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Abstract

The nonlinear nature of bottom friction in shallow flow coimgples its analysis, particularly in idealised models. tietal
flows, Lorentz’ linearisation has been widely applied, gsém energy criterion to specify the friction coefficient. rele
we propose an extension of this approach to storm surgebneto a friction coefficient that may gradually vary over a
storm event. The derivation is provided along with first fesfor a single channel.

1. Introduction

Bottom friction is important in shallow water flows, such mes and storm surges in the marine environment. However,
the nonlinear (quadratic) dependency of the bottom stresfow speed complicates its implementation, analysis and
interpretation. In his pioneering channel network modeltfie impact of the closure of the Zuiderzee (Fig.1a), Larent
introduced a linearised stress parameterisation, withefficentr specified on the basis of equivalence of dissipated
energy over a tidal period (Lorentz, 1922; Staatscommi&siderzee, 1926). This coefficient is (proportional to) a
velocity scale, which in the tidal context has the clear rimtetation of being the tidal flow velocity amplitude of a
single constituent. An iterative procedure can be appleénsure that the velocity scale used to specifiyatches the
velocity scale in the model results (Reef et al., 2016). htrdinearisation has been verified experimentally (Tetral.,
2005), and the effect of a dominant tidal constituent on ttetién experienced by weaker components has been treated
analytically (Inoue & Garrett, 2007).

For storm surges, however, such a linearisation approatdsssstraightforward as the velocity scale is harder to
interpret. Restricting to a time-invariant approach andinéng the quadratic formulation, Lorentz algebraicalhalysed
the equilibrium response to a representative value of tmel wiress (Staatscommissie Zuiderzee, 1926). Clearly, thi
approach does not capture the time-varying nature of fgrgiind stress, atmospheric pressure) and response (surge)

Here we propose a linearisation of the bottom strg&svolving a linear friction coefficient that adjusts to tkerporal
development of a storm event. Assuming one-dimensionahekgeraged flow, this can be summarised as
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with cq4 the dimensionless drag coefficient of the original quadraéirameterisation andt) the time-dependent linear
friction coefficient (in m s1). Further,p is the water density. The proposed linearisation enablés sisnplify calcula-
tions while still capturing the (nonlinear) variation intbmm stress over the various stages of a storm event (Figldb)
particular,r (t) will be large whenever flow is strong and small when it is weak.

To specify the linear friction coefficient, we adopt an enecgterion analogous to that of Lorentz, but now in an
instantaneous rather than tide-averaged sense. Spéyifi¢gl must be such that the instantaneous energy dissipation by
bottom friction, i.e. thepower t,u, averaged over the channel is identical for both paransations in Eq.(1):
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Figure 1. (a) Example simulation with network model applied by Lorentz@tadtscommissie Zuiderzee (1926), as reproduced by
Reef et al. (2016). Then, for an artificial storm event, as a functicima# (solid line): (b) wind stressy(t), (c) channel-averaged
velocity scale, defined d$(t) = %fé |u|dx, (d) time-varying friction coefficient(t). The dashed lines show an example with constant
friction rq, for the same wind event.

Here we have considered depth-averaged figt) in a channel ranging from= 0 tox = ¢. Two remarks are in order:

¢ Just like the tidal case, specifyimt) requires knowledge of the flow solutiarfx,t), which, in turn, depends on
r(t) again. To deal with this cyclic dependency, the iterativecpdure referred to above should be extended, now
converging to a time-varying friction coefficient (rathbah a scalar).

e The friction coefficient (t) depends om but not onx. It is thus meant to represent the channel as a whole, which
remains an important simplification compared to the origipedratic parameterisation in Eq.(1).

In the remainder of this extended abstract, we present atiséd one-dimensional storm surge modgl.{) along with
its solution procedure@.2), analyse and discuss some first resg83, before summarising the conclusiog)

2. Methods

2.1 Model formulation
Consider a one-dimensional basin of lengthnd uniform depthh with closed boundaries, subject to time-dependent
wind stress. The free surface elevation is denoted (xyt), the depth-averaged flow velocity loyx,t). Assuming that
|{| < h, conservation of mass and momentum is expressed in liegdiésm according to
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where also the boundary conditions are shown. In Eq.(3), ave incorporated the linear stress parameterisation with
coefficientr (t) already presented in Eq.(1). The wind stregé) serves as the forcing of the system, assumed spatially
uniform yet time-dependent (Fig.1b). Batft) andt,(t) are expressed as a discrete Fourier series according to

M
= > Tmexpliont),  wm= 2mn (4)
m=—M

- )
Trecur

Tw(t)

M
r(t) = ZMRmexp(imnt),

with truncation numbeM and complex coefficient®,, and Ty, (satisfyingR_m = Rym andT_, = Ty because andt,, are
real-valued, with an overbar denoting complex conjugatiéuarthermore, we have introduced the angular frequesgy
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and fictitious recurrence peridekcu, over which the storm event recurs in our model (due to therelis Fourier series).
Initial conditions can be safely ignored by choosihg sufficiently large (e.g., in the order of 10 days) compareithéo
frictional decay time scal@&. (typically less than a day). The dynamic equilibrium salatobtained will then display
still water conditions at the beginning of the storm everié@, 2015; Reef et al., 2016).

The above model equations and boundary conditions areempplted with the energy criterion in Eq.(2), which —
through the flow field — specifieqt) as a function of time. This dependencyr¢f) on the solution is in fact the only
nonlinear element in an otherwise linear model.

2.2 Solution procedure
Our solution method consists of a calculation{gk,t) andu(x,t), nested in an iterative procedure to fir(d).

First, the model is expressed in terms of the free surfacad® amplitudeZy,(x) only. Then, analogous to Eq.(4), the
free surface elevation is written as a discrete Fourieesemtroducing complex Fourier coefficieig(x) as a function
of space. This gives the following coupled Helmholtz-typdoundary value problem fafm(X):

g zm=0,  GHO)="ghO = (orm=0x1 M)  (5)
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The convolution sum between square brackets reflects th@inglamong Fourier modes due to the time-dependency of
r(t). Assuming giverRp-values, Eq.(5) is analytically solved for the eigenvestmirthe correspondin®M-+1) x (2M+
1)-matrix. This provideZm(x) and, hence{ (x,t). We finally use the continuity equation in Eq.(3) to fimgk,t), as well.

The iterative procedure starts with a constant frictionfficient, sayr(t) = ro, as first guess. For thigt), we
determine the solutiod (x,t) andu(x,t) as outlined above. With the aid of a Fast Fourier Transform(& is then
applied to update thBn-values in Eq.(4), used as input for the next iteration. Tn@cedure is repeated until thg,-
values and consequently als@) have converged, by which the energy criterion in Eq.(2) deed satisfied.

3. Results and discussion

First model results for a synthetic storm event (Fig.1b) destrate that our new model approach works, displaying
convergence to a time-dependent friction coefficient (Y. which indeed follows the evolution of the channel-aged
flow velocity (Fig.1c). These results have been obtainel withannel of length= 100 km and undisturbed water depth
h =4 m, subject to a storm event with a maximum wind stress of 1R, with Tevent= 1 day and a recurrence period of
Trecur= 8 days, usindVl = 96. The drag coefficient for bottom friction has been set atlaacq = 1x10-2. The sloshing
observed in this new simulation with time-varyin@) (solid line in Fig.1cd), disappears in the example with astant
friction coefficientry (dashed line), which overestimates bottom friction whew floweak.

Importantly, our new approach takes away the possiblerarlsiess associated with choosing such a constant value
ro. Finally, we remark that our new method can also be applieddode tides, e.g. for tide-surge interactions or for a
tidal signal with several constituents.

4, Conclusions

We have explored a novel linearisation of the bottom frictiormulation, appropriate for idealised storm surge medel
The associated friction coefficient), which adjusts to the temporal development of storm evéwitsys from an energy
criterion that extends Lorentz’ (1922) approach. Firstitssobtained for an idealised single channel model in tvhit)

is determined iteratively, show the expected qualitatigeadviour. Ongoing research focuses on quantitative $aties,
the role of tides as well as the extension to a channel netveqmlesenting the Wadden Sea.
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