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Abstract

The nonlinear nature of bottom friction in shallow flow complicates its analysis, particularly in idealised models. Fortidal
flows, Lorentz’ linearisation has been widely applied, using an energy criterion to specify the friction coefficient. Here
we propose an extension of this approach to storm surges, leading to a friction coefficient that may gradually vary over a
storm event. The derivation is provided along with first results for a single channel.

1. Introduction

Bottom friction is important in shallow water flows, such as tides and storm surges in the marine environment. However,
the nonlinear (quadratic) dependency of the bottom stress on flow speed complicates its implementation, analysis and
interpretation. In his pioneering channel network model for the impact of the closure of the Zuiderzee (Fig.1a), Lorentz
introduced a linearised stress parameterisation, with a coefficient r specified on the basis of equivalence of dissipated
energy over a tidal period (Lorentz, 1922; StaatscommissieZuiderzee, 1926). This coefficient is (proportional to) a
velocity scale, which in the tidal context has the clear interpretation of being the tidal flow velocity amplitude of a
single constituent. An iterative procedure can be applied to ensure that the velocity scale used to specifyr matches the
velocity scale in the model results (Reef et al., 2016). Lorentz’ linearisation has been verified experimentally (Terraet al.,
2005), and the effect of a dominant tidal constituent on the friction experienced by weaker components has been treated
analytically (Inoue & Garrett, 2007).

For storm surges, however, such a linearisation approach isless straightforward as the velocity scale is harder to
interpret. Restricting to a time-invariant approach and retaining the quadratic formulation, Lorentz algebraicallyanalysed
the equilibrium response to a representative value of the wind stress (Staatscommissie Zuiderzee, 1926). Clearly, this
approach does not capture the time-varying nature of forcing (wind stress, atmospheric pressure) and response (surge).

Here we propose a linearisation of the bottom stressτb involving a linear friction coefficient that adjusts to the temporal
development of a storm event. Assuming one-dimensional depth-averaged flowu, this can be summarised as

τb

ρ
= cd|u|u

︸ ︷︷ ︸

quadratic

≈ r(t)u
︸︷︷︸

linearised

, (1)

with cd the dimensionless drag coefficient of the original quadratic parameterisation andr(t) the time-dependent linear
friction coefficient (in m s−1). Further,ρ is the water density. The proposed linearisation enables usto simplify calcula-
tions while still capturing the (nonlinear) variation in bottom stress over the various stages of a storm event (Fig.1b). In
particular,r(t) will be large whenever flow is strong and small when it is weak.

To specify the linear friction coefficient, we adopt an energy criterion analogous to that of Lorentz, but now in an
instantaneous rather than tide-averaged sense. Specifically, r(t) must be such that the instantaneous energy dissipation by
bottom friction, i.e. thepower τbu, averaged over the channel is identical for both parameterisations in Eq.(1):

1
ℓ

∫ ℓ

0
cd|u|u

2dx =
1
ℓ

∫ ℓ

0
r(t)u2dx ⇒ r(t) =

cd
∫ ℓ

0 |u|u
2dx

∫ ℓ
0 u2dx

. (2)
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Figure 1. (a) Example simulation with network model applied by Lorentz andStaatscommissie Zuiderzee (1926), as reproduced by
Reef et al. (2016). Then, for an artificial storm event, as a function oftime (solid line): (b) wind stressτw(t), (c) channel-averaged
velocity scale, defined asU(t) = 1

ℓ

∫ ℓ
0 |u|dx, (d) time-varying friction coefficientr(t). The dashed lines show an example with constant

friction r0, for the same wind event.

Here we have considered depth-averaged flowu(x, t) in a channel ranging fromx = 0 to x = ℓ. Two remarks are in order:

• Just like the tidal case, specifyingr(t) requires knowledge of the flow solutionu(x, t), which, in turn, depends on
r(t) again. To deal with this cyclic dependency, the iterative procedure referred to above should be extended, now
converging to a time-varying friction coefficient (rather than a scalar).

• The friction coefficientr(t) depends ont but not onx. It is thus meant to represent the channel as a whole, which
remains an important simplification compared to the original quadratic parameterisation in Eq.(1).

In the remainder of this extended abstract, we present an idealised one-dimensional storm surge model (§2.1) along with
its solution procedure (§2.2), analyse and discuss some first results (§3), before summarising the conclusions (§4).

2. Methods

2.1 Model formulation
Consider a one-dimensional basin of lengthℓ and uniform depthh with closed boundaries, subject to time-dependent
wind stress. The free surface elevation is denoted byζ (x, t), the depth-averaged flow velocity byu(x, t). Assuming that
|ζ | ≪ h, conservation of mass and momentum is expressed in linearised form according to

∂ζ
∂ t

+h
∂u
∂x

= 0,
∂u
∂ t

+
r(t)u

h
=−g

∂ζ
∂x

+
τw(t)
ρh

, u(0, t) = 0, u(ℓ, t) = 0, (3)

where also the boundary conditions are shown. In Eq.(3), we have incorporated the linear stress parameterisation with
coefficientr(t) already presented in Eq.(1). The wind stressτw(t) serves as the forcing of the system, assumed spatially
uniform yet time-dependent (Fig.1b). Bothr(t) andτw(t) are expressed as a discrete Fourier series according to

r(t) =
M

∑
m=−M

Rm exp(iωmt),
τw(t)

ρ
=

M

∑
m=−M

Tm exp(iωmt), ωm =
2mπ
Trecur

, (4)

with truncation numberM and complex coefficientsRm andTm (satisfyingR−m = Rm andT−m = Tm becauser andτw are
real-valued, with an overbar denoting complex conjugation). Furthermore, we have introduced the angular frequencyωm
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and fictitious recurrence periodTrecur, over which the storm event recurs in our model (due to the discrete Fourier series).
Initial conditions can be safely ignored by choosingTrecur sufficiently large (e.g., in the order of 10 days) compared tothe
frictional decay time scaleTfric (typically less than a day). The dynamic equilibrium solution obtained will then display
still water conditions at the beginning of the storm event (Chen, 2015; Reef et al., 2016).

The above model equations and boundary conditions are supplemented with the energy criterion in Eq.(2), which —
through the flow field — specifiesr(t) as a function of time. This dependency ofr(t) on the solution is in fact the only
nonlinear element in an otherwise linear model.

2.2 Solution procedure
Our solution method consists of a calculation ofζ (x, t) andu(x, t), nested in an iterative procedure to findr(t).

First, the model is expressed in terms of the free surface elevation amplitudeZm(x) only. Then, analogous to Eq.(4), the
free surface elevation is written as a discrete Fourier series, introducing complex Fourier coefficientsZm(x) as a function
of space. This gives the following coupled Helmholtz-type of boundary value problem forZm(x):

d2Zm

dx2 −
1

gh2

[

∑
n

Rm−niωnZn

]

+
ω2

m

gh
Zm = 0,

dZm

dx
(0) =

dZm

dx
(ℓ) =

Tm

gh
, (for m = 0,±1, · · · ,±M). (5)

The convolution sum between square brackets reflects the coupling among Fourier modes due to the time-dependency of
r(t). Assuming givenRm-values, Eq.(5) is analytically solved for the eigenvectors of the corresponding(2M+1)×(2M+
1)-matrix. This providesZm(x) and, hence,ζ (x, t). We finally use the continuity equation in Eq.(3) to findu(x, t), as well.

The iterative procedure starts with a constant friction coefficient, sayr(t) = r0, as first guess. For thisr(t), we
determine the solutionζ (x, t) and u(x, t) as outlined above. With the aid of a Fast Fourier Transform, Eq.(2) is then
applied to update theRm-values in Eq.(4), used as input for the next iteration. Thisprocedure is repeated until theRm-
values and consequently alsor(t) have converged, by which the energy criterion in Eq.(2) is indeed satisfied.

3. Results and discussion

First model results for a synthetic storm event (Fig.1b) demonstrate that our new model approach works, displaying
convergence to a time-dependent friction coefficient (Fig.1d), which indeed follows the evolution of the channel-averaged
flow velocity (Fig.1c). These results have been obtained with a channel of lengthℓ= 100 km and undisturbed water depth
h = 4 m, subject to a storm event with a maximum wind stress of 1 N m−2, with Tevent= 1 day and a recurrence period of
Trecur= 8 days, usingM = 96. The drag coefficient for bottom friction has been set at a valuecd = 1×10−2. The sloshing
observed in this new simulation with time-varyingr(t) (solid line in Fig.1cd), disappears in the example with a constant
friction coefficientr0 (dashed line), which overestimates bottom friction when flow is weak.

Importantly, our new approach takes away the possible arbitrariness associated with choosing such a constant value
r0. Finally, we remark that our new method can also be applied toinclude tides, e.g. for tide-surge interactions or for a
tidal signal with several constituents.

4. Conclusions

We have explored a novel linearisation of the bottom friction formulation, appropriate for idealised storm surge models.
The associated friction coefficientr(t), which adjusts to the temporal development of storm events,follows from an energy
criterion that extends Lorentz’ (1922) approach. First results, obtained for an idealised single channel model in which r(t)
is determined iteratively, show the expected qualitative behaviour. Ongoing research focuses on quantitative sensitivities,
the role of tides as well as the extension to a channel networkrepresenting the Wadden Sea.
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