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ABSTRACT

The problem of determining stresses, phase compositions and temperature distribu-
tions during the transformation hardening of steel with a CO,-laser beam is investi-
gated.

To model the different phases in each material point a parallel fraction model is
used, in which each fraction represents one phase.

The description of phase transformations is obtained by an incremental formulation
of the Avrami-equation for isothermal transformation.

A model is developed to describe the superheating of ferrite and pearlite. The model
is demonstrated by a detailed computation of stresses, deformations and phase com-
positions in the case of a stationary laser flash.

1. INTRODUCTION

The conventional hardening of steel is done by heating the whole product to a tem-
perature above Ac3 (= 800 °C), where all the ferrite and pearlite is allowed to
transform to austenite. Quenching in water or oil will result in rapid cooling of
the product. Part of the austenite is maintained until below the Ms temperature
(martensite start 250°C - 550°C, depending on chemical composition). This will then
transform to martensite, which gives the desired hardening.

With laser hardening however, heat is applied locally, using a laser beam. The tem-
perature rises very rapidly to almost melting temperature. Only a thin layer is
heated, the other parts of the product remain cold. Due to the high temperature
gradients, thermal conduction to the cold bulk material will cause sufficiently
rapid cooling of the heated parts and most of the austenite, that is formed during
heating, will transform to martensite . 3 6

The process involves extremely high heating and cooling rates (10" - 10" K/s). Also,
the interaction time is very short (= 1s).

As a result, compared to conventional hardening, less energy is needed, the grain
sizes are smaller and there is less risk of distortion of the product.

One of the complications is, that due to the short interaction time not all of the
ferrite and pearlite in the heated region are allowed to transform to austenite. A
considerable superheating of ferrite may occur. One object of this paper is to show
how this phenomenon may be modeled.

2. PHASE TRANSFORMATIONS
2.1. Diffusion controlled transformations
The equilibrium phase composition at different temperatures can be read from the
equilibrium phase diagram (Fig. 1.). Some of the transitions between different
phases require diffusion of carbon. This means in general, that these transitions

take some time to materialize. The kinetics are governed by the Avrami equationz,
which is a solution to the diffusion equation and takes into account, the time
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required for nucleation of the new phase. For isothermal transformation we have:
n
W=vo+ B-yo) (1-e") (1)

Here T(T) and n(T) are material parameters, which depend on the temperature T, y(T)
is the volume fraction, which should be present in an equilibrium situation and yg
is the fraction present at the start of transformation. The rate of change of the
fraction, in the case of isothermal transformation, can be found by differentiation:

n
dy _ (3-vo) n 1 ot e-(t/T)
dt L

Assuming, that the rule of additivity is applicables, and, that the direction into
which the transformation proceeds, does not change, the time t can be eliminated, by
using equation (1):

t =1 1n("’°"'Z’)

y-y
Which yields for the isothermal rate of phase change:
n-1
9“~’(¢.T)=($—¢)2{1n("’°—'—‘{‘-)}“ (2)
dt -y

For transformation of austenite to ferrite and pearlite, the material parameters n
and T can be obtained from TTT diagrams. For transformation of ferrite and pearlite
to austenite such diagrams are not available.

Heating
Above T,; the phase diagram gives an equilibrium fraction pearlite Y, = 0. The iso-
thermal rate of change of the pearlite fraction is:

n-1

dy n 7/ n

=P = - puing ¥po

dt ¥p = { ln( U )} (3)
The equilibrium fraction ferrite is @a . Above T,3 according to equilibrium ﬁa is

zero.

However, as long as not all the pearlite has been transformed to austenite, there is
not sufficient carbon available to transform ferrite to austenite according to its
equilibrium contents. Therefore the phase rate equation has to be suitably modified.
If still y, pearlite is present, the equilibrium fraction ferrite has to be correc-
ted for the carbon deficiency.

fos = B+ (YR Va )y,

The index s stands for superheating. The difference between volume fraction and mass
fraction is neglected. Substitution in (1) yields:

"’a = 'llao + ('vas - '/’ao) ( 1 - e-(t/T) )

and et
_d_w_a = =(Yg - 'T'as) 2 { ln( Yoo~ 'fas) }n + jd_'l_’&s Yoo~ 'fa (4)
dt wo. - '/’a.s dt Yoo~ 'I’a.s
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where

Wes  _ (wao-% ) Wb
dt Yoo dt
Upon reaching a temperature of approximately 910 °C the remaining ferrite will
transform to austenite with a low carbon contents. By diffusion the carbon concen-
tration will level out and the austenite is homogenized .

Cooling

Because either the temperature was too low, or the time for homogenization was too
short, locally low carbon austenite may still be present, when cooling starts. Since
no carbon diffusion is required, this will instantaneously transform back to fer-
rite, when the temperature drops below 910°C. Therefore it is necessary to distin-
guish between low and high carbon austenite. Here this is done by treating the low
carbon austenite as superheated ferrite.

As long as Y, > Yo, equation (4) must be used for the transformation of ferrite to
austenite. When the material is cooled below T,3, the current ferrite fraction will
drop below the equilibrium fraction and the back transformation from austenite to
ferrite will start.

The TTT diagrams as found in steel hardening handbooks are valid for cooling of
steel, which has been fully homogenized in the austenitic temperature range. Trans-
formation times of non homogeneous austenite to ferrite and pearlite will be con-
siderably shorter. There is less delay due to nucleation and already some transfor-
mation product is formed.

The transformation of homogeneous austenite back to ferrite and pearlite ideally
starts with ferrite and pearlite contents Yoo = Ypo = 0. Use equation (2), with

Yoo = O:

n-1
‘%= -(V’a-'i”a) %{ ln( _'/J_a__) }n
dt Vo = VYo

This way it is automatically taken into account, that transformation of nonhomo-
geneous austenite proceeds without delay.

2.2. Martensite transformation

The transformation of austenite to martensite is not diffusion controlled, but
rather is an instantaneous change of crystal structure. The amount of martensite
formed, depends only on temperature.

Ym = Yoms (1 - e P Tas=T) for T < Tpe

Here Y, is the volume fraction martensite, Y.ns is the amount of austenite, that is
still present when the Ms temperature T,; is reached. As well T,5, as B depend on
the chemical composition. The rate of change of the martensite fraction can then be
expressed as:

Wy _ -B(Tys-) dT

at B ¥ms © at

or, in terms of current fraction contents:

Ay, _ dy. _ dT

at - "at - F¥r g (5)

where ¢, is the current austenite fraction.
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3. TEMPERATURE CALCULATIONS

The equation of conservation of energy, neglecting heat production due to deforma-
tions, is:

V.(2.9YT)-pé&=0 (6)

Here A is the second order tensor of conductivity, p is the mass density and e is
the specific internal energy. The internal energy is a summation of the energy per
fraction.

e = E wk ek

Per fraction the internal energy is a function of the temperature.
T
e“(T) = J ck(T) dT + ro
TO

where c: is the specific heat of the kth phase. So the rate of internal energy is:
pé= z pr y* c: T + z pk y* e~ (7)
The first term is the regular specific heat, the second term is a model of latent
heat of phase transformation.
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Fig. 1. Equilibrium phase diagram Fe-C Fig. 2. Parallel fraction model

4. STRESS CALCULATIONS

The calculation of stresses due to quenching has been studied by a number of

researchers™ Only the important equations will be repeated here.

The equilibrium equation in the absence of inertia and body forces, can be written
as:

c.V =0 (8)

Here ¢ is the stress tensor. The stresses depend on the strains and the strain de-
pends on the displacements:
e=34(uv+7vu) (9)
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The strain tensor £ is assumed to consist of a number of independent contributions:

el pl tp

th tr
E=€g +g +g +g +eg

where gel is the elastic part, gpl is the plastic strain, gth is the thermal

dilatation, etr is the strain due to phase transformation and € P is due to trans-
formation plastlclty The last two are specific for phase transformation calcula-
tions and will be treated in some detail.

4.1. Transformation (and thermal) strain

The mass density can be written as a weighted sum of the phase fractions.

k k
=2y p
The mass density pk of each phase is a function of temperature.
do _ o " gx de° dT
dat at P ¥ Y ar at

The first term on the right hand side is the density change due to phase transforma-
tion, the second term, due to thermal expansion. For isotropic materials, density
change and lineal strain € are related by:

de = - 1 de
3p
The strain rates due to phase transformation and thermal expansion are:
tr 1 p* dy”
€ =-§§Ea-fl (10)
k Kk k
stho_ _1g¥idetdT ok p® ki dT
€ = -3%, aT at = ¥V o ¢ i (1)

Here 1 is the second order unit tensor and ak is the coefficient of thermal
expansion of phase k.

4.2. Transformation plasticity

Experiments show7, that applying a stress, while phase transformation occurs,
results in a permanent strain, which can not be explained from yielding of one of
the phases involved. A qualitative description can be obtained by considering stress
relaxation in the transformed phase.

For low stress levels, this strain is found to be proportional to the applied stress
and to the amount of phase transformed. The usual generalization to a multi-axial
stress state expresses the transformation plasticity proportional to the deviator

stress s.

s = ¢-itr(@) 1

.tp  _ dl[l

&€ = 3K 3t & (12)

The constant K depends on the chemical composition of the material involved, on the
type of transformation and on the direction, into which the transformation proceeds.

4.3. Constitutive stress-strain equations

The stress rate is assumed proportional to the elastic strain rate.
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The description of plastic deformation is based on the Von Mises yield criterion,
with isotropic hardening. Plastic deformation will occur when the deviator stress
exceeds the yield surface, which depends on the one dimensional yield stress oy.

0(§,ep,T) =s: s - g of(ep,T) =0

Using classical flow theory for plasticity, the plastic strain rate is given by:

.pl
er =

[SEEA]
Q| %
no

The equivalent plastic strain rate & is defined by:

=V !

After solving for the plastic strain rate, an expression for the stress rate is

found
3Gss .
. 1 1 do = = . 1p 1+V doy Lk k
¢= (E-Q-11% g v ) (3585l XK )y
= ( £ 3G aeP 03 z 3p 1-2v 5eP
k k 2Gs .
sl deog 1y (diE) g grn-21%y Ol (13)
3k p dT 1-2v = dT\ = = = 3G 8e? o BT
y

Where G is the shear modulus and v is Poisson’s ratio. The stress rate is found to
be composed of three terms, a strain rate dependent part, a phase transformation
dependent part and a temperature rate dependent part.

More than one phase may be present simultaneously. Then it is not justified to use
this macroscopic expression for the stress rate. Each phase has different elasticity
coefficients, yield stress and hardening modulus.

A different stress for each phase is assumed and the macroscopic stress is written
as a weighted sum of the stress per phase:

_ kK k
c=Fv ¢

A material model is constructed, where the transformation plasticity, the thermal
expansion and the transformation induced strain are macroscopic and the elastic and
plastic strains are evaluated per phase fraction (Fig. 2.).

The constitutive equations for the different phases are modified accordingly.

S. FINITE ELEMENT DISCRETIZATION
Following Galerkin’s method, the mechanical and the thermal equilibrium equations

(8) and (6) are written in the weak form. After applying the divergence theorem and
disregarding surface tractions we find:

JUv:gav=0 (14a)
\4

J(VB.A.VT+0p&)dV + fOgdS =0 (14b)
v S

where v and 6 are virtual velocity and virtual temperature fields, ¢ is the heat
flow through the surface S of the body and V is the volume of the body. Substitution
of (7), (9) and (13) yields an expression in the velocities U and v, the tempera-
tures T and 6 and the phase composition .

The body is divided into finite elements. In each element the velocity and tempera-
ture fields are approximated by interpolation between unknown nodal point values,
which are gathered in the arrays { U } and { T }. After carrying out the appropriate
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integrations and requiring that (14) holds for all values of v and 6, we find a set
of algebraic equations in the components of { U } and { T }.

[ (K] [RI1]fU = {F()}, (15)
- IBI]T -[AI{T} - {QW)} - {@}

The first row is the discrete version of equation (14a). The sub-matrix [K] is the
stiffness matrix, [R] is the tbermo-mechanical coupling matrix containing the
thermal expansion terms and the temperature dependence of the mechanical properties.
The vector {F} represents the dilatation due to phase transformation.

The second row corresponds to equation (14b). The matrix [B] is the heat capacity
matrix, [A] is the heat conduction matrix, the vector {Q} contains the latent heat
due to phase transformation and {$} is the heat flow through the surface.

S.1. Incremental Solution Procedure

After multiplication of the rate equation (15) by the time step At, we obtain an
incremental formulation in {AU} and {AT}. The right-hand side is evaluated at time
t = t + 3At. The extra terms with {AT} are then included in the sub-matrices [R] and
[B]. This way an implicit formulation is obtained.

[K] [R]fau) = F)) . (16)
- [ B] AT -[AI{T} - {Q(y)} - {®}
The matrices [R*] and [B*] are evaluated as:

o _ 3 -
[R"] = [R] - 3[F(:2 ]
(8" = [B] + 3[A] + 3102 ¥)] + 3[2 ol

A solution for {Au} gnd {AT} js sought by iteration until equilibrium is reached.
The matrices [K], [R ] and [B ] are updated at the start of each iteration.

6. APPLICATION

The theory as outlined here is demonstrated by a simulation of the hardening of a
central spot on a steel disk. The simulation is accompanied by an experiment and the
results of both are compared.

The laser is a 1540 W CO, laser. The beam diameter at the specimen is 8 mm.

A 10 mm thick slice is cut from a cylindrical bar with diameter 40 mm. The material
is commercially available steel C45. No heat treatment is applied prior to laser
treatment. The surface is coated with graphite to enhance optical efficiency.

A number of different interaction times were used. It was found, that melting of the
surface layer occurred after 0.7 seconds exposure.

The simulation is carried out on a model, consisting of a 11x10 mesh of axi-
symmetric four node elements. The mesh is biased towards the center of the spot.

The total simulation was done in 150 time steps, each requiring 3 or 4 equilibrium
iterations. The run time was approximately 20 hr on a pVax 2000 computer.

The four phases each have different temperature dependent mechanical and thermal
properties (Table 1).

The optical efficiency of the surface is assumed 70 %, which yields a total power of
1200 W. The distribution of the power over the beam area is assumed constant.

In the simulation the melting temperature was reached after 0.6 sec heating.

The results of the calculation with interaction time 0.6 s are presented here and
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material properties ferrite/pearlite austenite martensite
Youngs modulus 20 :C 210 GPa 200 GPa 200 GPa
600 C 50 GPa
1500 C 90 GPa 50 GPa
Yield stress 20 :C 360 MPa 190 MPa 1600 MPa
600 C 40 MPa 30 MPa 1250 MPa
1500 C 10 MPA 10 MPa
Specific density 20 °C 7850 kg/m> 8000 kg/m> 7760 kg/mz
600 C 3 3 7575 kg/m
1500 C 7300 kg/m 7300 kg/m
Specific heat 20 :C 480 J/kgK 480 J/kgK 480 J/kgK
1500 C 900 J/kgK 900 J/kgK 900 J/kgK
Conductivity 20 :C 49 W/mK 1S5 W/mK 40 W/mK
600 C 30 W/mK
1500 C 25 W/mK 25 W/mK

Table 1. Material properties for simulation of laser hardening

are compared to the results of a test with the same interaction tinme.
Figures 3 and 4 show the temperature history and the phase fraction history of two

points, one on the surface and the other at a depth of 0.44 mm.

In Fig. 5 the

eventual martensite concentration is compared to a microscopic picture of the heat
affected zone. The martensite fraction as calculated is shown compared with measured

hardness values in Fig. 6. The extent of the heat affected zone is shown in Fig. 7.
The diameter of the martensite zone in the test was approximately 6.2 mm.

From the comparison of calculations with measurements it appears,
lation the amount of martensite is slightly overestimated. The overall picture

however compares surprisingly well.
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Fig. 4. Phase fraction history at the
surface and 0.44 mm below the
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Fig. 5. Comparison of the calculated martensite fraction with microscope picture of
the heat affected zone.

The plot of the deformations (Fig. 8) shows the typical convexity of the treated
surface, with a slight raise (* 12 um) of the heat affected zone. The residual
radial stress at the center line (Fig. 9) also shows the typical patterng’10 of a
small compression zone at the surface and high tension stresses just below the heat
affected zone. The Absolute values of the stress however are at least twice as high
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Fig. 6. Comparison of calculated Fig. 7. The distribution of the
martensite fraction with martensite fraction in the
measured hardness data (HV300) heat affected zone
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as reported in the literatureg. This is mainly due to the fact that the stress state
is axi-symmetric, rather than two-dimensional. Furthermore, the work hardening rule

as employed here tends to predict rather high yield stresses when the plastic strain
is high.
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Fig. 8. Deformation of the heat treated disc
after cooling down
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Fig. 9. Residual radial stress at the
center line

7. CONCLUSIONS
The possibilities to use finite elements for the calculation of temperatures, phase
contents, deformations and stresses during laser heat treatment are demonstrated.

In order to perform reliable simulations, mechanical as well as thermodynamic
properties of the constituent phases are required at room temperature and at
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elevated temperatures.
Simulation of the three dimensional case of a scanning laser beam is not yet
feasible, keeping in mind the computational effort required.
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