
This article was downloaded by: [130.89.46.45] On: 01 March 2018, At: 06:32
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

The Delivery Dispatching Problem with Time Windows for
Urban Consolidation Centers
W. J. A. van Heeswijk, M. R. K. Mes, J. M. J. Schutten

To cite this article:
W. J. A. van Heeswijk, M. R. K. Mes, J. M. J. Schutten (2017) The Delivery Dispatching Problem with Time Windows for Urban
Consolidation Centers. Transportation Science

Published online in Articles in Advance 28 Aug 2017

. https://doi.org/10.1287/trsc.2017.0773

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2017, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2017.0773
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

TRANSPORTATION SCIENCE
Articles in Advance, pp. 1–19

http://pubsonline.informs.org/journal/trsc/ ISSN 0041-1655 (print), ISSN 1526-5447 (online)

The Delivery Dispatching Problem with Time Windows for Urban
Consolidation Centers
W. J. A. van Heeswijk,a M. R. K. Mes,a J. M. J. Schuttena

aDepartment of Industrial Engineering and Business Information Systems, University of Twente, 7522 NB Enschede, Netherlands
Contact: w.j.a.vanheeswĳk@utwente.nl, http://orcid.org/0000-0002-5413-9660 (WJAvH); m.r.k.mes@utwente.nl (MRKM);
m.schutten@utwente.nl (JMJS)

Received: December 18, 2015
Revised: September 23, 2016; February 10,
2017; April 7, 2017
Accepted: April 12, 2017
Published Online in Articles in Advance:
August 28, 2017

https://doi.org/10.1287/trsc.2017.0773

Copyright: © 2017 INFORMS

Abstract. This paper addresses the dispatching problem faced by an urban consolida-
tion center. The center receives orders according to a stochastic arrival process and dis-
patches them in batches for the last-mile distribution. The operator of the center aims
to find the cost-minimizing consolidation policy, depending on the orders at hand, pre-
announced orders, and stochastic arrivals. We present this problem as a variant of the
delivery dispatching problem that includes dispatch windows and define a correspond-
ing Markov decision model. Larger instances of the problem suffer from intractably large
state-, outcome-, and action spaces. We propose an approximate dynamic programming
(ADP) algorithm that can handle such instances, using a linear value function approx-
imation to estimate the downstream costs. To design the value function approximation,
we construct various sets of basis functions, numerically evaluate their suitability, and
discuss the properties of good basis functions for the dispatching problem. Numerical
experiments on toy-sized instances show that the best set of basis functions approximates
the optimal values with an error of less than 3%. To cope with large action spaces, we
formulate an integer linear program to be used within our ADP algorithm. We evaluate
the performance of ADP policies against four benchmark policies: two heuristic policies,
a direct cost minimization policy, and a post-decision rollout policy. We test the perfor-
mance of ADP on a variety of networks. ADP consistently outperforms the benchmark
policies, performing particularly well when there is sufficient flexibility in dispatch times.

History: This paper has been accepted for the Transportation Science Special Issue on Recent Advances
in Urban Transportation Through Optimization and Analytics.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2017.0773.

Keywords: urban distribution • transport planning • freight consolidation • approximate dynamic programming • dispatching problem

1. Introduction
The demand for goods in urban areas is continu-
ously increasing and is expected to increase further
in the future, leading to larger numbers of trans-
port movements (Crainic, Ricciardi, and Storchi 2004).
Another trend in urban freight transport—particularly
in retail—is the fragmentation of freight flows within
urban areas. The abundance of small and indepen-
dent carriers, shippers, and receivers contributes to this
fragmentation. Transport capacity is therefore often
utilized only partially. These trends result in inefficient
transport movements within urban areas, giving rise
to various external costs, such as congestion, air pol-
lution, and noise hindrance. In response, governments
aim tomitigate such effects with measures such as low-
emission zones and road pricing for heavy vehicles.
Because of these developments, last-mile distribution
within urban areas becomes increasingly complex and
expensive. A common supply-side solution to improve
the efficiency of urban logistics is the use of urban con-
solidation centers (Crainic, Ricciardi, and Storchi 2004).

Trucks arriving from the long haul can unload at a con-
solidation center—usually located at the edge of the
urban area—instead of making an inefficient delivery
tour through the city. Such transhipments allow both
for bundling goods—thereby minimizing the num-
ber of movements within the city—and dispatching
environment-friendly vehicles on the last mile.

The operator in charge of the consolidation center
decides on both the timing and the composition of
order batches to dispatch. Cost minimization requires
that vehicles are used as efficiently as possible. There-
fore, the operator has an incentive to wait for future
orders to arrive, which may result in better consoli-
dation opportunities and more efficient tours. How-
ever, the order arrival process is subject to replanning
and disruptions within the supply chain. The degree
of communication between the actors within the sup-
ply chain dictates how accurate the information on
future arrivals is. Furthermore, dispatching decisions
are generally bound by time windows as well as vehi-
cle availability and storage capacity. The operator faces

1

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://pubsonline.informs.org/journal/trsc/
mailto:w.j.a.vanheeswijk@utwente.nl
http://orcid.org/0000-0002-5413-9660
mailto:m.r.k.mes@utwente.nl
mailto:m.schutten@utwente.nl
https://doi.org/10.1287/trsc.2017.0773

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
2 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

complete or partial uncertainty in the arrival process
and wants to determine a consolidation policy that
minimizes the costs under this uncertainty.
We consider a setting in which arriving orders are

dynamically revealed to the operator. Orders either
arrive at the consolidation center without receiving a
notification in advance or are preannounced to arrive
at a future point in time. Once orders arrive at the
consolidation center, they may be dispatched to cus-
tomers. Arriving ordersmay have a large variety in des-
tinations, dispatch windows, load sizes, etc. When dis-
patching orders, the operator aims tominimize costs by
consolidating orders based on these properties, striv-
ing for high utilization of vehicle capacity andminimal
travel distance. Based on both the available knowledge
regarding current orders and the anticipation of new
orders, the operator is able to make informed dispatch-
ing decisions.

To formalize the problem, we extend the deliv-
ery dispatching problem (DDP)—as introduced by
Minkoff (1993)—by embedding time windows into the
problem formulation. We will refer to this extension as
the DDP with time windows or DDP-TW. The absence
of time windows is a major shortcoming in the tradi-
tional DDP as timewindows are an integral component
of logistics. Shipment consolidation policies stemming
from the traditional DDP indicate when the complete
accumulated set of orders should be dispatched. How-
ever, when orders are subject to time windows, one
tends to dispatch orders with distinct time windows at
different times, holding on to some orders for a later
dispatch time. Hence, the decision maker wants to also
know which subset of orders to dispatch. Another key
difference with existing work on the DDP is that we
consider a finite planning horizon, which allows us
to handle time-dependent arrival processes. For these
reasons, our extension to the DDP provides a better
fit with real-life consolidation problems, allowing for
applications to dispatching problems in general.

We formulate a Markov decision model to capture
the dynamic and stochastic nature of the DDP-TW.
Solving instances of our DDP-TW provides an optimal
consolidation policy. In line with the DDP definition
as provided by Minkoff (1993), we explicitly separate
the dispatching decision from the routing decision; the
focus of this paper is on the dispatching decision. We
apply a cost function that estimates the transport costs
for dispatching a given set of orders. After determin-
ing which orders to dispatch, a vehicle routing prob-
lem (VRP) algorithm can subsequently be applied to
obtain detailed delivery tours. For completeness, we
also demonstrate an integrated solution in which we
explicitly solve the routing problem embedded into the
dispatching problem. With this paper, we contribute
to existing literature by formally defining the DDP-TW,
designing an algorithm that can handle large instances
of this problem class, and providing insights into our

linear value function approximation and the corre-
sponding explanatory variables that capture the cost
structure of the problem.

The remainder of the paper is structured as follows.
Section 2 provides a literature review on the DDP and
other related works. We specifically focus on trans-
port problems dealing with both dynamic and stochas-
tic properties. Section 3 gives a formal definition of
the DDP-TW and presents the corresponding decision
problem as a Markov decision model. Section 4 elabo-
rates on our solution method and the design of a linear
value function approximation by using basis functions.
In Section 5, we describe our experimental setup; the
numerical results are discussed in Section 6. Finally, we
provide the main conclusions of our work in Section 7.

2. Literature Review
This section presents a literature overview that in-
cludes studies on the DDP and several related prob-
lems. The overview comprises recent literature studies
for these related problems and highlights a number
of studies that address characteristics comparable to
our problem. We discuss various solution approaches
to transport problems with dynamic and stochastic
properties and evaluate their suitability to solve the
DDP-TW. The section concludes with the literature gap
that we address with this paper.

Optimization problems that embed both stochas-
tic and dynamic properties are notoriously hard to
solve (Powell, Simão, and Bouzaiene-Ayari 2012). Even
though stochastic information is recognized as an inte-
gral aspect of optimization in transport problems, the
majority of papers in the transport literature focus
on deterministic problems. Traditionally, mathematical
programming and (meta)heuristics are used to handle
high-dimensional transport problems. However, these
methods generally do not cope well with stochastic
information being revealed over time (Powell, Simão,
and Bouzaiene-Ayari 2012). Successful incorporation of
stochastic information in solution methods is still an
ongoing development (Powell, Simão, and Bouzaiene-
Ayari 2012, SteadieSeifi et al. 2014). Suitable solution
methods are usually based on either (i) approximating
a value function that uses analytical expressions to
define the stochastic process or (ii) sampling scenar-
ios and solving the decision problems for the corre-
sponding outcomes (Lium, Crainic, and Wallace 2009,
Pillac et al. 2013). The latter method is generally
applied to extend heuristics and mathematical pro-
grams designed for deterministic problems toward
stochastic problems. A key challenge with scenario
sampling is to correctly represent the stochastic pro-
cess; incorrect sampling may yield poor results (Lium,
Crainic, and Wallace 2009). When approximating a
value function, the stochastic process is fully defined,
but the corresponding expected values may be hard

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 3

to compute. These expected values therefore tend to
be computed offline; the resulting policies can subse-
quently be used in online decision making. As these
policies return decisions as a function of the input state,
they tend to be faster than online sampling methods.
In the DDP, order arrivals follow a stochastic pro-

cess and are dispatched in batches at a given decision
moment (Minkoff 1993). The aim of solving the DDP
is to find a consolidation policy that returns the opti-
mal dispatch time for an accumulated set of orders.
With every new arrival, the decision maker assesses
(i) the time elapsed since the first order in inventory
arrived (representing the maximum service time as
experienced by the customer) and (ii) the volume of
the accumulated orders. The consolidation policy is
based on one or both of these measures. Dispatching
the accumulated orders is subject to a cost function
in which route duration and route costs are prede-
fined input (Minkoff 1993). For our DDP-TW, we study
recurrent consolidation policies, meaning that the dis-
patching decision depends on the state of the problem
(Higginson and Bookbinder 1995, Powell 2011). The
stochastic and dynamic elements embedded in such
DDPs give rise to the use of Markov decision mod-
els (Minkoff 1993). Although Markov decision models
are useful to define decision problems, practical imple-
mentations generally suffer from intractably large state
spaces and the inability to exactly compute expected
values (Minkoff 1993, Powell 2011, Pillac et al. 2013).
Çetinkaya (2005, p. 5) provides an overview on DDP
literature describing the problem class as “inventory
and shipment consolidation decisions.” Relatively lit-
tle work has been done on the optimization of con-
solidation policies; most studies focus on evaluating
existing consolidation policies (Çetinkaya 2005, Mutlu,
Çetinkaya, and Bookbinder 2010, Bookbinder, Cai, and
He 2011). Studies that do address optimization tend to
consider only volume and arrival time as order prop-
erties and present results that are valid only for a lim-
ited set of distributions. Çetinkaya and Bookbinder
(2003) derive results on optimal policies that are either
quantity-based or time-based but do not combine both
measures into a hybrid policy. Bookbinder, Cai, and
He (2011) describe a generic solution method based
on a batch Markovian arrival process, which is able to
cope with a multitude of distributions. However, all
transition probabilities must be computed to describe
the arrival process. This is computationally challeng-
ing when considering orders with multiple stochas-
tic properties. Finally, Cai, He, and Bookbinder (2014)
present an algorithm that—under the assumption of
a specific cost structure—returns an optimal consoli-
dation policy. The drawback of this algorithm is that
every state must be visited; thus, it requires the state
space to be sufficiently small to fully enumerate.
We now look at various problem classes related to

theDDP-TW. TheVRP is concernedwith routing rather

thandispatchingdecisions.Despite this keydistinction,
it has some overlapwith the DDP-TW. A common char-
acteristic is that both problems are customer-driven.
Assigning timewindows to orders is common in VRPs.
However, in a VRP, the time windows usually only
affect the routing decision, not the dispatching deci-
sion as in the DDP-TW. Ritzinger, Puchinger, and Hartl
(2016) provide a literature overviewof the dynamic and
stochastic VRP, which generally considers reoptimiza-
tion during the execution of routes. The VRP variant
that has the strongest relation to ourDDP-TWcombines
dynamic order requests with stochastic customer infor-
mation. Examples ofworks that address this variant are
Simão et al. (2009), Ulmer, Brinkmann, and Mattfeld
(2015), and Ulmer et al. (2017).

The inventory routing problem (IRP) has ties to the
DDP (Minkoff 1993). The IRP addresses repeated stock
replenishment from a facility to a fixed set of cus-
tomer locations, the product quantities to deliver, and
the decision when to visit a location. The facility opti-
mizes these decisions given the—possibly stochastic—
depletion rates at the customer. The dispatching deci-
sion is an integral part of the IRP. A key distinction
between the DDP and the IRP is that the latter is gen-
erally not order-based. This implies that the facility is
not subject to an inbound arrival process, and goods are
typically not coupled to individual customers. Further-
more, only one or several types of goods have to be dis-
tributed among customers. For the solution of stochas-
tic IRPs, generally either mathematical programming
is applied, or Markov decision models are heuristically
solved. We mention a few IRP studies that handle both
dynamic and stochastic properties. An example is the
study by Coelho, Laporte, and Cordeau (2014), who
propose a heuristic solution with scenario sampling
for this IRP class. Bertazzi et al. (2013) formulate the
stochastic IRP as a Markov decision model and solve
the associated decision problem with a hybrid rollout
algorithm. A recent overview of the IRP literature can
be found in Coelho, Cordeau, and Laporte (2014).

The next related problem class that we address is
service network design (SND). SND entails the selec-
tion and timing of transport services. Known solu-
tion methods mostly use mathematical programming,
(meta)heuristics, and graph theory. The majority of
SND studies focus on deterministic instances. Stead-
ieSeifi et al. (2014) mention a number of SND stud-
ies that incorporate stochastic demand, for example,
Lium, Crainic, and Wallace (2009) and Meng, Wang,
and Wang (2012). Solutions to the stochastic SND gen-
erally are multistage mathematical programs in which
scenarios are added to reflect uncertainty in future
demand. Lium, Crainic, and Wallace (2009) state that
generating a compact yet representative scenario tree
is one of the key challenges in this solution method.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
4 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

Finally, we discuss the emerging problem class
of same-day deliveries. In same-day delivery prob-
lems, the decision maker dynamically receives order
requests during the day and must decide when to dis-
patch a vehicle that delivers (a subset of) the accu-
mulated orders. If a request is not fulfilled during
the day, a penalty is incurred. Voccia, Campbell, and
Thomas (2017) define a corresponding Markov deci-
sion model and propose a solution method that takes
into account information about future requests. Arslan
et al. (2016) solve a ride-sharing variant of the prob-
lem using a rolling horizon approach. Klapp, Erera,
and Toriello (2016) study a single-vehicle variant of
this problem in which the customers are located on a
line; as a consequence, route duration depends only
on the customer located farthest away from the depot.
They propose both a rollout algorithm and a solution
based on approximate linear programming to address
the stochasticity embedded in the problem.

The contribution of this paper is threefold. First, we
formulate a Markov decision model for the DDP-TW,
in this way formally defining the time-window exten-
sion of the DDP. Second, we develop a solutionmethod
to solve large instances of this problem class. Based
on the stochastic modeling frameworks of Topaloglu
and Powell (2006) and Powell (2011) for dynamic
resource-allocation problems, we develop an approxi-
mate dynamic programming (ADP) algorithm to solve
the DDP-TW. The main contribution is the design of
our value function approximation while also reflecting
on several implementation issues that are encountered
in the design phase. In particular, we contribute to the
literature by studying a variety of basis functions that
can be used to estimate the downstream costs of deci-
sions. Third, we formulate an integer linear program
(ILP) to solve the decision problem within the ADP
algorithm. With the ILP, we find approximate solu-
tions when the embedded decision problem cannot
be enumerated within a reasonable time. The present
work expands on van Heeswĳk, Mes, and Schutten
(2015). Compared with the earlier work, our key con-
tributions are (i) extending the model with an ILP
to solve large instances; (ii) more thorough, detailed,
and realistic numerical experiments, focusing on the
design of the linear value function approximation; and
(iii) improved validation of the model by comparing
with stronger benchmark policies.

3. Problem Formulation
This section introduces the decision problem, which
we model as a Markov decision model. We aim to pro-
vide a generic formulation, such that it can be applied
to a variety of instances. We assume that the charac-
teristics of arriving orders are stochastic and have a
probability distribution that is known to the operator

of the consolidation center. When an order is prean-
nounced or arrives at the center, its exact properties are
revealed. Certain variables that are treated as stochas-
tic in our description may be known in practice. In that
case, the random variable can simply be replaced by
the actual information regarding future orders, creat-
ing a restricted instance of our problem. We optimize
over a finite set of decision moments T � {0, 1, . . . ,T},
which are separated by equidistant time intervals. The
dispatching decisions are made at decision moments
t ∈ T . In this paper, the equidistant time intervals that
separate the decision moments correspond to a setting
in which the consolidation center dispatches orders a
few times a day. This choice is motivated by the com-
mon practice that consolidation centers oftenmake two
delivery rounds per day (Bohne, Ruesch, and Barrera
2015, Nesterova and Quak 2015). The practice of dis-
patching vehicles at fixed times may be reinforced by
access time restrictions set by local governments, only
allowing trucks within the city center during one or
two time intervals per day (Nuzzolo, Crisalli, andComi
2012). We stress that the aforementioned motivation
applies to modeling decision moments at predefined
times, not to the actual practice of commencing deliv-
ery tours at each decision moment. The model that
we define does not require dispatching orders at every
decision moment. Furthermore, our model does not
place any restrictions on the length of time intervals
between decision moments.

The following properties are modeled as random
variables in our problem: (i) the number of orders
arriving per decision moment, (ii) order volumes,
(iii) order destinations, and (iv) the dispatch window.
Every order must be shipped within its dispatch win-
dow. We choose to use dispatch windows at the con-
solidation center rather than the more common deliv-
ery windows at the receiver. The main reason for
this choice is that it simplifies the presentation of our
problem. In a typical urban logistics setting, adopting
dispatch windows rather than delivery windows will
not pose problems. Urban deliveries are characterized
by relatively short travel times; when time intervals
between dispatching moments are set relatively large,
a feasible delivery plan can generally be constructed
within this interval. In addition, Cherrett et al. (2012)
state that themajority of independent retailers (the typ-
ical target customers for an urban consolidation center)
have no influence on the exact delivery times. Never-
theless, we stress that delivery windows can be han-
dled within our solution method; in Section 3.5, we
provide suggestions for this extension.

At every decision moment t ∈ T , we must choose
which subset of the accumulated orders to dispatch.
To take into account the impact of this decision on the
future, we evaluate the effects of postponing the dis-
patch of orders. It may be possible to combine post-
poned orders into a dispatch batch with future orders,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 5

thereby decreasing overall costs. As such, we optimize
over a planning horizon rather than at a single decision
moment; we measure the impact of current decisions
on the downstream costs, that is, the expected costs
over the remainder of the horizon.
We consider an urban area with a fixed set of cus-

tomer locations (i.e., order destinations). Last-mile dis-
tribution takes place via a consolidation center at the
edge of the area. Our representation of the urban dis-
tribution network is as follows. Let G � {V ∪ 0,A}
be a directed graph with V ∪ 0 being the set of ver-
tices and A being the set of arcs. Vertex 0 represents
the consolidation center in the network. The remain-
ing vertices signify the set of order destinations V �

{1, 2, . . . , |V |}.

3.1. Fleet Description
For the transport of orders, we restrict ourselves to
vehicles with identical capacity, although our method
allows handling heterogeneous fleets as well. We dis-
tinguish between primary and secondary vehicles. The
set of primary vehicles—denoted by Qpr—is finite and
either represents a fleet owned by the consolidation
center or a rented fleet. To ensure feasible solutions
at all times, we assume that there are always enough
secondary vehicles in the set Qse to dispatch all accu-
mulated orders and that secondary vehicles are more
expensive than primary vehicles. We refer to an indi-
vidual vehicle as q ∈ Qpr ∪Qse . Secondary vehicles may
represent an actual backup option (e.g., renting addi-
tional vehicles in case of shortage) or a dummy fleet
with infinitely high costs. A dummy fleet with infinite
costs effectively serves as a bound on vehicle capac-
ity and eases the formulation of the model. We only
dispatch secondary vehicles if all primary vehicles are
in use.
A vehicle q dispatched at decision moment t ∈ T

has a finite and deterministic route duration rt , q ∈
{1, . . . , τMaxRoute}. The dispatched vehicle is available
for dispatch again at t + rt , q , where rt , q is deter-
mined by the deployed routing function ∆: V t , q 7→
{1, . . . , τMaxRoute}, q ∈ Qpr ∪ Qse with V t , q ⊆ V denot-
ing the subset of locations visited. As we take down-
stream costs into account, we keep track of the dis-
patch availability of primary vehicles both now and
in the future; the return time of secondary vehicles
is not relevant. The earliest availability of vehicle q,
relative to the current time t, is denoted by τt , q ∈
{0, . . . , τMaxRoute}; vehicle q can only be dispatched
at decision moment t if τt , q � 0. We store the dis-
patch availability of each primary vehicle—based on
preceding dispatching decisions—in the vector Qt �

(τt , 1 , τt , 2 , . . . , τt , |Qpr |).

3.2. Order Types
An order is characterized by four properties: destina-
tion v, load size l, earliest dispatch time t e , and latest

dispatch time t l . We refer to every unique combination
of these four properties as the order type (v , l , t e , t l).
The order destination is represented by a vertex v ∈V .
The size of an order is an element l ∈ L, with L �

{1/k , 2/k , . . . , 1} being the discretized set of feasible
load sizes, and k ∈ �. The element l � 1 represents a
full load for an urban vehicle. Next, we formulate the
dispatch windows. Every order has a dispatch window
within which the order must be dispatched from the
depot. The time indices of the window are relative to
the decision moment t. Therefore, the dispatch win-
dows for orders held in inventory must be updated
over time; we introduce this procedure in Section 3.6.
Each dispatch window is defined by an earliest dis-
patch time t e ∈ T e and a latest dispatch time t l ∈ T l .
Order types with t e > 0 describe preannounced orders
for which all properties are known and deterministic
but that have not yet arrived at the consolidation center.
We impose that t e ≥ 0 as knowledge regarding dispatch
times in the past does not impact our decision while
t e for a preannounced order is bounded from above
by τMaxAhead. Hence, the set of feasible earliest dispatch
times is

T e
� {0, . . . , τMaxAhead}.

The latest dispatch time cannot be a moment in time
before the earliest dispatch time; we therefore impose
that t l ≥ t e . Furthermore, we impose amaximumwidth
τMaxWindow ∈ � on the dispatch window, such that t l ≤
t e + τMaxWindow. Hence, we have

T l
� {t e , . . . , t e

+ τMaxWindow}.

3.3. State Description
We have introduced all properties that define an order
type. Let It , v , l , te , t l ∈� be the available number of orders
of a given type at decision moment t. We capture
our deterministic knowledge regarding both prean-
nounced orders and accumulated orders at t as

It � (It , v , l , te , t l)v∈V , l∈L , te∈T e , t l∈T l .

For the sake of readability, we omit the set nota-
tion when referring to these elements. We continue to
define the state of the problem. The state at decision
moment t is denoted as St in state space S ; its defi-
nition combines the earliest possible dispatch time of
each primary vehicle as embedded in vector Qt and the
deterministic order knowledge stored in vector It

St � (Qt , It).

3.4. Action Description
We now describe the actions that we can take in a state.
Let lmax ∈� be themaximum number of orders that can
be held in the consolidation center, that is, the max-
imum inventory remaining after a decision. At each

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
6 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

decision moment t, we decide howmany orders to dis-
patch of each order type in inventory. Orders that are
not dispatched remain in the inventory and are avail-
able at the next decision moment. Let the integer vari-
able xt , v , l , te , t l , q describe the number of orders of a spe-
cific type to be dispatched at t, served by vehicle q. As a
consequence of assigning orders to individual vehicles,
the route durations of dispatched vehicles may vary.
A feasible action at decision moment t is given by

xt(St)� (xt , v , l , te , t l , q)v , l , te , t l , q , (1)

where∑
v , l , t l

(
It , v , l , 0, t l −

∑
q∈Qpr∪Qse

xt , v , l , 0, t l , q

)
≤ lmax , (2)∑

q∈Qpr∪Qse

xt , v , l , te , t l , q ≤ It , v , l , te , t l , ∀ v , l , t e , t l , (3)∑
q∈Qpr∪Qse

xt , v , l , 0, 0, q � It , v , l , 0, 0 , ∀ v , l , (4)

xt , v , l , te , t l , q � 0, t e > 0, ∀ v , l , t l , q , (5)∑
v , l , t l

xt , v , l , 0,t l , q · l ≤ 1, ∀ q , (6)

rt , q ≤ τMaxRoute , ∀ q , (7)
xt , v , l , te , t l , q ∈ �, ∀ v , l , t e , t l , q. (8)

Constraint (2) ensures that at most the maximum
inventory remains after dispatching. Observe that only
orderswith t e �0 are part of the inventory.We note that
one might instead place a bound on the maximum vol-
ume with a similar constraint. With Constraint (3), we
ensure that we cannot dispatch more orders of a cer-
tain type than are available at the decision moment t.
Constraint (4) stipulates that all orders with a latest
dispatch time equal to t are dispatched. Constraint (5)
prevents the dispatch of preannounced orders that are
not yet in inventory. Constraint (6) ensures that the
order volume assigned to a vehicle does not exceed its
capacity whereas Constraint (7) prevents violations of
the maximum route duration. Recall from Section 3.1
that the route duration is the outcome of routing func-
tion ∆. Finally, Constraint (8) ensures that the num-
ber of orders of any type dispatched is nonnegative.
The set of feasible actions in a given state is described
by X t(St).

3.5. Cost Function
When evaluating a state, we must compute the direct
costs C(St , xt) for all actions in X t(St). We reiterate that
we consider a two-phase solution method in which we
first make the dispatching decision based on approx-
imate routing costs and subsequently optimize the
route for the selected dispatch action. Although we
perform some numerical experiments in which we
integrate the routing problem in the model and heuris-
tically solve it, our main focus is on the dispatch-
ing decision. The approximate routing costs must be

computed for every possible action for a large num-
ber of states. Therefore, an efficient cost function is
required. For this study, we use the approximation for-
mula of Daganzo (1984) to estimate the routing costs.

Daganzo’s formula is known to provide good esti-
mates for VRP distances (Robusté, Estrada, and López-
Pita 2004). The formula is based on the notion that
when increasing the number of locations in an area,
the length of the tour visiting these locations asymptot-
ically converges to a constant multiplied by the square
root of the number of points and the service area
(Daganzo 1984). After determining the total tour length
with Daganzo’s formula, we determine the number of
vehicles required. We assume that the total distance to
cover is equally distributed over the dispatched vehi-
cles, thus resulting in identical route durations for all
vehicles. We emphasize that these identical route dura-
tions only apply to the particular cost function that we
define here, not to the model itself. After determining
the required travel distance, we incrementally increase
the number of vehicles until it satisfies the maximum
route duration constraint and there is enough capac-
ity to carry the total volume of dispatched orders. The
costs are composed of three elements: a fixed cost per
dispatched truck, distance-dependent route costs, and
handling costs per location visited. To demonstrate
that route durations may vary, we also perform experi-
ments in Section 6 that allow vehicles dispatched at the
same time to have different route durations.

The cost function deployed in this paper is subject
to several major simplifications. We stress that more
advanced expressions exist as well, which provide
accurate estimates for more realistic VRPs. Figliozzi
(2009) presents expressions for multiple VRP variants,
for example, taking into account capacity constraints
and time windows at the customer. The parameters for
such expressions can be determined a priori by first
generating a large number of routes (preferably with
the routing algorithm that is eventually used) and then
applying regression to estimate the parameters in the
expression.

3.6. Transition Function
Based on the order arrivals that may occur during
the planning horizon, we can compute a consolidation
policy πt ∈ Πt with πt : St 7→ xt and Πt being the set
of possible policies. To model the uncertainties with
respect to the properties of arriving orders, we intro-
duce five random variables. These are (i) the number of
orders arriving Ot , (ii) the order destination V , (iii) the
order size L, (iv) the earliest dispatch time T e , and
(v) the width of the dispatch window Twindow. Based
on the realizations of these random variables (given
by a lowercase representation of the variables), we can
deterministically compute the latest dispatch timewith

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 7

T l � T e +Twindow. The corresponding probability distri-
butions are discrete and finite. To represent all prob-
ability distributions with a single variable, we define
the exogenous information variable Ĩt , v , l , te , t l ∈�, which
indicates the number of arrivals of a specific order type
after t−1 and before t. The generic variableWt captures
all exogenous information, that is, all orders that arrive
between t − 1 and t (i.e., before making decision xt)

Wt � (Ĩt , v , l , te , t l)v , l , te , t l , t ≥ 1.

We now proceed to describe the transition from St
to the next state St+1. The transition from St to St+1
depends on our dispatching decision xt ∈ X t and the
realization of order arrivals represented by the infor-
mation variable Wt+1. Actions determine the change
in vehicle availability from Qt to Qt+1 and update the
remaining orders in inventory. For orders that are not
dispatched, the dispatch window is updated as it is
defined relative to the decision moment. For a given
action, we have rt , q as the route duration for a dis-
patched vehicle q ∈ Qpr . By combining the route dura-
tions for dispatched vehicles with the earliest dispatch
times stored in Qt , we can compute Qt+1. This gives us
the transition function SM

St+1 � (Qt+1 , It+1)� SM(St , xt ,Wt+1), (9)

where

It+1, v , l , 0, t l �

1∑̃
te�0
(It , v , l , t̃e , t l+1) −

∑
q∈Qpr∪Qse

xt , v , l , 0, t l+1, q

+ Ĩt+1, v , l , 0, t l , ∀ v , l , t l , (10)

It+1, v , l , te , t l � It , v , l , te+1, t l+1 + Ĩt+1, v , l , te , t l ,
t e > 0, ∀ v , l , t l , (11)

τt+1, q � max(0, τt , q − 1, rt , q − 1), ∀ q. (12)

Constraint (10) states that the number of an order
type characterized by te � 0 at t + 1 is the number of
the order type that we have in St minus the number
of the order type that is dispatched at t plus the num-
ber of the order type that arrives between t and t + 1.
Constraint (11) is similar, but it takes into account that
orders with t e > 0 cannot be shipped. Constraint (12)
ensures that Qt+1 is consistently updated.

3.7. Objective Function
The objective when solving the problem is to minimize
the total dispatching costs over the full planning hori-
zon: ∑

t∈T C(St , xt). The costs corresponding to t > 0
cannot be computed deterministically beforehand as
we do not know which orders will arrive within the
planning horizon. Instead, we minimize the expected
future costs, summing over all possible future out-
comes. Let Ωt be the set of all possible order arrivals
and let ωt ∈ Ωt be a particular realization of order

arrivals. The random variable Wt may be any realiza-
tion ωt . We now introduce the optimality equation

Vt(St)� min
xt∈X t (St)

(
C(St , xt)+

∑
ωt+1∈Ωt+1

� (Wt+1 � ωt+1)

·Vt+1(St+1 | St , xt , ωt+1)
)
. (13)

We describe the expression for � (Wt). For t ≥ 1, let ot
be the number of orders arriving between t − 1 and
t with ot ∈ {0, 1, . . . , omax

t }. We denote the probability
of ot orders arriving by � (Ot � ot). The probability of
an arriving order being of a certain order type (i.e.,
the unique combination of order properties) follows
from the multivariate distribution � (V, L,T e ,T l). For
new arrivals � (Wt � ωt), with t ≥ 1, the probability
function is given by

� (Wt � ωt)� � (Ot � ot)
ot !∏

Ĩt , v , l , te , tl ∈ωt
Ĩt , v , l , te , t l !

·
∏

v , l , te , t l

� (V � v , L � l ,T e
� t e ,T l

� t l)Ĩt , v , l , te , tl. (14)

4. Solution Method
For realistic instance sizes, our decision problem be-
comes intractably large in terms of state space, action
space, and outcome space. Powell (2011, p. 3) refers to
this phenomenon as the “three curses of dimensional-
ity” and provides an ADP framework that addresses
these problems. Based on this framework, we develop
an ADP algorithm that we use to solve our DDP-TW.
ADP is a simulation-based solution method to solve
instances of problems represented by a Markov deci-
sion model. During an offline learning phase, we learn
estimates for the downstream costs associated with
state–action pairs. This is done by performing a Monte
Carlo simulation in which we repeatedly (i) step for-
ward in time, (ii) sample a random order arrival sce-
nario, and (iii) learn the value of being in a given
state by observing its associated costs. The goal is to
obtain the optimal consolidation policy, which can sub-
sequently be used for online decision making. In Sec-
tions 4.1 to 4.3, we discuss how we address the three
curses of dimensionality. We give an overview of the
ADP algorithm in Section 4.4. Section 4.5 concludes the
description of our solution method with the design of
the basis functions.

4.1. Dimensionality of the Outcome Space
We start by addressing the size of the outcome space.
In traditional dynamic programming, when evaluating
a given state–action pair, we compute its downstream
costs by multiplying the value for every possible out-
come state St+1, given (St , xt , ωt+1), with the probabil-
ity that arrival scenario ωt+1 occurs, see Equation (13).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
8 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

In our problem, the number of order arrival scenarios
increases exponentially with the maximum number of
arrivals. For realistic numbers of arrivals, this results
in very large outcome spaces. To avoid having to enu-
merate the complete outcome space, we introduce the
concept of the post-decision state (Powell 2011). The
post-decision state Sx

t is the state immediately after
action xt but before the order arrivals ωt+1. Applying
action xt in state St results in a deterministic transition
to the post-decision state Sx

t . We express this transition
in the function

Sx
t � SM, x(St , xt), (15)

where

Ix
t , v , l , te , t l � It , v , l , te , t l −

∑
q∈Qpr∪Qse

xt , v , l , te , t l , q ,

∀ v , l , t e , t l , (16)
τx

t , q � max(rt , q , τt , q), ∀ q ∈ Qpr . (17)

By attaching the downstream costs to the post-
decision state instead of the next pre-decision states,
we replace the probabilistic expression for the down-
stream costs with a single cost function V x

t (Sx
t)

V x
t (Sx

t)� Ɛ{Vt+1(St+1) | Sx
t } �

∑
ωt+1∈Ωt+1

� (Wt+1 � ωt+1)

·Vt+1(St+1 | St , xt , ωt+1). (18)

For our problem, the post-decision state comprises
(i) the number of orders per type remaining at the
consolidation center and (ii) the updated vehicle avail-
ability after our dispatching decision. In the offline
learning phase, we operate on the post-decision state
as follows. For a given state St , we make a decision xt
to arrive at the post-decision state Sx

t . Then, we ran-
domly sample an order arrival ωt+1 ∈Ωt+1 and observe
the costs of the next state St+1. We use these costs to
improve our estimate of the downstream cost V x

t (Sx
t);

ultimately, the estimate is based on a limited num-
ber of samples from Ωt+1 instead of explicitly calcu-
lating the expectation over all possible realizations. By
using an estimate of the value of the post-decision state
rather then the values of all possible pre-decision states
at t + 1, we only need to evaluate a single outcome
per action.

4.2. Dimensionality of the State Space
We proceed to address the problem of the large state
space.We learn values by observing states in the offline
learning phase, which we encounter by randomly sam-
pling order arrivals. Suppose that we would use a
lookup table containing estimates of the downstream
costs for each post-decision state. Filling this table
implies that we should visit every post-decision state
at least once to estimate its associated downstream

costs. As the size of our state space grows exponentially
with the number of order types, for realistically sized
instances, we would need to perform unfeasibly many
simulation iterations to learn all these values. There-
fore, we replace V x

t (Sx
t) with a function V̄n

t : Sx
t 7→�, Sx

t
that approximates the downstream costs of all post-
decision states regardless of whether we have visited
a state previously. The key benefit of this approach,
which is known as the value function approximation
(VFA) for the downstream cost (Powell 2011), is that we
no longer need to fill a lookup table with the expected
downstream costs for all states. We apply value itera-
tion to learn V̄n

t (Sx
t), which is our estimate of V x

t (Sx
t)

resulting from the nth iteration.
Before applying the learned policy in an online set-

ting, the parameters of V̄n
t must be learned offline via

observations. In our solution method, V̄n
t contains a

number of variables that explain the cost structure of
the problem, using so-called basis functions (Powell
2011). Adopting the ADP terminology, we refer to an
explanatory variable as a “feature.” Let F be a set of
features (which we can compute based on the post-
decision state) with f ∈ F representing an explana-
tory variable for the true value function, for example,
the number of primary trucks available or the volume
per receiver. Furthermore, let φ f : Sx

t 7→ � be a basis
function of feature f . Such a basis function is often
equal to the feature itself but may also be a polyno-
mial or another mathematical operation performed on
the feature, for example, the number of primary vehi-
cles squared. A set of basis functions is denoted as
φ ⊃ φ f (St),∀St ∈ S . Such a set may be viewed as an
aggregate state description, retaining sufficient detail
to capture the cost structure, but requiring fewer vari-
ables to do so. For example, the number of primary
vehicles available at t + 1 and the volume per receiver
held in the consolidation centermay be good indicators
to estimate the downstream costs while requiring only
1+ |V | variables instead of the full state description. In
Section 4.5, we discuss the basis function design for our
model. Finally, let θn

t , f be a weight corresponding to φ f

at decision moment t. As we consider a finite horizon
problem, at each decision moment t ∈ T the down-
stream costs are computed over the time interval t + 1,
. . . ,T. It follows that downstream costs are time-
dependent. Therefore, we learn weights separately for
each decision moment t ∈ T . We use the iteration
counter n to track the number of iterations performed,
andwe use V̄n

t (Sx
t) to denote our VFAduring the offline

learning phase. We obtain the VFA

V̄n
t (Sx

t)�
∑
f ∈F

θn
t , f φ f (Sx

t) ∀ t ∈ T . (19)

To improve our estimate of the downstream costs,
we update the weights θn

t , f , f ∈ F , t ∈ T after every
iteration n. For the weight updates, we use a regression

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 9

procedure, which we discuss in Section 4.5.4. As we
use a single set of weights to estimate all downstream
costs, new observations adjust our cost estimates for all
states that we may encounter.

4.3. Dimensionality of the Action Space
The final curse of dimensionality that we address re-
lates to the action space. We have replaced the original
value functionwith a function that estimates the down-
stream costs based on the post-decision state. As a con-
sequence, our decision problem reduces to a determin-
istic minimization problem. By solving this problem at
decisionmoment t in iteration n, using our most recent
estimate V̄n−1

t (Sx
t) that followed from iteration n−1, the

best action x̃n
t is found

x̃n
t � arg min

xt∈X t (St)

(
Ct(St , xt)+ V̄n−1

t (Sx
t)
)
. (20)

Although the computational effort required to solve
the decision problem sharply decreases by operating
on the post-decision state rather than the full outcome
space, we are still required to evaluate every action
xt ∈X t(St). For our problem, the action space increases
exponentially with the number of orders. Therefore,
complete enumeration of all decisions is not feasible
for large instances. However, as we have transformed
the decision problem into a discrete and determinis-
tic problem, we are able to write it as an ILP that
can be solved within the ADP for large action spaces.
This ILP solves Equation (20) and is subject to both
the action constraints (2)–(6) and the post-decision
constraints (16)–(17). The post-decision variables are
required to compute the basis functions. As ILPs can
be solved relatively quickly with modern solvers, we
can handle much larger decision problems than enu-
meration would allow. However, the decision problem
remains computationally challenging because of the
need to precompute 2|V | route durations to cover all
subsets of destinations that might be visited; a corre-
sponding decision variable must be assigned to each
unique route. We therefore propose an additional sim-
plification. Rather than explicitly computing all pos-
sible route distances, we define a set of approximate
travel distance classes as input for the ILP. The formu-
lation of the ILP enforces that the approximate distance
used to compute the routing costs in the ILP is at least
equal to the distance computed with Daganzo’s for-
mula. The more distance classes that we predefine, the
better we can approximate the actual travel distance. To
determine the number of distance classes, we measure
the performance gap in preliminary numerical exper-
iments. With the ILP, we can solve our large instances
within a reasonable time and closely approximate the
solutions from Daganzo’s formula. The full ILP model
is shown in the online appendix.

4.4. Algorithmic Outline
We have explained how we handle the dimensional-
ity of the outcome-, state-, and action spaces of our
problem. Algorithm 1 provides the outline of our ADP
algorithm; a detailed description of the full procedure
can be found in Powell (2011, p. 392). To update the
value functions, we make use of a backward pass pro-
cedure (Sutton and Barto 1998) in which the VFAs are
updated only after completing a full forward iteration.
With every iteration n, we generate a random order
arrival path ωn � {ω1 , . . . , ωT}. At every t ∈ {0, . . . ,
T − 1}, we solve Equation (20) to obtain the action that
minimizes the sum of direct costs and estimated down-
stream costs. However, in the offline learning phase, it
is advisable to also select different actions that allow
the observation of new states and improvement of the
VFA. Especially in the early iterations, our estimates for
the downstream costs may be poor because of the low
number of states observed. As a consequence, the algo-
rithm might continuously visit the same suboptimal
post-decision states while never learning the values of
better states. To avoid this form of cycling, we do not
always select the “best” action. Instead, with probabil-
ity ε ∈ [0, 1], we select a random action xt ∈X t(St). This
so-called ε-greedy strategy allows us to explore new
states (Powell 2011). However, too much exploration
will decrease the quality of the estimates for the (near-)
optimal states that we are interested in. We therefore
test various settings for ε such that we find the right
balance between visiting new states and accurately
learning the values of good states. After selecting an
action, we generate a random order arrival Wt+1(ωn),
and find the next state St+1 by solving Equation (9).
This procedure is repeated until reaching t � T. After
completing the forward iteration, we move backward
to recursively update V̄n−1

t (Sx
t) based on the observed

downstream costs v̂n
t � Ct(St , xt) + v̂n

t+1. We perform
this update with a regression procedure that we dis-
cuss in Section 4.5.4; the updating function is defined
as follows:

V̄n
t−1(Sx

t−1)← �UV(V̄n−1
t−1 (Sx

t−1), Sx
t−1 , v̂

n
t). (21)

Algorithm 1 (ADP backward pass algorithm with
post-decision states)
Step 0. Initialize

Step 0a: Initialize V̄0
t (St), t ∈ T , St ∈S .

Step 0b: Set probability to select random action
ε ∈ [0, 1].

Step 0c: Set iteration counter to n :� 1 and set the
maximum number of iterations to N .

Step 1.
Step 1a: Select an initial state Sn

0 .
Step 1b: Generate a sample path ωn .

Step 2. For t � 0, 1, . . . ,T do:

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
10 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

Step 2a: Find the best action x̃n
t by solving

Equation (20).
With probability ε, randomly select

xt ∈X t .
Step 2b: Obtain post-decision state Sx

t via
Equation (15).

Step 2c: Obtain sample realization Wt+1(ωn),
calculate St+1 with Equation (9).

Step 3. For t � T, . . . , 1 do:
Step 3a: If t < T, compute v̂n

t � Ct(St , xt)+ v̂n
t+1.

Step 3b: Update V̄n−1
t (Sx

t) using Equation (21).
This step returns the weights θn

t , f ,
f ∈ F , t ∈ T

Step 4. Set n :� n + 1.
If n ≤ N , then go to Step 1.

Step 5. Return V̄N
t (Sx

t), t ∈ T .

4.5. Basis Function Design
We conclude this section with the design of the basis
functions.We discuss the following design-related top-
ics: (i) a categorization of the basis functions for the
DDP-TW, (ii) the selection of a set of basis functions,
(iii) the pitfalls of nonsegregated basis functions, and
(iv) the updating procedure to learn the weights cor-
responding to basis functions. Finally, we present the
selected sets of basis functions that we test in our
numerical experiments.
4.5.1. Categorization of Basis Functions. The selected
set of basis functions should accurately represent the
downstream costs. Hence, the basis functions need to
capture the cost structure of the problem. In Section 5,
we introduce the sets of basis functions that we test.
For now, we restrict ourselves to presenting a catego-
rization of our basis functions. The cost structure of our
problem mainly depends on (i) the locations visited,
(ii) the volume dispatched, (iii) the number of primary
vehicles available, and (iv) the flexibility to postpone
orders. The basis functions should reflect one or more
of these properties. It is important that basis functions
within a set are independent of each other; as we learn
the weights by means of regression, we must avoid
collinearity. We divide our basis functions into three
categories that are assumed to be independent: vehicle-
based, location-based, and volume-based. A time com-
ponent may be added to each category, for example,
computing vehicle availability up until the maximum
route duration. By carefully selecting a set of basis
functions that incorporates these factors, we are able to
estimate the values of post-decision states, even those
we did not visit before. As such, the VFA enables us to
cope with large state spaces.
4.5.2. Selecting Basis Functions. A key difficulty in
the design of a value function approximation is to
select a set of basis functions that enables us to accu-
rately approximate the downstream costs. Given our
categorization of basis functions that capture (part of)

the cost structure, we may conjecture suitable basis
functions, yet their usefulnessmust be numerically val-
idated. We obtain a first sense of good basis functions
by performing regression analysis on the exact values
of states; these values are obtained by solving small
instances to optimality. We compute the R2 values (i.e.,
the coefficient of determination that describes the fit of
the model) of various sets of basis functions to evaluate
how well they explain the costs.

Although the R2 values give an initial insight into
the quality of basis functions, a high explanatory value
does not guarantee that the corresponding policy that
we learn also performs well. There are three key rea-
sons for this. First, as we only observe a sample of the
state space, the weights that we learn with ADP may
differ from those obtained with regression analysis on
the values of all states. Second, we can only compute
exact values for small instances; these instances do not
capture all of the dynamics embedded in the prob-
lem. Third, correctly estimating the downstream costs
is important, yet good policies may be obtained with-
out accurate estimates of the downstream costs (Chang
et al. 2013). Essentially, we require estimates that allow
us to rank the actions correctly, such that we are able
to consistently select good actions. For these reasons,
we also compare the performances resulting from our
basis function designs.

4.5.3. Use of Nonsegregated Basis Functions. Non-
segregated basis functions (e.g., the ratio of vehicle
capacity and volume per dispatch time) combine sev-
eral features and therefore may have a higher explana-
tory value than segregated functions. However, they
are difficult to combine with other basis functions
because of thehighprobability of introducing collinear-
ity. Another drawback is that the associated weights
may be more difficult to learn as we try to simul-
taneously learn the impact of multiple explanatory
variables. Furthermore, we also incorporate the basis
functions within the ILP formulation. This is straight-
forward for linear basis functions, but the use of nonlin-
ear basis functions potentially requires a large number
of artificial variables. In the design of our basis func-
tions,we therefore focusonbasis functions that are both
linear and segregated.

4.5.4. Regression Procedure to Update the Weights.
After every simulation iteration, we must update
the weights corresponding to the basis functions to
improve our VFA. We do this by regressing the VFA
on the observed data. The regression procedure that
we use is known as recursive least squares for nonsta-
tionary data; Powell (2011, p. 352) provides a detailed
description of this method. A shortcoming of this
procedure is that it is sensitive to outliers. Unstable
behavior of the regression is common for large sets of
basis functions. This instability follows from observing

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 11

deviating values, to which the regression procedure
responds by assigning a very large weight to a basis
function of small magnitude. Subsequent observations
may then yield extreme estimates. Burger and Repiský
(2012) discuss these problems as well as various other
pitfalls in least squares regression. In the design of our
basis functions, we aim to keep the number of basis
functions relatively low; based on preliminary experi-
ments, we consider sets that contain 10 or fewer basis
functions as sufficiently small. Furthermore, by using
only additive basis functions—rather than, for exam-
ple, polynomials, multiplications, and divisions—we
prevent basis functions from returning extremely small
values; the smallest nonzero value that we may obtain
relates to volume-based basis functions and is equal
to min(l | l ∈ L). All other basis functions use integer
counters, such that their smallest nonzero value is 1.
4.5.5. SelectedBasisFunctions. Havingdiscussed the
categories of basis functions for our problem and the
design requirements, we now introduce the sets of
basis functions that we test in our numerical experi-
ments. Our selected basis functions reflect one or more
of these categories; we first test sets containing separate
basis functions and then sets that combine multiple
aspects. We now describe the 13 sets of basis functions
that we test in our numerical experiments with the
aim of finding the basis functions that yield the best
ADP policy. The sets are shown in Table 1. Every set
of basis functions φ contains a constant to capture the
average costs of a state. The set φ1 contains only such
a constant; note that this set assigns the same value
to every post-decision state as such yielding the direct
cost-minimization policy πmin. In set φ2, we consider
the total number of destinations thatwemay visit at the
current decision moment t. Set φ3 describes the num-
ber of primary vehicles available from t to t + τMaxRoute.
Set φ4 gives the volume per latest dispatch moment,
for example, the urgent volume at various decision
moments. In φ5, we keep track of the volume per desti-
nation. Set φ6 contains the number of orders per order

Table 1. Selected Sets of Basis Functions

Set Basis functions No. of basis functions

φ1 Const. 1
φ2 Const.+ # available destinations at t e � 0 2
φ3 Const.+ # vehicles 1+ τMaxRoute

φ4 Const.+Total vol. per t l 1+ τLatestDispatch

φ5 Const.+Total vol. per v 1+ |V |
φ6 Const.+ # orders per type 1+ |I |
φ7 Const.+ # vehicles/# available destinations 2
φ8 Const.+ # vehicles/Total vol. per t l 1+min(τMaxRoute , τLatestDispatch)
φ9 Const.+ # destinations per t l 1+ τLatestDispatch

φ10 Const.+Vol. per destination per t l 1+ (τLatestDispatch) · |V |
φ11 Const.+ # available destinations+Total vol. per t l 2+ τLatestDispatch

φ12 Const.+ # vehicles+Total vol. per t l 1+ τMaxRoute+τLatestDispatch

φ13 Const.+ # available destinations+ # vehicles per τt +Total vol. per t l 2+ τMaxRoute + τLatestDispatch

type. As this set does not aggregate state data, it is not
a well-designed set of basis functions; this set is added
only for illustrative purposes. The remainder of the
sets (φ7–φ13) are either linear combinations or nonseg-
regated combinations of the aforementioned sets. We
stress that nonsegregated basis functions do not meet
all our design requirements and are included only for
the sake of illustration.

5. Experimental Setup
In this section, we describe the setup of our numeri-
cal experiments. The main goal of the experiments is
to identify the set of basis functions that enables us
to most accurately capture the cost structure of our
problem and show how the resulting policy that we
learn performs relative to a variety of benchmark poli-
cies. We distinguish between experiments in the offline
learning phase and the online phase. In the offline
learning phase, we evaluate the sets of basis functions
as defined in Section 4.5.5. For each set of basis func-
tions, we learn the corresponding dispatching policy;
subsequently, we compare the performances of these
policies with each other. In the online phase, we test
the performance of the ADP policy obtained with the
best set of basis functions only, relative to a number of
benchmark policies. For large instances, we also report
the computational times required to solve the decision
problem.

We proceed to describe the main characteristics of
the test instances. Customer locations are defined on
a 10 km × 10 km area. The travel distances between
locations are computed usingManhattan distances.We
use a time horizon of T � 10 for all experiments. We
divide our experiments into three classes—small (S),
medium (M), large (L)—each class having its own
purpose. Preliminary tests on medium-sized instances
indicate that 5,000 iterations suffice to learn a policy;
further observations do not significantly increase the
quality of policies. We test the online performance of
policies using 1,000 iterations. In the offline learning

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
12 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

phase, we select a random action with probability
ε � 0.05. Preliminary tests on a representative instance
indicated this as the best-performing setting, having
tested ε ∈ {0, 0.05, . . . , 0.25}. The policy obtained under
ε � 0 performs the worst with a difference in solution
quality of 3.3% compared with ε � 0.05. Our algorithm
is coded in Delphi XE6, and we use a computer with
a 2.9 GHz Intel Core i7 processor and 8 GB RAM. The
ILP is solved with CPLEX 12.2.
The outline of the remainder of this section is as

follows. In Section 5.1, we define the properties of all
our test instances. Section 5.2 describes the benchmark
policies that we use to evaluate the performance of
the policies that we learn with ADP. In Section 5.3, we
describe the procedure that we use to generate a set of
representative initial states from which we draw at the
start of every iteration.

5.1. Instance Properties
In this section, we describe the properties of the in-
stances on which we perform experiments. We define
two small instances, 20 medium-sized instances, and
two large instances. With our experiments on small
instances, we primarily evaluate the behavior of ADP
in the offline learning phase, comparing the results
with the exact results. We perform tests on two small
instances, named S1 and S2. For S1, we consider three
customers located at equal distances from the depot
while for S2 the depot–destination distances vary. We
consider a dispatch window of width 1 and no pre-
announced orders. The instances are sufficiently small
(93,000 states) to be solved exactly with dynamic pro-
gramming. With the obtained values, we compute the
explanatory power of the basis functions by computing
the R2 value and unveil possible dependencies between
them. We do this for multiple sets of basis functions
and then test how closely we approximate the exact
values with the corresponding policies.

Our experiments on the medium-sized instances
(# states � 1022) provide insights into both the offline
learning phase and the online phase. Table 2 shows
the main properties of these instances. We consider
up to 15 arrivals per decision moment and up to 30
orders in inventory. We are primarily interested in
the performance of ADP in relation to two properties:
(i) the degree of dynamism (DoD) and (ii) the flexibil-
ity in dispatching times. The degree of dynamism is
the ratio between the number of orders with the prop-
erty t e � 0 (i.e., not announced in advance) and the
total number of orders (Larsen, Madsen, and Solomon
2002). A DoD of 1 indicates that all orders become
known dynamically whereas a DoD of 0 implies that
all orders are preannounced. With the flexibility in dis-
patching times, we refer to the maximum width of
the dispatch windows of orders. The first six instances

Table 2. Settings for the Medium-Sized Instances

Instance Description

M1 DoD� 1, τMaxWindow � 1
M2 DoD� 0.5, τMaxWindow � 1
M3 DoD� 0, τMaxWindow � 1
M4 DoD� 1, τMaxWindow � 2
M5 DoD� 0.5, τMaxWindow � 2
M6 DoD� 0, τMaxWindow � 2
M7 As M2, two customers 50% demand
M8 As M5, two customers 50% demand
M9 As M2, but with last 10 customers R101
M10 As M5, but with last 10 customers R101
M11 As M2, but with four vehicles
M12 As M5, but with four vehicles
M13 As M2, but with unlimited fleet size
M14 As M5, but with unlimited fleet size
M15 As M2, but with 50 km by 50 km network
M16 As M5, but with 50 km by 50 km network
M17 As M2, but with routing algorithm
M18 As M5, but with routing algorithm
M19 As M17, but with Copenhagen network
M20 As M18, but with Copenhagen network

(M1–M6) vary the DoD and the flexibility in dispatch-
ing times. We take the first 10 customers of the 25-
customer Solomon instance R101 scaled to a 10 km ×
10 km area. We consider instances with maximum dis-
patch windows of 1 and 2, respectively, providing us
with two levels of flexibility. Furthermore, we vary
the DoD, testing ratios of 0, 0.5, and 1. The remain-
ing instances are variants of M2 and M5, in which we
test the effects of skewed demand (M7–M8), different
customer locations (M9–M10), variations in fleet sizes
(M11–M14), distances scaled to a 50 km × 50 km area
(M15–M16), and tests in which we use a routing algo-
rithm within the ADP method (Clarke–Wright savings
algorithm with two-opt) instead of using Daganzo’s
formula (M17–M18). Finally, in M19 and M20, we test
more realistic instances inspired by the city of Copen-
hagen; we refer to van Heeswĳk, Larsen, and Larsen
(2017) for a detailed description of the instance prop-
erties. We take the location of an existing urban con-
solidation center, 10 real customer locations within the
low-emission zone of the city of Copenhagen (see Fig-
ure 1) and compute the corresponding distance matrix
using the OpenStreetMap implementation of Luxen
and Vetter (2011). We solve these instances with the
routing algorithm as used in M17–M18.

Finally, we perform simulation experiments on two
large instances (# states � 10178). For these instances,
we consider up to 40 arrivals per decision moment
and inventories up to 60 orders. We test two instances:
the 25-customer Solomon instance R101 (L1) and the
50-customer Solomon instance R101 (L2), scaled to a
10 km× 10 km area. The results in the online phase are
compared with those of the benchmark policies that
we describe in Section 5.2. The contribution of these

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 13

Figure 1. (Color online) Copenhagen Test Instance, Showing the Low-Emission Zone (Shaded Area), the Location of the
Consolidation Center (Large Red Marker), and Customer Locations (Blue Markers)

Source. Adapted from OpenStreetMap, © OpenStreetMap contributors.

experiments is to demonstrate that realistically sized
instances can be handled by applying the ILP for the
decision problems. Finally, we provide insights into the
computation times required to solve the ILP.

5.2. Benchmark Policies
This section defines the benchmark policies that we
use to evaluate the performance of our ADP policies.
We introduce three myopic policies and one lookahead
policy.
The small instances of our problem can be solved to

optimality, giving us an exact benchmark for our ADP
method. However, these instances do not capture all
of the dynamics embedded in the problem whereas
medium-sized instances cannot be solved exactly. To
evaluate the online performance, we compare ADP
with three consolidation policies without lookahead as
well as a rollout policy that incorporates a downstream
cost estimate based on randomly generated future
orders (Goodson, Thomas, and Ohlmann 2017). Under
the first myopic policy πdirect, we always ship orders
as soon as possible as long as primary vehicle capac-
ity is available. With the second myopic policy πpost,
we postpone as many orders as possible until an order
reaches its latest dispatch time. For both policies, we fill
up a vehicle that is to be dispatched with orders that

are sorted and assigned as described in Algorithm 2;
the sorting mechanism gives priority to orders that
are more urgent and, for equally urgent orders, priori-
tizes smaller volumes. The third myopic policy is πmin,
which enumerates the full set of actions andminimizes
the direct costs without estimating downstream costs.
As no extra costs are charged to transport additional
orders to locations that are already visited, we dispatch
asmuch volume as possible if the costs are equal. Thus,
the three myopic policies make use of consolidation
opportunities by utilizing the remaining capacity of
dispatched vehicles but do not take into account the
stochastic arrival process.
Algorithm 2 (Heuristic rules for πdirect and πpost)
Step 0 Sort orders.

Step 0a: Sort available orders based on lowest t l .
Step 0b: Sort available orders with equal t l based on

smallest size.
Step 1 While orders with t l � 0 are unassigned do:

Assign order with t l � 0 to vehicle.
Step 2 While remaining inventory exceeds lmax do:

Assign first capacity-feasible order on list
to vehicle.

Step 3 If πdirect: While capacity from primary vehicles
is sufficient do: Assign first capacity-feasible
order on list to vehicle.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
14 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

If πpost: While capacity from already dispatched
vehicles is sufficient do: Assign first
capacity-feasible order on list to vehicle.

We proceed to explain the lookahead policy πrollout.
We apply this benchmark policy to the medium-sized
instances; later on, we explain why we do not use this
lookahead policy for the large instances L1 and L2.
The idea behind πrollout is that we generate a num-
ber of sample arrival paths and heuristically solve
the decision problems for these paths, thereby obtain-
ing an estimate of the downstream costs. This bench-
mark policy is comparable to the rollout procedures
as presented in, for example, Goodson, Ohlmann, and
Thomas (2013) and Goodson, Thomas, and Ohlmann
(2017). More precisely, our benchmark policy may be
viewed as a version of the post-decision rollout that is
described in Goodson, Thomas, and Ohlmann (2017),
in which we look ahead for multiple time steps (in
our implementation, we vary with horizons of 1, 2,
and 5). To apply πrollout at a given decision moment,
we first generate a set Ωm , which contains m ran-
dom arrival paths of length τrollout, that is, ωm �

{ωm
t+1 , . . . , ω

m
t+τrollout

}. We then enumerate all actions xt—
meaning that the action space should be sufficiently
small—to obtain the direct costs C(St , xt), xt ∈X t . Next,
we compute the costs associated with a path ωm ∈Ωm

and obtain St+1 � SM(St , xt ,Wt+1(ωm
t+1)). After arriving

in St+1, we use the heuristic-based policy πdirect to
obtain decisions for the remainder of the horizon and
denote the resulting costs as Ṽt(St , ω

m). These costs are
calculated recursively for t′ � t + 1, . . . , t + τrollout using

Ṽt′(S′t , ωm)� C(St′ , xt′)+ Ṽt′+1(St′+1 , ω
m), (22)

with St′+1 �SM(St′ , xt′ ,Wt′+1(ωm
t′+1)) and xt′← � St′ : πdirect.

We repeat this procedure for every post-decision state
and for all arrival paths ωm ∈Ωm . Thus, the estimated
post-decision values are obtained as follows:

V̂t(Sx
t)�

∑
ωm∈Ωm Ṽt+1(St+1 , ω

m)
|Ωm | . (23)

After estimating the post-decision values, we obtain
the best decision by solving

arg min
xt∈X t (St)

� C(St , xt)+ V̂t(Sx
t). (24)

We do not compare the performance of ADP with
post-decision rollout in L1 and L2 as the procedure is
not directly scalable to large action spaces. To incor-
porate the downstream costs of the rollout procedure
into the ILP, we need to compute the expected down-
stream costs for each decision. Although VFA only
requires embedding a number of variables equal to
the number of basis functions into the ILP, the roll-
out procedure requires an artificial variable and corre-
sponding downstream costs for each decision. As the

ILP is designed to handle outcome spaces that are too
large to enumerate, we are also unable to pregenerate
the downstream costs for all reachable post-decision
states. We might be able to compute a lower number
of downstream costs by either assigning downstream
costs to aggregated post-decision states or by reducing
the decision space. However, the design of such bench-
mark policies would justify a separate study, which is
beyond the scope of this paper.

5.3. Generating a Set of Initial States
In this section, we describe the procedure to generate a
set of initial states from which we draw at the start of
each iteration. To learn a policy with ADP based on a
given initial state, we might start every iteration with
the same initial state and obtain a policy tailored to that
specific state. While this is useful for testing purposes,
in practical settings we might not repeat the entire
offline learning phase for every state we encounter.
Instead, we want to perform the offline learning phase
only once, obtaining a policy that is applicable to all
states over a longer period of time. However, randomly
generatingan initial state at every iterationmay result in
policiesbasedonstates thatwe rarely encounter inprac-
tice. To obtain a set of realistic initial states S ′ ⊂ S , we
perform a predefined number of simulation iterations
with πdirect—starting every iteration with a randomly
generated initial state—and store the state encountered
at T/2 (thereby avoiding possible warm-up and cool-
down effects) inS ′. Next, at the start of each iteration n,
we select Sn

0 ∈ S
′with a probability proportional to the

frequency it was observed. As order arrivals are ran-
dom, we still visit states St < S ′. However, by learning
basedon commonly encountered states, the results pro-
vide a better fit in practical settings.

6. Numerical Results
This section presents the numerical results of our ex-
periments. First, we show the results for small in-
stances, then for medium-sized instances, and finally
for large instances. The presentation of the results for
the offline learning phases is focused on the identi-
fication of suitable sets of basis functions. When dis-
cussing the results for the online phases, we compare
the performance of the best ADP policy (using themost
suitable set of basis functions) with various benchmark
policies. For each class of instances, we provide a sep-
arate outline of the results that we discuss.

6.1. Experiments on Small Instances
We present the results of the offline learning phase
and the online phase. In the offline learning phase,
we test various sets of basis functions for which we
assess how well they approximate the optimal out-
comes obtainedwith dynamic programmingwhile also
discussing theproperties of goodsets of basis functions.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 15

In the online phase, we apply the dispatching policy
that we learned for the best set of basis functions and
compare the results obtained with this policy with the
optimal outcomes.

6.1.1. Results in the Offline Learning Phase. To assess
the explanatory value for various sets of basis func-
tions, we compute their R2 values and test how these
sets perform in the offline learning phase. Using the
procedure described in Section 5.3, we obtain a state
set S ′. For each simulation run, we use a state in S ′ as
the initial state and learn the corresponding policy. We
consider a set of basis functions as a candidate set to
apply on larger instances if it satisfies the following cri-
teria: (i) the basis functions in the set are independent
of each other, (ii) every basis function in the set con-
tributes significantly to the R2 value, (iii) regression can
be performed within reasonable time, (iv) the number
of basis functions is scalable to larger instances, (v) the
numerical outcomes are robust for all states in S′, and
(vi) the average value gap (difference between optimal
value and estimated value) is small.
The results for our sets of basis functions are shown

in Table 3. We observe some discrepancies between
the R2 values and the actual performance of the corre-
sponding policies that we learned. In general, we see
that sets including the volume per t l yield estimates of
good quality, which indicates that this property well
explains the ranking of values of states. During the
experiments, we observed that combining more than
three types of basis functions often results in unstable
behavior. Similar instabilities are found when combin-
ingmultiple basis functions of the same type, for exam-
ple, two volume-based basis functions. Nonsegregated,
nonlinear functions do not yield favorable results in
terms of accuracy and are notably difficult to combine
with other basis functions. The set φ13 yields the best
results of all tested sets. This set consists of the follow-
ing basis functions: a constant, the number of available
destinations, the number of vehicles available per dis-
patch time t + 1, . . . , τMaxRoute, and the total volumes
sorted per latest delivery time.We note that the set cap-
tures the key properties of the cost structure as listed
in Section 4.5 while only requiring a total of four basis
functions for the small instances to estimate the down-
stream costs with an error of less than 3%. By contrast,
a set such as φ6 contains many more basis functions
but yields considerably worse estimates.

6.1.2. Results in the Online Phase. We illustrate the
ADP performance using the policy learned with the
set φ13 applied on S1, comparing ADP estimates to
exact values for the states in S ′. Figure 2 shows the
distribution of absolute deviations from the optimal
value. For virtually all states, ADP yields estimates that
are somewhat higher than the optimal value with an
average absolute deviation of 1.9%. The tendency to

Table 3. R2 Values and Value Gaps for Various Sets of Basis
Functions

S1 S2

Avg. Avg.
Set Basis functions R2 gap (%) R2 gap (%)

φ1 Const. — 6.76 — 6.14
φ2 Const.+ # available 0.16 2.80 0.14 3.57

destinations at t e � 0
φ3 Const.+ # vehicles 0.34 6.77 0.31 6.14
φ4 Const.+Total vol. per t l 0.35 2.11 0.32 2.78
φ5 Const.+Total vol. per v 0.27 2.97 0.31 3.34
φ6 Const.+ # orders per type 0.35 5.27 0.40 5.36
φ7 Const.+ # vehicles/ 0.41 5.63 0.37 6.21

available destinations
φ8 Const.+ # vehicles/ 0.23 6.48 0.20 6.70

Total vol. per t l

φ9 Const.+ # destinations 0.14 2.92 0.12 3.50
per t l

φ10 Const.+Vol. per 0.35 2.97 0.39 3.34
destination per t l

φ11 Const.+ # available destinations 0.48 2.05 0.43 2.76
+Total vol. per t l

φ12 Const.+ # vehicles 0.69 2.31 0.62 2.92
+Total vol. per t l

φ13 Const.+ # available 0.82 2.03 0.74 2.75
destinations+ # vehicles
per τt +Total vol. per t l

overestimate costs follows from using suboptimal poli-
cies to estimate the downstream costs (Powell 2011).
For 0.24% of the states, the estimated and optimal val-
ues differ by more than 5%; these deviations cause
the tail on the right. In Figure 3, we show the ADP
estimates for all S0 ∈ S ′, plotted against the optimal
values. This plot provides insight into the ranking of
ADP estimates compared with the true ranking. Ide-
ally, the order of the ADP estimates on the y-axis cor-
responds with the (true) order on the x-axis. Even if
the cost estimates deviate from the optimal values, a
good ranking enables distinguishing actions with low
downstream costs from actions with high downstream

Figure 2. Histogram of Absolute Differences Between Exact
Values and ADP Estimates for All States in S ′

0
0

20

40

60

80

100

120

N
um

be
r

of
 s

ta
te

s

140

160

180

1 2 3 4

Absolute value gap (%)

5 6 7

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
16 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

Figure 3. ADP Estimates Plotted Against Exact Values for
All States in S ′

2,000
2,000

2,500

2,500 3,000

3,000

3,500

3,500

4,500

4,000

4,000

DP value

A
D

P
va

lu
e

4,500

costs. However, accuracy remains important as well, as
we optimize over the sum of direct costs and estimated
downstream costs. Generally, we see that the ranking is
ratherwell preserved and that the estimates are close to
the true values; ADPwill not select actions that deviate
much from the optimum.

6.2. Experiments on Medium-Sized Instances
We present the results of the offline learning phase
and the online phase. In the offline learning phase,
we test the performance for various sets of basis func-
tions to evaluate their performance under increased
complexity, this time comparing with the direct cost-
minimization policy (i.e., set φ1). In the online phase,
we take the best set of basis functions to obtain our
ADP policy; we compare this policy with a variety of
benchmark policies on 20 different instances. Based on
the results, we describe the instance properties under
which ADP performs best. Furthermore, we discuss
how the performance of ADP relates to both the per-
formance of myopic policies and the rollout policy.
6.2.1. Results in the Offline Learning Phase. In our
medium-sized instances, the number of order types is
much larger than in the small instances. Therefore, we
test how our sets of basis functions perform under this
increased complexity. From Table 3, we take the sets
of basis functions for which the corresponding policies
yielded a value gap smaller than 5% on both S1 and
S2. We repeat the offline learning phase for each set
of basis functions meeting this criterion, yielding eight
ADP policies. We reevaluate the performance of these
sets on M2 andM5 as these may be considered hybrids
of the other medium-sized instances. To learn πADP,
we randomly draw an initial state from S ′ at every
iteration. We measure the performance of all policies
relative to the performance using set φ1. The results
are shown in Table 4. Similar to the results for the
small instances, for bothM2 andM5 the best results are
obtained with φ13. Observe that the relative improve-
ment inM5 is notably stronger thanwithM2; it appears
that ADP performs better when there ismore flexibility

Table 4. Performance of Various φ on M2 and M5, Relative
to φ1

Avg. gap Avg. gap
Set Basis functions (M2) (%) (M5) (%)

φ1 Const. 0 0
φ2 Const.+ # available −0.6 0.2

destinations at t e � 0
φ4 Const.+Total vol. per t l 4.2 10.1
φ5 Const.+Total vol. per v 5.0 9.9
φ9 Const.+ # destinations per t l 3.4 7.5
φ10 Const.+Vol. per location per t l 3.7 7.8
φ11 Const.+ # available 2.4 8.9

destinations+Total vol. per t l

φ12 Const.+ # vehicles 7.7 13.3
+Total vol. per t l

φ13 Const.+ # available 7.9 14.0
destinations+ # vehicles per τt

+Total vol. per t l

in the dispatching decision, that is, when the dispatch
windows of orders are wider.
6.2.2. Results in the Online Phase. In this section, we
test the performance of ADP policies on the medium-
sized instances M1–M20, using the policies obtained
with the set of basis functions φ13. We randomly draw
an initial state fromS ′ at every iteration.We learn πADP

individually for each medium-sized instance and eval-
uate the performance to the benchmark policies. We
run the rollout policy πrollout for various numbers of
sample paths and lengths of the sample path, for exam-
ple, πsample

2, 5 denotes a policy with two sample paths of
five time units each.

The computational results of the simulation phase
are shown in Table 5. We highlight the main takeaways
from the results. First, we see that ADP consistently
and significantly outperforms all myopic benchmark
policies. The values obtained by the rollout procedure
are closer although ADP typically outperforms the
post-decision rollout aswell. These results indicate that
looking into the future pays off for the DDP-TW. Sec-
ond, we observe that ADP outperforms rollout by a
greater margin when considering wider dispatch win-
dows. Voccia, Campbell, and Thomas (2017) suggest
that—because of the larger number of possible arrival
paths—a longer lookahead horizon requiresmore sam-
ple paths. This hypothesis appears to be confirmed by
our results: when using only two or five sample paths,
the rollout policy performs better, on average, with a
lookahead interval of one. When comparing ADP to
the rollout procedures, the results seem to indicate
that ADP with VFA is more useful when consider-
ing decisions that have an impact on multiple future
decision moments, taking into account the large num-
ber of paths required for the rollout procedure. Third,
ADP performs best when the problem instance offers
sufficient flexibility in terms of dispatch times while
vehicle capacity is scarce (M11–M14). Fourth, we see

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 17

Table 5. Simulation Performance Benchmark Policies Relative to ADP with φ13

Instance πdirect (%) πpost (%) πmin (%) πrollout
2, 1 (%) πrollout

2, 2 (%) πrollout
2, 5 (%) πrollout

5, 1 (%) πrollout
5, 2 (%) πrollout

5, 5 (%) πrollout
20, 1 (%) πrollout

20, 2 (%) πrollout
20, 5 (%)

M1 9.46 10.13 8.92 5.27 5.32 6.33 3.62 3.92 5.08 1.95 0.88 3.04
M2 9.25 9.18 7.86 3.22 4.49 5.91 4.00 3.76 4.63 3.62 1.61 2.05
M3 3.31 3.31 2.29 −2.32 −2.63 −1.48 −3.11 −2.34 −1.26 −4.28 −4.83 −4.87
M4 15.55 16.68 14.95 7.44 11.47 15.52 6.75 9.65 13.37 3.89 6.62 13.26
M5 14.70 15.65 13.98 6.43 12.22 16.34 6.09 10.75 13.88 4.71 5.22 8.95
M6 13.94 14.90 13.30 6.95 9.73 13.12 7.41 9.09 12.42 7.11 6.95 10.01
M7 8.80 8.63 6.66 1.09 3.55 4.24 0.37 2.18 2.93 −0.88 0.73 1.07
M8 15.32 16.21 11.34 6.28 11.34 14.14 5.86 8.81 12.94 4.54 4.62 7.67
M9 9.29 9.26 7.66 9.14 4.64 6.21 8.22 4.10 4.59 6.87 2.03 2.31
M10 14.32 13.01 15.29 8.53 11.70 15.54 8.19 10.31 13.52 6.78 4.80 8.68
M11 9.55 9.43 8.31 1.40 3.62 4.40 0.41 2.44 4.10 −0.43 −0.79 −0.46
M12 20.17 20.04 16.74 8.58 10.39 14.56 7.73 12.37 13.79 6.73 4.41 8.59
M13 15.08 7.35 6.00 −1.28 0.17 0.71 −1.84 −0.24 0.67 −2.17 −2.36 −1.86
M14 28.59 14.24 12.04 5.33 2.19 2.75 4.33 1.42 1.80 3.51 0.54 1.06
M15 15.45 15.29 13.57 5.42 4.61 5.18 4.41 2.99 4.90 2.92 2.53 3.14
M16 25.15 26.07 23.54 12.67 11.25 15.13 11.99 8.85 15.05 10.27 7.92 12.71
M17 12.69 7.59 3.24 2.85 1.81 1.47 2.74 0.79 2.66 2.31 1.47 1.79
M18 23.98 12.19 5.26 5.88 5.59 5.86 5.35 4.33 7.05 4.97 4.90 5.72
M19 12.51 7.56 3.35 2.96 2.00 1.75 3.01 0.99 2.98 2.48 1.73 2.05
M20 23.61 12.35 5.28 5.97 5.93 6.32 5.50 4.72 7.50 5.16 5.26 6.38
Average 15.04 12.57 9.86 5.09 5.97 7.70 4.55 4.95 7.13 5.16 2.25 4.09

that for larger networks (M15–M16), ADP performs
relatively strongly. For these instances, travel costs
have a relatively high weight compared with visiting
costs whereas restrictions on maximum route duration
become more stringent. Finally, we note that the per-
formance of ADP decreases when the basis functions
do not properly address problem-specific characteris-
tics (e.g., in the case of uneven demand distributions,
see M7–M8). A similar effect is observed for more real-
istic instances (M17–M20), which are solved with a
routing algorithm. Compared to the results of πmin,
the outcomes suggest that lookahead has less added
value for these instances. Interestingly, this effect is also
observed for the rollout benchmarks; increasing the
number of sample paths does not necessarily improve
performance for these instances. As the outcomes of
the routing algorithm are more difficult to learn than
those of Daganzo’s formula, additional basis functions
might be necessary to improve the performance of
πADP for these instances.

6.3. Experiments on Large Instances
This section reflects on the suitability of our solution
method to handle large action spaces. First, we com-
pare the results of the ADP policy (learned using the
best set of basis functions) with those obtained with
the myopic benchmark policies. Second, we provide
statistics on the computational time required to solve
the ILP.

For the large instances, we deal with state spaces of
size � 10178 and action spaces with sizes up to 2120.
Enumerating all actions within a reasonable time is not
possible for these instances. In our experiments, we

solve the decision problem at each decision moment
with the ILP. In Section 4.3, we explained that the ILP
requires defining a set of predefined input distances.
The smaller this set is, the faster we can solve the ILP
yet this comes at the cost of reduced accuracy. Based
on preliminary testing on medium-sized instances, we
define 30 distinct distance-to-depot sums to estimate
the actual travel distance of a decision. On average, this
setting yields an absolute cost difference between the
ILP (using the approximate distances) and Daganzo’s
formula of less than 2%. The results of our experiments
on L1 and L2 are shown in Table 6. As stated previ-
ously, we compare the performance of ADP with the
myopic benchmark policies. The benchmark policies
are clearly outperformed although the performance
gaps are not as large as for the medium-sized exper-
iments. A possible explanation for the smaller perfor-
mance differences is that it might be more challeng-
ing to learn a good ADP policy because of the larger
state space (more iterations may be required to prop-
erly learn values) and the introduction of the distance
approximation error (as the approximation to some
degree overestimates the direct costs). In addition to

Table 6. Simulation Performance of ADP Policies Against
Benchmark Policies Relative to ADP with φ13

Avg. Solved Diff. with
πdirect πpost πmin solving time within cost function

Instance (%) (%) (%) ILP (s) 60 s (%) (%)

L1 7.9 6.7 20.8 3.08 100.00 1.44
L2 6.9 6.0 18.9 5.96 99.31 1.81
Average 7.40 6.35 19.85 4.52 99.66 1.63

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
18 Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

the performance gaps, we provide statistics on the time
it takes to solve the ILP with CPLEX. Although sig-
nificant computational effort is required in the offline
learning phase (as we need to solve the decision prob-
lem for N iterations times T+1 time periods), the ILP is
shown to be fast enough to solve the decision problem
in the online application.

7. Conclusions
In this paper, we addressed the dispatching prob-
lem faced by operators of urban consolidation cen-
ters. These centers have a key role in many urban
logistics initiatives as they allow bundling of frag-
mented freight flows to facilitate efficient distribu-
tion within urban areas. The operator of the center
receives less-than-truckload orders that need to be dis-
tributed as efficiently as possible but does not have
perfect foresight into the arrival process. The operator
periodically dispatches batches of accumulated orders,
taking into account both current and future consoli-
dation opportunities. To provide a formal definition
of this problem, we extended the delivery dispatching
problem by including dispatch windows. We formu-
lated this problem as a Markov decision model. Like
many stochastic models, this model becomes computa-
tionally intractable for larger instances of the problem.
To be able to solve larger instances, we provided an
ADP algorithmbased on value function approximation
that overcomes the computational problems associated
with large state spaces and outcome spaces. The con-
solidation policy is learned offline and might be peri-
odically updated, for example, if the stochastic arrival
process changes. The learned policy can be applied to
online decision problems. To address computational
problems with large action spaces, we formulated an
ILP model to solve the decision problem within the
ADP algorithm.
In our numerical experiments, we demonstrated

a three-step methodology to find suitable VFAs for
realistic-sized problems. First, we showed how to use
small instances to evaluate basis functions, using the
exact values obtained by dynamic programming as
a benchmark. We tested various sets of basis func-
tions. The set of basis functions yielding the best ap-
proximations contains the following explanatory vari-
ables: (i) the number of possible destinations to visit,
(ii) the number of vehicles available per dispatch time,
and (iii) the total volumes per latest delivery time. The
resulting policy returns values that, on average, devi-
ate 2.39% from the optimal values. Second, we evalu-
ated the performance of the ADP policies on various
medium-sized instances, testing the effects of various
network settings and flexibility in dispatch windows.
To evaluate the quality of the ADP policies, we com-
pared their performance with two policies based on

heuristic rules, with a direct cost-minimization pol-
icy, and with a post-decision rollout policy. Using the
best set of basis functions, we obtained an ADP policy
that consistently outperformed the benchmark poli-
cies. The myopic benchmark policies are typically out-
performed by 10%–15%, the rollout benchmark poli-
cies are outperformed by 2%–8%. Third, we solved two
large instances—having state spaces of sizes � 10178

and action spaces of sizes up to 2120—using the ILP to
solve the decision problems within ADP. The results
illustrate the applicability of our algorithm for realisti-
cally sized instances. The resulting ADP policy outper-
formed the benchmark policies; for these instances, the
myopic benchmark policies are outperformed by 6%
to 20%. On average, we solved the ILP in 4.52 seconds
in our large instances, which is fast enough for online
decision making. However, because of the large num-
ber of iterations needed in ADP, the required computa-
tional effort to learn the consolidation policy remains
significant. Therefore, heuristic reduction of the action
space might be beneficial before implementing our
approach in practice.

Acknowledgments
This study was partially funded by Dinalog, the Dutch Insti-
tute for Advanced Logistics. The authors are grateful for the
reviews of two anonymous referees; their comments helped
to substantially strengthen the structure and presentation of
this paper. The authors thank Rune Larsen from the Techni-
cal University of Denmark for his help with the Copenhagen
test instance.

References
Arslan A, Agatz N, Kroon LG, Zuidwĳk RA (2016) Crowdsourced

delivery–a pickup and delivery problem with ad-hoc drivers.
Working paper, Erasmus University Rotterdam, Rotterdam,
Netherlands.

Bertazzi L, Bosco A, Guerriero F, Lagana D (2013) A stochastic inven-
tory routing problem with stock-out. Transportation Res. Part C:
Emerging Tech. 27:89–107.

Bohne S, Ruesch M, Barrera G (2015) Best practice hand-
book 2. Technical report, BESTFACT. https://www.researchgate
.net/publication/283150066_BESTFACT_Best_Practice_Handbook_2.

Bookbinder JH, Cai Q, He Q-M (2011) Shipment consolidation by
private carrier: The discrete time and discrete quantity case.
Stochastic Models 27(4):664–686.

BurgerM, Repiský J (2012) Problems of linear least square regression.
Proc. ARSA-Adv. Res. Sci. Areas 1(1):257–262.

Cai Q, He Q-M, Bookbinder JH (2014) A tree-structured Markovian
model of the shipment consolidation process. Stochastic Models
30(4):521–553.

Çetinkaya S (2005) Coordination of inventory and shipment consol-
idation decisions: A review of premises, models, and justifica-
tion. Geunes J, Akçali E, Pardalos PM, Romeĳn HE, Shen Z-JM,
eds. Applications of Supply Chain Management and E-Commerce
Research (Springer Science and BusinessMedia, NewYork), 3–51.

Çetinkaya S, Bookbinder JH (2003) Stochastic models for the dispatch
of consolidated shipments. Transportation Res. Part B: Method-
ological 37(8):747–768.

ChangHS,Hu J, FuMC,Marcus SI (2013) Simulation-Based Algorithms
for Markov Decision Processes (Springer, London).

Cherrett T, Allen J, McLeod F, Maynard S, Hickford A, Browne
M (2012) Understanding urban freight activity–key issues for
freight planning. J. Transport Geography 24:22–32.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://www.researchgate.net/publication/283150066_BESTFACT_Best_Practice_Handbook_2
https://www.researchgate.net/publication/283150066_BESTFACT_Best_Practice_Handbook_2

van Heeswijk, Mes, and Schutten: The DDP-TW for Urban Consolidation Centers
Transportation Science, Articles in Advance, pp. 1–19, ©2017 INFORMS 19

Coelho LC, Cordeau J-F, Laporte G (2014) Thirty years of inventory
routing. Transportation Sci. 48(1):1–19.

Coelho LC, Laporte G, Cordeau J-F (2014) Heuristics for dynamic
and stochastic inventory-routing. Comput. Oper. Res. 52:55–67.

Crainic TG, Ricciardi N, Storchi G (2004) Advanced freight trans-
portation systems for congested urban areas. Transportation Res.
Part C: Emerging Tech. 12(2):119–137.

Daganzo CF (1984) The distance traveled to visit N points with a
maximum of C stops per vehicle: An analytic model and an
application. Transportation Sci. 18(4):331–350.

Figliozzi MA (2009) Planning approximations to the average length
of vehicle routing problems with time window constraints.
Transportation Res. Part B: Methodological 43(4):438–447.

Goodson JC, Ohlmann JW, Thomas BW (2013) Rollout policies for
dynamic solutions to the multivehicle routing problem with
stochastic demand and duration limits. Oper. Res. 61(1):138–154.

Goodson JC, Thomas BW, Ohlmann JW (2017) A rollout algorithm
framework for heuristic solutions to finite-horizon stochastic
dynamic programs. Eur. J. Oper. Res. 258(1):216–229.

Higginson JK, Bookbinder JH (1995) Markovian decision processes
in shipment consolidation. Transportation Sci. 29(3):242–255.

Klapp MA, Erera AL, Toriello A (2016) The one-dimensional dyna-
mic dispatch waves problem. Transportation Sci., ePub ahead of
print May 20, http://dx.doi.org/10.1287/trsc.2016.0682.

Larsen A,Madsen OBG, SolomonM (2002) Partially dynamic vehicle
routing—Models and algorithms. J. Oper. Res. Soc. 53(6):637–646.

Lium A-G, Crainic TG, Wallace SW (2009) A study of demand
stochasticity in service network design. Transportation Sci.
43(2):144–157.

Luxen D, Vetter C (2011) Real-time routing with OpenStreetMap
data. Agrawal D, Cruz I, Jensen CS, Ofek E, Tanin E, eds. Proc.
19th ACM SIGSPATIAL Internat. Conf. Adv. Geographic Inform.
Systems, GIS ’11 (ACM, New York), 513–516.

Meng Q, Wang T, Wang S (2012) Short-term liner ship fleet planning
with container transshipment and uncertain container shipment
demand. Eur. J. Oper. Res. 223(1):96–105.

Minkoff AS (1993) A Markov decision model and decomposition
heuristic for dynamic vehicle dispatching. Oper. Res. 41(1):77–90.

Mutlu F, Çetinkaya S, Bookbinder JH (2010) An analytical model
for computing the optimal time-and-quantity-based policy for
consolidated shipments. IIE Trans. 42(5):367–377.

Nesterova N, Quak H (2015) Validating freight electric vehicles in
urban Europe. Technical report, TNO, The Hague, Netherlands,
http://frevue.eu/wp-content/uploads/2016/05/FREVUE-D1.3-
State-of-the-Art-add1.pdf.

Nuzzolo A, Crisalli U, Comi A (2012) A delivery approach model-
ing for urban freight restocking. J. Civil Engrg. Architecture 6(3):
251–267.

Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of
dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1):1–11.

Powell WB (2011) Approximate Dynamic Programming: Solving the
Curses of Dimensionality, Vol. 842 (John Wiley and Sons,
Hoboken, NJ).

Powell WB, Simão HP, Bouzaiene-Ayari B (2012) Approximate
dynamic programming in transportation and logistics: A uni-
fied framework. Eur. J. Transportation Logist. 1(3):237–284.

Ritzinger U, Puchinger J, Hartl RF (2016) A survey on dynamic and
stochastic vehicle routing problems. Internat. J. Production Res.
54(1):215–231.

Robusté F, Estrada M, López-Pita A (2004) Formulas for estimating
average distance traveled in vehicle routing problems in ellip-
tic zones. Transportation Res. Record: J. Transportation Res. Board
1873(1):64–69.

Simão HP, Day J, George AP, Gifford T, Nienow J, Powell WB (2009)
An approximate dynamic programming algorithm for large-
scale fleet management: A case application. Transportation Sci.
43(2):178–197.

SteadieSeifi M, Dellaert NP, Nuĳten WPM, Van Woensel T, Raoufi R
(2014) Multimodal freight transportation planning: A literature
review. Eur. J. Oper. Res. 233(1):1–15.

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction,
Vol. 1 (MIT Press, Cambridge, MA).

Topaloglu H, Powell WB (2006) Dynamic-programming approxima-
tions for stochastic time-staged integer multicommodity-flow
problems. INFORMS J. Comput. 18(1):31–42.

Ulmer MW, Brinkmann J, Mattfeld DC (2015) Anticipatory planning
for courier, express and parcel services. Dethloff J, Haasis H-D,
Kopfer H, Kotzab H, Schönberger J, eds. Logistics Manage-
ment (Springer International Publishing, Cham, Switzerland),
313–324.

Ulmer MW, Goodson JC, Mattfeld DC, Henning M (2017) Off-
line-online approximate dynamic programming for dynamic
vehicle routing with stochastic requests. Transportation Sci.
Forthcoming.

van Heeswĳk WJA, Larsen R, Larsen A (2017) An urban con-
solidation center in the city of Copenhagen: A simulation
study. Beta Working Paper Series, TU Eindhoven, Eindhoven,
Netherlands.

van Heeswĳk WJA, Mes MRK, Schutten JMJ (2015) An approxi-
mate dynamic programming approach to urban freight distribu-
tion with batch arrivals. Corman F, Voss F, Negenborn RR, eds.
Computational Logisitics, Lecture Notes Comput. Sci., Vol. 9335
(Springer International Publishing, Cham, Switzerland), 61–75.

Voccia SA, Campbell AM, Thomas BW (2017) The same-day delivery
problem for online purchases. Transportation Sci., ePub ahead of
print May 19, http://dx.doi.org/10.1287/trsc.2016.0732.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
0.

89
.4

6.
45

]
on

 0
1

M
ar

ch
 2

01
8,

 a
t 0

6:
32

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1287/trsc.2016.0682
http://frevue.eu/wp-content/uploads/2016/05/FREVUE-D1.3-State-of-the-Art-add1.pdf
http://frevue.eu/wp-content/uploads/2016/05/FREVUE-D1.3-State-of-the-Art-add1.pdf
http://dx.doi.org/10.1287/trsc.2016.0732

	Introduction
	Literature Review
	Problem Formulation
	Fleet Description
	Order Types
	State Description
	Action Description
	Cost Function
	Transition Function
	Objective Function

	Solution Method
	Dimensionality of the Outcome Space
	Dimensionality of the State Space
	Dimensionality of the Action Space
	Algorithmic Outline
	Basis Function Design
	Categorization of Basis Functions.
	Selecting Basis Functions.
	Use of Nonsegregated Basis Functions.
	Regression Procedure to Update the Weights.
	Selected Basis Functions

	Experimental Setup
	Instance Properties
	Benchmark Policies
	Generating a Set of Initial States

	Numerical Results
	Experiments on Small Instances
	Results in the Offline Learning Phase.
	Results in the Online Phase.

	Experiments on Medium-Sized Instances
	Results in the Offline Learning Phase.
	Results in the Online Phase.

	Experiments on Large Instances

	Conclusions

