indicated that the sensitivity of the vegetation parameters increased

with the vegetation growth during the season. The sensitivity of the

initial moisture on the total discharge was lower (between 10 to 300

times less important) for intensive events, such as on May 21, com-

pared to other events, which was previously shown (Sheikh et al.,

2010; Hu, She, Shao, Chun, & Si, 2015). Ksat1 was also less sensitive

for runoff events with high observed runoff coefficient (p = −.98,

p < .001). Altogether, these results highlight the usefulness of a

multi‐event sensitivity analysis to understand the temporal evolution

of parameter sensitivity as field conditions change.
FIGURE 5 Relative sensitivity of total discharge [%] for 20% variation of e
the temporal constraint strategy (TCS). Only parameters for which total disc
indicates 20% increase or decrease respectively. Errors bars represent the t
the saturated hydraulic conductivity of the first layer [mm h‐1]; Ksatcorn, t
the saturated hydraulic conductivity for grass elements (strip, ditch, track
ncorn, the Manning's coefficient for corn area; ngrass, the Manning's coe
surface covered by vegetation; rr the random roughness [cm]; Soildep1, t
of the first soil layer; thetai2, the initial water content for the second so
thetas2, the saturated water content for the second soil layer; psi1, the in
of the second soil layer [cm]
4 | DISCUSSION AND CONCLUSION

Potentially, physically‐based models such as LISEM are best manage-

ment tools to simulate impacts of changes in the catchment (land use

and/or mitigation approaches) due to explicit integration of the spatial

distribution of complex processes (Payraudeau & Grégoire, 2012).

LISEM allows for the integration of several types of mitigation mea-

sures such as retention basins, sediment traps, vegetative barriers, or

vegetative filter strips (see http://blogs.itc.nl/lisem/) and can as well

simulate the effects of agronomical measures (conservation tillage,

cover crops, etc.) through the appropriate modification of model

parameters. However, blind EES of physically‐based erosion models

using measured hydrographs at the main catchment outlet may lead

to an erroneous diagnosis of erosion problems within the catchment:

hydrographs may be properly reproduced but simulated runoff produc-

tion areas are wrong. This example of “the right answer for the wrong

reason” may hamper the use of such models to define and evaluate

action programs to reduce the environmental and socioeconomic

impacts of overland flow and soil erosion. We have shown here that

the application of a TCS of the event‐based model LISEM, by using a

continuous agronomic modelling approach of arable fields, yields

results which properly match the observed spatial patterns of erosion

and runoff source areas in the catchment. The implementation of mit-

igation measures in a catchment is expensive and errors in dimension-

ing or localising strategies can have serious economic, social, and

environmental consequences and will discredit stakeholders. The TCS

strategy is, therefore, an important step forward in the validation of

such models for catchment management.
ach input parameter separately based on the calibrated parameters of
harge sensitivity exceeded 1% were represented. Plus or minus symbol
emporal variability of the sensitivity within the 9 runoff events. Ksat1 is
he saturated hydraulic conductivity for corn area [mm h‐1]; Ksatgrass,
, ..) [mm h‐1]; LAI, the Leaf Area Index; n, the Manning's coefficient;
fficient for grass elements (strip, ditch, track, ..); per, the fraction of
he depth of the first soil layer [cm]; thetai1, the initial water content
il layer; thetas1, the saturated water content of the first soil layer;
itial soil suction of the first soil layer [cm]; psi2, the initial soil suction

http://blogs.itc.nl/lisem/
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Despite this improved predictive potential, modelling skills required

for using these tools limit their implementation by stakeholders. None-

theless, in the Alsace region in France the model has been applied to

several catchments by the Association for Agronomic Advances in

Alsace (an institution for research and development on agronomic

issues) to diagnose and to evaluate the impacts of different action pro-

grams concerning the location and dimensions of sediment buffer strips

and the modification of cropping systems in the area. The modelling

results were successfully used by technical advisers for farmers of the

Chambre d'Agriculture d'Alsace, and helped to facilitate negotiations

and build consensus for remediation programs for these catchments.

This example illustrates the feasibility of such a modelling approach,

which provides valuable information of complex catchment responses

that are difficult to assess by other means.

We have shown that several rules of calibration from TCS helped

modelers to decide which parameters need to be calibrated and how.

The advantages and drawbacks of TCS on spatial and temporal runoff

predictions are discussed in the following part as well as its potential

transfer to other catchments. Further perspectives to better estimate

the spatial and temporal evolution of the two main sensitive parame-

ters, that is, initial soil moisture and topsoil hydraulic conductivity are

discussed.
4.1 | Advantages & drawbacks

This study underlined that integrating agronomical knowledge into a

distributed event‐based model can significantly reduce equifinality

and improve the reproduction of spatial runoff patterns. With more

constraints, the predicted runoff dynamic estimated by KGE and NSE

criteria was slightly altered compared to a classical event per event cal-

ibration. The total discharge volume was frequently underestimated by

LISEM for both strategies as indicated with a negative BIAS (Table 4).

This could be explained by the omission of other discharge compo-

nents such as subsurface flow and tile drain flow especially at the

end of the event during the recession step. Despite this underestima-

tion, the peak discharge and the peak time of discharge were correctly

estimated at the outlet of the catchment but also in the 2 internal run-

off detectors for the 9 runoff events (P1 and P2, Figure 1). This indi-

cates a potential for a robust prediction of impacts of mitigation

measures on runoff at the catchment scale.

The TCS method was founded on the inability to predict runoff in

a cropped catchment during a growing season using a single calibration

dataset. If the calibration step is not avoided with the TCS method, the

calibration ranges of parameters are strongly restricted for events dur-

ing the crop season. An example is given in Figure 4 where the pre-

dicted initial water content from the depletion model is very near the

obtained calibrated values. Temporal constraint strategy represents a

first promising step towards a full coupling between a continuous

model for topsoil hydraulic properties simulation during a crop season

and an event‐based model.
4.2 | Transferability of the TCS method

The use of agronomical knowledge to constrain more efficiently an

event‐basedmodel links the temporal evolution of key topsoil hydraulic
properties with weather, soil properties, vegetation, and crop manage-

ment techniques to accurately predict runoff. The constraints have to

be adapted to the soil‐climate‐land use combination as shown by

Evrard et al. (2009) in a similar approach. In terms of the scope of this

application, the benefit of TCS or similar approaches may be optimal

for headwater catchments with different crops with contrasting stages

of vegetation from bare soil to fully covered plots. And also for soil

prone to crusting such as the European loess belt (Evrard et al., 2009).

The Equations 3 to 10 mathematically describe the impacts of specific

crop management practices (dates, tillage implements, crop residue

management, etc) on topsoil hydraulic properties and may be adapted

without conceptual difficulties to different agricultural contexts. Addi-

tional relationships may be necessary in situations with significant

manure applications. Indeed, contrary to mineral fertilizers, manure

applications may increase soil organic carbon, field capacity, and total

porosity, thus increasing the unsaturated hydraulic conductivity (Shi,

Zhao, Gao, Zhang, & Wu, 2016). The equations used in this study

describe the effects of organic carbon content on soil structural stabil-

ity and bulk density and as a result also on the dynamics of saturated

hydraulic conductivity. Effects of organic carbon content on biological

activity such as earth worms are not yet integrated though they play

an important role on soil meso and macroporosity and on infiltration

(Alhassoun, 2009; Lamandé, Hallaire, Curmi, Pérès, & Cluzeau, 2003).
4.3 | Perspectives

The results of the sensitivity analysis provided key directions, espe-

cially regarding initial soil moisture and topsoil hydraulic properties,

to improve the ability of hydrological models to predict Hortonian run-

off in cropped headwater catchments during a growing season.

The sensitivity analysis highlighted an impact of initial soil mois-

ture on runoff depending upon the intensity of rainfall events. Contin-

uous process‐based models such as CATchment HYdrology (CATHY)

can provide spatiotemporal prediction of soil moisture for different soil

depths. However, soil moisture prediction for crop catchments still

remains challenging with this type of models due to the spatial resolu-

tion required to capture the impact of landscape components, for

example, few meters to describe a grass strip (Gascuel‐Odoux et al.,

2009; Payraudeau & Grégoire, 2012). Since continuous models inte-

grate processes with different dominant time scales, for example,

evapotranspiration and infiltration, approaches using sub‐time

stepping can be a way of improving the model performance (Fatichi

et al., 2016). Spatial variations of topsoil moisture can also be correctly

estimated with a simple soil water balance model such as the Bridging

Event and Continuous Hydrological (BEACH) model (Sheikh, Visser, &

Stroosnijder, 2009) as a trade‐off between parsimony and complexity.

Improvement of soil moisture indices by remote sensing (Amani,

Parsian, MirMazloumi, & Aieneh, 2016) or by unmanned aerial vehicles

(Polo, Hornero, Duijneveld, Garcia, & Casas, 2015) can be helpful dur-

ing the calibration and validation of models as shown at larger scales

(Escorihuela & Quintana‐Seguí, 2016).

The current limit to correctly trigger Hortonian runoff in themodel-

ling approach is mainly due to the high spatiotemporal variability of top-

soil hydraulic conductivity (Cornelissen,Diekkrüger,&Bogena, 2016; Jin

et al., 2015). As discussed in the Section 1, many continuous or event‐
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basedmodels do not consider the evolution of topsoil hydraulic conduc-

tivity during a growing season or use expert‐based approaches with dif-

ferent crusting stages (Evrard et al., 2009). The integrated use of natural

and virtual “laboratories” as promoted for process‐based models by

Fatichi et al., 2016 can be an avenue for future advances to predict the

temporal evolution of topsoil hydraulic conductivity and its impact on

runoff hot spots and hot‐moments assessment. Thereby,measurements

at plot, field, and catchment scales (Bu, Wu, & Yang, 2014; Evrard et al.,

2009; Orchard, Lorentz, Jewitt, & Chaplot, 2013) and results of virtual

approaches (Chahinian et al., 2006; Loague, Heppner, Ebel, &

VanderKwaak, 2010) underline how agronomical and hydrological data

from headwater catchments and modelling approaches can enhance

the understanding and modelling of runoff processes.

ACKNOWLEDGMENTS

The authors are members of REALISE, the Network of Laboratories in

Engineering and Science for the Environment in the Alsace Region

(France; http://realise.unistra.fr), and the support fromREALISE is grate-

fully acknowledged. This research was funded by the PhytoRET project

(C.21) of the European INTERREG IV program in theUpper Rhine.Marie

Lefrancq was supported by the European INTERREG IV program in the

Upper Rhine and Water Agency of Rhine Meuse. We acknowledge, in

particular, Anne‐VéroniqueAuzet forher considerable knowledgeof soil

surface states, the soil laboratory UMS830 EOST/CNRS, Martine

Trautmann for the soil analysis and Jean‐Bernard Bardiaux for his

hydraulic expertise. We would like to thank Gwenaël Imfeld for helpful

comments and Richard Coupe for proof‐reading themanuscript.

REFERENCES

Alhassoun, R. (2009). Studies on factors affecting the infiltration capacity of
agricultural soils. Thesis, Julius Kühn‐Institut Bundesforschungsinstitut
für Kulturpflanzen, Quedlinburg, 156 pp.

Amani, M., Parsian, S., MirMazloumi, S. M., & Aieneh, O. (2016). Two new
soil moisture indices based on the NIR‐red triangle space of Landsat‐8
data. International Journal of Applied Earth Observation and
Geoinformation, 50, 176–186.

Alberts EE, Nearing MA, Weltz MA, Risse LM, Pierson FB, Zhang XC, Laflen
JM, Simanton JR. 1995. WEPP. Chapter 7. Soil component. USDA‐
Water Erosion Prediction Project Hillslope Profile and Watershed
Model Documentation, NSERL Report 10.

Baartman, J. E. M., Jetten, V. G., Ritsema, C. J., & de Vente, J. (2012).
Exploring effects of rainfall intensity and duration on soil erosion at
the catchment scale using openLISEM: Prado catchment, SE Spain.
Hydrological Processes, 26, 1034–1049. doi:10.1002/Hyp.8196

Bahremand, A., & De Smedt, F. (2010). Predictive analysis and simulation
uncertainty of a distributed hydrological model. Water Resources Man-
agement, 24(12), 2869–2880. doi:10.1007/s11269-010-9584-1

Berthet, L., Andreassian, V., Perrin, C., & Javelle, P. (2009). How crucial is it
to account for the antecedent moisture conditions in flood forecasting?
Comparison of event‐based and continuous approaches on 178 catch-
ments. Hydrology and Earth System Sciences, 13, 819–831.

Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrol-
ogy, 320, 18–36. doi:10.1016/j.jhydrol.2005.07.007

Boardman, J., & Vandaele, K. (2016). Effect of the spatial organization of
land use on muddy flooding from cultivated catchments and recom-
mendations for the adoption of control measures. Earth Surface
Processes and Landforms, 41, 336–343. doi:10.1002/esp.3793

Bu, C. F., Wu, S. F., & Yang, K. B. (2014). Effect of physical soil crusts on
infiltration and splash erosion in three typical Chinese soils. Interna-
tional Journal of Sediment Research, 29, 491–501.
Capowiez, Y., Cadoux, S., Bouchand, P., Roger‐Estrade, J., Richard, G., &
Boizard, H. (2009). Experimental evidence for the role of earthworms in
compacted soil regeneration basedon field observations and results from
a semi‐field experiment. Soil Biology and Biochemistry, 41, 711–717.
doi:10.1016/j.soilbio.2009.01.006

Chahinian, N., Voltz, M., Moussa, R., & Trotoux, G. (2006). Assessing the
impact of the hydraulic properties of a crusted soil on overland flow
modelling at the field scale. Hydrological Processes, 20, 1701–1722.
doi:10.1002/hyp.5948

Chow, V., Maidment, D., & Mays, L. (2013). Applied Hydrology, 2nd edn.,
McGraw‐Hill Companies, Incorporated.

Chrétien, F., Gagnon, P., Thériault, G., & Guillou, M. (2016). Performance
analysis of a wet‐retention pond in a small agricultural catchment.
Journal of Environmental Engineering, 142(4). doi:10.1061/(ASCE)
EE.1943-7870.0001081

Cornelissen, T., Diekkrüger, B., & Bogena, R. (2016). Using high‐resolution
data to test parameter sensitivity of the distributed hydrological model
HydroGeoSphere. Water, 8, 1–21.

Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R. (1984). A
statistical exploration of the relationships of soil moisture characteris-
tics to the physical properties of soils. Water Resources Research, 20,
682–690. doi:10.1029/WR020i006p00682

Cullmann, J., Krausse, T., & Saile, P. (2011). Parameterising hydrological
models ‐ Comparing optimisation and robust parameter estimation.
Journal of Hydrology, 404, 323–331. doi:10.1016/j.jhydrol.2011.05.003

Cuomo, S., Della Sala, M., & Novita, A. (2015). Physically based modelling of
soil erosion induced by rainfall in small mountain basins. Geomorphol-
ogy, 243, 106–115. doi:10.1016/j.geomorph.2015.04.019

De Jong, S. M., & Jetten, V. G. (2007). Estimating spatial patterns of rainfall
interception from remotely sensed vegetation indices and spectral mix-
ture analysis. International Journal of Geographical Information Science,
21, 529–545. doi:10.1080/13658810601064884

De Roo, A. P. J., Wesseling, C. G., Jetten, V. G., & Ritsema, C. J. (1995). Lim-
burg Soil Erosion Model, A User Manual. Version 3.1. Department of
Physical Geography, Utrecht University, The Winand Staring centre,
Wageningen. (pp. 48). Laon, France: The Agronomy Unit, INRA.

De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: A single‐
event physically based hydrological and soil erosion model for drainage
basins .1. Theory, input and output. Hydrological Processes, 10,
1107–1117.

Doherty, J. (2013). Getting the Most Out of PEST. Brisbane, Australia:
Retrieved from http://www.pesthomepage.org/ getfiles.php?file=
pest_settings.pdfWatermark Numerical Computing, QLD.

Doherty, I., Steel, C., & Parrish, D. (2012). The challenges and opportunities
for professional societies in higher education in Australasia: A PEST
analysis. Australasian Journal of Educational Technology, 28, 105–121.

Doppler, T., Luck, A., Camenzuli, L., Krauss, M., & Stamm, C. (2014). Critical
source areas for herbicides can change location depending on rain
events. Agriculture, Ecosystems & Environment, 192, 85–94.
doi:10.1016/j.agee.2014.04.003

Escorihuela, M. J., & Quintana‐Seguí, P. (2016). Comparison of remote
sensing and simulated soil moisture datasets in Mediterranean land-
scapes. Remote Sensing of Environment, 180, 99–114. doi:10.1016/j.
rse.2016.02.046

Evrard, O., Cerdan, O., van Wesemael, B., Chauvet, M., Le Bissonnais, Y.,
Raclot, D., … Bielders, C. (2009). Reliability of an expert‐based runoff
and erosion model: Application of STREAM to different environments.
Catena, 78, 129–141. doi:10.1016/j.catena.2009.03.009

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., …
Tarboton, D. (2016). An overview of current applications, challenges,
and future trends in distributed process‐based models in hydrology.
Journal of Hydrology, 537, 45–60. doi:10.1016/j.jhydrol.2016.03.026

Fienen,M. N.,Muffels, C. T., &Hunt, R. J. (2009). On Constraining Pilot Point
Calibration with Regularization in PEST. Ground Water, 47, 835–844.
doi:10.1111/j.1745-6584.2009.00579.x

http://realise.unistra.fr
https://doi.org/10.1002/Hyp.8196
https://doi.org/10.1007/s11269-010-9584-1
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1002/esp.3793
https://doi.org/10.1016/j.soilbio.2009.01.006
https://doi.org/10.1002/hyp.5948
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001081
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001081
https://doi.org/10.1029/WR020i006p00682
https://doi.org/10.1016/j.jhydrol.2011.05.003
https://doi.org/10.1016/j.geomorph.2015.04.019
https://doi.org/10.1080/13658810601064884
http://www.pesthomepage.org/%20getfiles.php?file=pest_settings.pdf
http://www.pesthomepage.org/%20getfiles.php?file=pest_settings.pdf
https://doi.org/10.1016/j.agee.2014.04.003
https://doi.org/10.1016/j.rse.2016.02.046
https://doi.org/10.1016/j.rse.2016.02.046
https://doi.org/10.1016/j.catena.2009.03.009
https://doi.org/10.1016/j.jhydrol.2016.03.026
https://doi.org/10.1111/j.1745-6584.2009.00579.x


1422 LEFRANCQ ET AL.
FpMasters, B., Rohde, K., Gurner, N., & Reid, D. (2013). Reducing the risk of
herbicide runoff in sugarcane farming through controlled traffic and
early‐banded application. Agriculture, Ecosystems & Environment, 180,
29–39. doi:10.1016/j.agee.2012.02.001

Freeze, R. A., & Harlan, R. L. (1969). Blueprint for a physically‐based, digi-
tally‐simulated hydrologic response model. Journal of Hydrology, 9,
237–258. doi:10.1016/0022-1694(69)90020-1

Garcia‐Ruiz, J. M., Nadal‐Romero, E., Lana‐Renault, N., & Begueria, S. (2013).
Erosion in Mediterranean landscapes: Changes and future challenges.
Geomorphology, 198, 20–36. doi:10.1016/j.geomorph.2013.05.023

Gascuel‐Odoux, C., Aurousseau, P., Cordier, M. O., Durand, P., Garcia, F.,
Masson, V., … Trepos, R. (2009). A decision‐oriented model to evaluate
the effect of land use and agricultural management on herbicide con-
tamination in stream water. Environmental Modelling and Software, 24,
1433–1446. doi:10.1016/j.envsoft.2009.06.002

Gascuel‐Odoux, C., Aurousseau, P., Doray, T., Squividant, H., Macary, F.,
Uny, D., & Grimaldi, C. (2011). Incorporating landscape features to
obtain an object‐oriented landscape drainage network representing
the connectivity of surface flow pathways over rural catchments.
Hydrological Processes, 25, 3625–3636. doi:10.1002/hyp.8089

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposi-
tion of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. Journal of Hydrology,
377, 80–91. doi:10.1016/j.jhydrol.2009.08.003

Harel, M. A., & Mouche, E. (2014). Is the connectivity function a good indi-
cator of soil infiltrability distribution and runoff flow dimension? Earth
Surface Processes and Landforms, 39, 1514–1525. doi:10.1002/
esp.3604

Hasenbein, S., Lawler, S. P., Geist, J., & Connon, R. E. (2016). A Long‐Term
Assessment of Pesticide Mixture Effects on Aquatic Invertebrate Com-
munities. Environmental Toxicology and Chemistry, 35, 218–232.
doi:10.1002/etc.3187

Heitz C, Flinois G, & Glatron S. (2012). Protection against muddy floods:
Perception for local actors in Alsace (France) of a protection
measure (fascines). International Disaster Risk Conference, Davos,
Suisse, 26–30 Août 2012.

Her, Y., Chaubey, I., Frankenberger, J., & Smith, D. (2016). Effect of conser-
vation practices implemented by USDA programs at field and
watershed scales. Journal of Soil and Water Conservation, 71, 249–266.
doi:10.2489/jswc.71.3.249

Hessel, R., & Jetten, V. (2007). Suitability of transport equations in model-
ling soil erosion for a small Loess Plateau catchment. Engineering
Geology, 91, 56–71. doi:10.1016/j.enggeo.2006.12.013

Hessel, R.,Messing, I., Chen, L. D., Ritsema, C., & Stolte, J. (2003). Soil erosion
simulations of land use scenarios for a small Loess Plateau catchment.
Catena, 54, 289–302. doi:10.1016/S0341-8162(03)00070-5

Hessel, R., van den Bosch, R., & Vigiak, O. (2006). Evaluation of the LISEM
soil erosion model in two catchments in the East African Highlands.
Earth Surface Processes and Landforms, 31, 469–486. doi:10.1002/
Esp.1280

Hu, W., She, D. L., Shao, M. A., Chun, K. P., & Si, B. C. (2015). Effects of ini-
tial soil water content and saturated hydraulic conductivity variability
on small watershed runoff simulation using LISEM. Hydrological Sciences
Journal, 60, 1137–1154. doi:10.1080/02626667.2014.903332

Hunt, R. (1982). Plant growth curves (Vol. 248). London: Edward Arnold.

Jin, X., Zhang, L., Gu, J., Zhao, C., Tian, J., & He, C. (2015). Modelling the
impacts of spatial heterogeneity in the soil hydraulic properties on
hydrological process in the upper reach of the Heihe River in the Qilian
Mountains, Northwest China. Hydrological Processes, 29, 3318–3327.

Kalantari, Z., Lyon, S. W., Jansson, P. E., Stolte, J., French, H. K., Folkeson, L.,
& Sassner, M. (2015). Modeller subjectivity and calibration impacts on
hydrological model applications: An event‐based comparison for a
road‐adjacent catchment in south‐east Norway. Science of the Total
Environment, 502, 315–329. doi:10.1016/j.scitotenv.2014.09.030

Kamphorst, E. C., Jetten, V., Guerif, J., Pitkanen, J., Iversen, B. V.,
Douglas, J. T., & Paz, A. (2000). Predicting depressional storage from
soil surface roughness. Soil Science Society of America Journal, 64,
1749–1758.

Kim, S. M., Benham, B. L., Brannan, K. M., Zeckoski, R. W., & Doherty, J.
(2007). Comparison of hydrologic calibration of HSPF using automatic
and manual methods. Water Resources Research, 43, W01402.
doi:10.1029/2006WR004883

Kirchner, J.W. (2006). Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrol-
ogy.Water Resources Research, 42. doi:10.1029/2005wr004362

Kohler MA, & Linsley RK. (1951). Predicting the runoff from storm rainfall.
US weather Bureau Res.

Kutílek, M., & Nielsen, D. R. (1994). Soil hydrology. Cremlingen‐Destedt,
Germany: Catena Verlag.

Kværnø, S. H., & Stolte, J. (2012). Effects of soil physical data sources on
discharge and soil loss simulated by the LISEM model. Catena, 97,
137–149. doi:10.1016/j.catena.2012.05.001

Lamandé, M., Hallaire, V., Curmi, P., Pérès, G., & Cluzeau, D. (2003).
Changes of pore morphology, infiltration and earthworm community
in a loamy soil under different agricultural managements. Catena, 54,
637–649. doi:10.1016/S0341-8162(03)00114-0

Lee, G., Tachikawa, Y., Sayama, T., & Takara, K. (2012). Catchment
responses to plausible parameters and input data under equifinality
in distributed rainfall‐runoff modeling. Hydrological Processes, 26,
893–906. doi:10.1002/Hyp.8303

Levavasseur, F., Bailly, J. S., Lagacherie, P., Colin, F., & Rabotin, M. (2012).
Simulating the effects of spatial configurations of agricultural ditch
drainage networks on surface runoff from agricultural catchments.
Hydrological Processes, 26, 3393–3404. doi:10.1002/hyp.8422

Li, Z., & Zhang, J. T. (2001). Calculation of field Manning's roughness coef-
ficient. Agricultural Water Management, 49, 153–161. doi:10.1016/
S0378-3774(00)00139-6

Liu, G. B., Xu, M. X., & Ritsema, C. (2003). A study of soil surface character-
istics in a small watershed in the hilly, gullied area on the Chinese Loess
Plateau. Catena, 54, 31–44. doi:10.1016/S0341-8162(03)00055-9

Loague, K., Heppner, C. S., Ebel, B. A., & VanderKwaak, J. E. (2010). The
quixotic search for a comprehensive understandong of hydrologic
response at the surface: Horton, Dunne, Dunton, and the role of con-
cept‐development simulation. Hydrological Processes, 24, 2499–2505.

Madsen, H.B., Jensen, C.R., & Boysen, T. (1986). A comparison of the ther-
mocouple psychrometer and the pressure plate methods for
determination of soil‐water characteristic curves. Journal of Soil Science,
37, 357–362. doi: 10.1111/j.1365‐2389.1986.tb00368.x

Master, B., Rohde, K., Gurner, N., & Reid, D. (2013). Reducing the risk of
herbicide runoff in sugarcane farming through controlled traffic and
early‐banded application. Agricuture, Ecosystems and Environment, 180,
29–39. doi:10.1016/j.agee.2012.02.001

Mbonimpa, E. G., Gautam, S., Lai, L., Kumar, S., Bonta, J. V., Wang, X., &
Rafique, R. (2015). Combined PEST and Trial–Error approach to
improve APEX calibration. Computers and Electronics in Agriculture,
114, 296–303. doi:10.1016/j.compag.2015.04.014

McCuen, R.H., 2004. Hydrologic analysis and design. Prentice Hall, Upper
Saddle River, New Jersey, ISBN‐0‐13‐142424‐6.

Milella, P., Bisantino, T., Gentile, F., Iacobellis, V., & Liuzzi, G. T. (2012).
Diagnostic analysis of distributed input and parameter datasets in
Mediterranean basin streamflow modeling. Journal of Hydrology, 472,
262–276. doi:10.1016/j.jhydrol.2012.09.039

Mubarak, I., Mailhol, J. C., Angulo‐Jaramillo, R., Ruelle, P., Boivin, P., &
Khaledian, M. (2009). Temporal variability in soil hydraulic properties
under drip irrigation. Geoderma, 150, 158–165. doi:10.1016/j.
geoderma.2009.01.022

Muma, M., Gumiere, S. J., & Rousseau, A. N. (2014). Comprehensive analy-
sis of the CATHY model sensitivity to soil hydrodynamic properties of a
tile‐drained, agricultural micro‐watershed. Hydrological Sciences Journal,
59, 1606–1623. doi:10.1080/02626667.2013.843778

https://doi.org/10.1016/j.agee.2012.02.001
https://doi.org/10.1016/0022-1694(69)90020-1
https://doi.org/10.1016/j.geomorph.2013.05.023
https://doi.org/10.1016/j.envsoft.2009.06.002
https://doi.org/10.1002/hyp.8089
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1002/esp.3604
https://doi.org/10.1002/esp.3604
https://doi.org/10.1002/etc.3187
https://doi.org/10.2489/jswc.71.3.249
https://doi.org/10.1016/j.enggeo.2006.12.013
https://doi.org/10.1016/S0341-8162(03)00070-5
https://doi.org/10.1002/Esp.1280
https://doi.org/10.1002/Esp.1280
https://doi.org/10.1080/02626667.2014.903332
https://doi.org/10.1016/j.scitotenv.2014.09.030
https://doi.org/10.1029/2006WR004883
https://doi.org/10.1029/2005wr004362
https://doi.org/10.1016/j.catena.2012.05.001
https://doi.org/10.1016/S0341-8162(03)00114-0
https://doi.org/10.1002/Hyp.8303
https://doi.org/10.1002/hyp.8422
https://doi.org/10.1016/S0378-3774(00)00139-6
https://doi.org/10.1016/S0378-3774(00)00139-6
https://doi.org/10.1016/S0341-8162(03)00055-9
https://doi.org/10.1111/j.1365-2389.1986.tb00368.x
https://doi.org/10.1016/j.agee.2012.02.001
https://doi.org/10.1016/j.compag.2015.04.014
https://doi.org/10.1016/j.jhydrol.2012.09.039
https://doi.org/10.1016/j.geoderma.2009.01.022
https://doi.org/10.1016/j.geoderma.2009.01.022
https://doi.org/10.1080/02626667.2013.843778


LEFRANCQ ET AL. 1423
O'Hare, M. T., McGahey, C., Bissett, N., Cailes, C., Henville, P., & Scarlett, P.
(2010). Variability in roughness measurements for vegetated rivers near
base flow, in England and Scotland. Journal of Hydrology, 385, 361–370.
doi:10.1016/j.jhydrol.2010.02.036

Orchard, C. M., Lorentz, S. A., Jewitt, G. P. W., & Chaplot, V. A. M. (2013).
Spatial and temporal variations of overland flow during rainfall events
and in relation to catchment conditions. Hydrological Processes, 27,
2325–2338. doi:10.1002/hyp.9217

Outram, F. N., Cooper, R. J., Sunnenberg, G., Hiscock, K. M., & Lovett, A. A.
(2016). Antecedent conditions, hydrological connectivity and anthropo-
genic inputs: Factors affecting nitrate and phosphorus transfers to
agricultural headwater streams. Science of the Total Environment, 545,
184–199. doi:10.1016/j.scitotenv.2015.12.025

Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically
based soil erosion and sediment yield models revisited. Catena, 147,
595–620. doi:10.1016/j.catena.2016.08.002

Pare, N., Andrieux, P., Louchart, X., Biarnes, A., & Voltz, M. (2011).
Predicting the spatio‐temporal dynamic of soil surface characteristics
after tillage. Soil & Tillage Research, 114, 135–145. doi:10.1016/j.
still.2011.04.003

Payraudeau, S., & Grégoire, C. (2012). Modelling pesticides transfer to sur-
face water at the catchment scale: a multi‐criteria analysis. Agronomy
for Sustainable Development, 32, 479–500. doi:10.1007/s13593-011-
0023-3

Phillips, J. D. (1989). Predicting minimum achievable soil loss in developing‐
countries. Applied Geography, 9, 219–236. doi:10.1016/0143-6228(89)
90025-8

Polo, J., Hornero, G., Duijneveld, C., Garcia, A., & Casas, O. (2015). Design
of a low‐cost wireless sensor network with UAV mobile node for
agricultural applications. Computers and Electronics in Agriculture, 119,
19–32.

Potter, K. N. (1990). Soil properties effect on random roughness decay by
rainfall. Transactions of the Asae, 33, 1889–1892.

R Development Core Team (2008). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria ISBN 3‐900051‐07‐0, URL http://www.R‐project.org.

Rémy, J. C., & Marin‐Laflèche, A. (1974). L'analyse de terre : réalisation d'un
programme d'interprétation automatique. Annales Agronomiques, 25(4),
607–632.

Riley, H. (1996). Estimation of physical properties of cultivated soils in
southeast Norway from readily available soil information Norwegian.
Journal of Agricultural Science, 25, 1–51.

Risse, L. M., Nearing, M. A., & Zhang, X. C. (1995). Variability in Green‐Ampt
effective hydraulic conductivity under fallow conditions. Journal of
Hydrology, 169, 1–24. doi:10.1016/0022-1694(94)02676-3

Rodriguez‐Caballero, E., Canton, Y., & Jetten, V. (2015). Biological soil crust
effects must be included to accurately model infiltration and erosion in
drylands: An example from Tabernas Badlands. Geomorphology, 241,
331–342. doi:10.1016/j.geomorph.2015.03.042

Saltelli, A., & Annoni, P. (2010). How to avoid a perfunctory sensitivity anal-
ysis. Environmental Modelling and Software, 25, 1508–1517.
doi:10.1016/j.envsoft.2010.04.012

Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by
texture and organic matter for hydrologic solutions. Soil Science Society
of America Journal, 70, 1569–1578. doi:10.2136/sssaj2005.0117
Sheikh, V., Visser, S., & Stroosnijder, L. (2009). A simple model to predict
soil moisture: Bridging Event and Continuous Hydrological (BEACH)
modelling. Environmental Modelling and Software, 24, 542–556.
doi:10.1016/j.envsoft.2008.10.005

Sheikh, V., van Loon, E., Hessel, R., & Jetten, V. (2010). Sensitivity of LISEMpre-
dicted catchment discharge to initial soil moisture content of soil profile.
Journal of Hydrology, 393, 174–185. doi:10.1016/j.jhydrol.2010.08.016

Shi, Y., Zhao, X., Gao, X., Zhang, S., & Wu, P. (2016). The effects of
long‐term fertiliser applications on soil organic carbon and hydraulic
properties of a loess soil in China. Land Degradation and Development,
27, 60–67. doi:10.1002/ldr.2391

Smith, R. E., & Parlange, J.‐Y. (1978). A parameter‐efficient hydrologic infil-
tration model. Water Resources Research, 14, 533–538.

Starkloff, T., & Stolte, J. (2014). Applied comparison of the erosion risk
models EROSION 3D and LISEM for a small catchment in Norway.
Catena, 118, 154–167. doi:10.1016/j.catena.2014.02.004

Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P.‐E., Dunlop, P.,
& Murphy, P. N. C. (2017). Defining optimal DEM resolutions and point
densities for modelling hydrologically sensitive areas in agricultural
catchments dominated by microtopography. International Journal of
Applied Earth Observation and Geoinformation, 54, 38–52.
doi:10.1016/j.jag.2016.08.012

Tramblay, Y., Bouvier, C., Martin, C., Didon‐Lescot, J. F., Todorovik, D., &
Domergue, J. M. (2010). Assessment of initial soil moisture conditions
for event‐based rainfall‐runoff modelling. Journal of Hydrology, 387,
176–187. doi:10.1016/j.jhydrol.2010.04.006

USDA. (2003). Revisited Universal Soil Loss Equation. Version 2. RUSLE2.

Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W., & Diels,
J. (2013). Estimating the parameters of the Green‐Ampt infiltration
equation from rainfall simulation data: Why simpler is better. Journal
of Hydrology, 476, 332–344. doi:10.1016/j.jhydrol.2012.10.051

Wang, Y., & Brubaker, K. (2014). Implementing a nonlinear groundwater
module in the soil and water assessment tool (SWAT). Hydrological Pro-
cesses, 28, 3388–3403. doi:10.1002/hyp.9893

Yin, Y. X., Jiang, S. Y., Pers, C., Yang, X. Y., Liu, Q., Yuan, J., … Zheng, Z.
(2016). Assessment of the spatial and temporal variations of water
quality for agricultural lands with crop rotation in China by using a
HYPE Model. International Journal Environmental Research Pub He, 13.
doi:10.3390/ijerph13030336

Zeng, C., Wang, Q. J., Zhang, F., & Zhang, J. (2013). Temporal
changes in soil hydraulic conductivity with different soil types
and irrigation methods. Geoderma, 193, 290–299. doi:10.1016/j.
geoderma.2012.10.013

Zhang, D., Madsen, H., Ridler, M. E., Refsgaard, J. C., & Jensen, K. H. (2015).
Impact of uncertainty description on assimilating hydraulic head in the
MIKE SHE distributed hydrological model, Adv. Water Resources, 86,
400–413. doi:10.1016/j.advwatres.2015.07.018
How to cite this article: Lefrancq M, Van Dijk P, Jetten V,

Schwob M, Payraudeau S. Improving runoff prediction using

agronomical information in a cropped, loess covered catchment,

Hydrological Processes. 2017;31:1408–1423. https://doi.org/

10.1002/hyp.11115

https://doi.org/10.1016/j.jhydrol.2010.02.036
https://doi.org/10.1002/hyp.9217
https://doi.org/10.1016/j.scitotenv.2015.12.025
https://doi.org/10.1016/j.catena.2016.08.002
https://doi.org/10.1016/j.still.2011.04.003
https://doi.org/10.1016/j.still.2011.04.003
https://doi.org/10.1007/s13593-011-0023-3
https://doi.org/10.1007/s13593-011-0023-3
https://doi.org/10.1016/0143-6228(89)90025-8
https://doi.org/10.1016/0143-6228(89)90025-8
http://www.R-project.org
https://doi.org/10.1016/0022-1694(94)02676-3
https://doi.org/10.1016/j.geomorph.2015.03.042
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1016/j.envsoft.2008.10.005
https://doi.org/10.1016/j.jhydrol.2010.08.016
https://doi.org/10.1002/ldr.2391
https://doi.org/10.1016/j.catena.2014.02.004
https://doi.org/10.1016/j.jag.2016.08.012
https://doi.org/10.1016/j.jhydrol.2010.04.006
https://doi.org/10.1016/j.jhydrol.2012.10.051
https://doi.org/10.1002/hyp.9893
https://doi.org/10.3390/ijerph13030336
https://doi.org/10.1016/j.geoderma.2012.10.013
https://doi.org/10.1016/j.geoderma.2012.10.013
https://doi.org/10.1016/j.advwatres.2015.07.018
https://doi.org/10.1002/hyp.11115
https://doi.org/10.1002/hyp.11115

