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5. Models and Simulations

Nancy J. Nersessian, Miles MacLeod

In this chapter we present some of the cen-
tral philosophical issues emerging from the
increasingly expansive and sophisticated roles
computational modeling is playing in the natural
and social sciences. Many of these issues concern
the adequacy of more traditional philosophical
descriptions of scientific practice and accounts of
justification for handling computational science,
particularly the role of theory in the generation
and justification of physical models. However, cer-
tain novel issues are also becoming increasingly
prominent as a result of the spread of compu-
tational approaches, such as nontheory-driven
simulations, computational methods of infer-
ence, and the important, but often ignored, role
of cognitive processes in computational model
building.

Most of the philosophical literature on models
and simulations focuses on computational simu-
lation, and this is the focus of our review. However,
we wish to note that the chief distinguishing
characteristic between a model and a simula-
tion (model) is that the latter is dynamic. They can
be run either as constructed or under a range of
experimental conditions. Thus, the broad class of
simulation models should be understood as com-
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prising dynamic physical models andmental mod-
els, topics considered elsewhere in this volume.

This chapter is organized as follows. First in
Sect. 5.1 we discuss simulation in the context
of well-developed theory (usually physics-based
simulations). Then in Sect. 5.2 we discuss simula-
tion in contexts where there are no over-arching
theories of the phenomena, notably agent-based
simulations and those in systems biology. We then
turn to issues of whether and how simulation
modeling introduces novel concerns for the phi-
losophy of science in Sect. 5.3. Finally, we conclude
in Sect. 5.4 by addressing the question of the rela-
tion between human cognition and computational
simulation, including the relationship between
the latter and thought experimenting.

5.1 Theory-Based Simulation

A salient aspect of computational simulation, and the
one which has attracted the most substantial philo-
sophical interest so far, is its ability to extend the
power and reach of theories in modern science beyond
what could be achieved by pencil and paper alone.
Work on simulations has concentrated on simulations
built from established background theories or theoreti-
cal models and the relations between these simulations
and theory. Examples have been sourced mainly from
the physical sciences, including simulations in astro-
physics, fluid dynamics, nanophysics, climate science
and meteorology.Winsberg has been foremost in study-

ing theory-driven forms of simulation and promoting
the importance of philosophical investigation of it by
arguing that such simulations set a new agenda for
philosophy of science [5.1–5]. He uses the case of simu-
lation to challenge the longstanding focus of philosophy
of science on theories, particularly on how they are jus-
tified [5.1, 3, 5]. Simulations, he argues, cannot simply
be understood as novel ways to test theories. They are
in fact rarely used to help justify theories, rather simula-
tions apply existing theories in order to explore, explain
and understand real and possible phenomena, or make
predictions about how such phenomena will evolve in
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time. Simulations open up a whole new set of philo-
sophical issues concerning the practices and reliability
of much modern science.

Winsberg’s analysis of theory-based simulation
shares much with Cartwright’s [5.6] and Morgan and
Morrison’s [5.7] challenges to the role of theories. Like
them, he starts by strongly disputing the presupposition
that simulations are somehow deductive derivations
from theory. Simulations are applied principally in
the physical sciences when the equations generated
from a theory to represent a particular phenomenon
are not analytically solvable. The path from a theory
to a simulation requires processes of computerization,
which transform equations into tractable computable
structures by relying on practices of discretization
and idealization [5.8]. These practices employ specific
transformations and simplifications in combination
with those used to make tractable the application of
theoretical equations to a specific phenomenon such
as boundary conditions and symmetry assumptions.
As such simulations are, according to Winsberg [5.1],
better construed as particular articulations of a theory
rather than derivations from theory. They make use of
theoretical information and the credibility, explanatory
scope and depth, of well-established theories, to pro-
vide warrant to simulations of particular phenomena.
Inferences drawn by computational simulations have
several features in this regard; they are downward,
motley and autonomous [5.9]. Inferences are downward
because they move from theory to the real world (rather
than from the real world to theory). They are motley
because they depend not just on theory but on a large
range of extra-theoretical techniques and resources
in order to derive inferences, such as approximation
and simplification techniques, numerical methods,
algorithmic methods, computer languages and hard-
ware, and much trial and error. Finally, simulations
are autonomous, in the sense of being autonomous
from both theory and data. Simulations, according to
Winsberg, are principally used to study phenomena
where data is sparse and unavailable. These three con-
ditions on inference from simulation require a specific
philosophical evaluation of their reliability.

Such evaluation is complicated by the fact that re-
lations between theory and inferences drawn from the
simulation model are unclear and difficult to untangle.
As Winsberg [5.1, 9] suggests it is a complex task to
unpack what role theories play in the final result given
all these intervening steps. The fact that much valida-
tion of simulations is done throughmatching simulation
outputs to the data, muddies the water further (see
also [5.10]). A well-matched simulation constructed
through a downward, motley and autonomous process
from a nonetheless well-established theory raises the

question of the extent to which the confirmation af-
forded to the theory flows down to the simulation [5.2].
For instance, although fitting a certain data set might
well be the dominant mode of validation of a simu-
lation model, the model could be considered to hold
outside the range of that data because the model applies
a well-accepted theory of the phenomenon thought to
hold under very general conditions.

There is widespread agreement that untangling the
relations between theories and simulations, and the re-
liability of simulations built from theories will require
more in depth investigation of the actual practices sci-
entists use to justify the steps they make when building
a simulation model. In the absence of such investiga-
tions discussions of justification are limited to consider-
ations about whether a simulation fits the observational
data or not. Among other things, this limitation hides
from view important issues about the warrant of the
various background steps that transform theoretical in-
formation into simulations [5.10]. In general, what is
required is an epistemology of simulationwhich can dis-
cover rigorous grounds upon which scientists can and
do sanction their results, and more properly the role of
theory in modern science.

The concern with practices of simulation has
opened up a new angle on the older discussion about
the structure of theories. Humphreys [5.11] has used
the entanglement of theory and simulation in modern
scientific practice to reflect more explicitly upon the
proper philosophical characterization of the structure
of physical theories. Simulations, as with other mod-
els, are not logical derivations from theory which is
a central, but incorrect, feature of the syntactic view.
Humphreys also argues, however, that the now dom-
inant semantic view of theories, which treats theories
as nonlinguistic entities, is not adequate either. On the
semantic view a syntactical formulation of a theory,
and whether different formulations might be solvable
or not, is not important for philosophical assessment
of relations of representations to the world. Relations
of representation are only in fact sensibly held by
models not theories. Both Humphreys and Winsberg
construe the semantic view as dismissing the role of
theories in both normative and descriptive accounts of
science, in place of models. But as Humphreys [5.12,
p. 620] puts it, “the specific syntactic representation
used is often crucial to the solvability of a theory’s
equations”, and thus, the solvability of models derived
from it. Computational tractability, as well as choices of
approximation and simplification techniques, will de-
pend on the particular syntax of a theory. Hence both
the semantic and syntactic views are inadequate for
describing theory in ways that capture their role in sci-
ence.
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5.2 Simulation not Driven by Theory

Investigations, such as those by Winsberg and oth-
ers discussed in the previous section, have illustrated
the importance of close attention to scientific practice
and discovery when studying simulations. Simulation
manifests application-intensive, rather than theoretical,
processes of scientific investigation. As Winsberg [5.1]
suggests choices about how to model a phenomenon re-
liably are developed often in the course of the to and
fro blood, sweat and tears of the model-building pro-
cess itself. Abstract armchair points of view, distant
from an understanding of the contingent, but also tech-
nical and technological nature of these practices and
their affordances, will not put philosophers in a posi-
tion to create relevant normative assessments of good
simulation practices. What has thus far been established
by the accounts of theory-based simulation is that even
in the case where there is an established theory of the
phenomena, simulation model-building has a degree of
independence from theory and theory-building.

However, though the initial focus on theory-based
simulation in the study of simulation is not unsurpris-
ing given the historical preference in philosophy of
science for treating theory as the principal unit of philo-
sophical investigation, simulations are not just a tool
of theory-driven science alone. Pushing philosophical
investigation into model-building practices outside the
domain of theory-driven science reveals whole new
practices of scientific model production using compu-
tational simulations that are not in fact theory-based,
in the sense of traditional physical sciences. Some of
the most compelling and innovative fields in science
today, including, for instance, big-data biology, sys-
tems biology and neuroscience, and much modeling
in the social sciences, are not theory-driven. As Wins-
berg [5.5] admits (in response to Parker [5.13]), his
description of simulation modeling is theory-centric,
and neither necessarily applicable to understanding the
processes by which simulation models are built in the
absence of theory, nor an appropriate framework for
assessing the reliability and informativeness of mod-
els built that way. This is not to say that characteristics
of theory-based simulation are irrelevant to simulations
that are not. Both theory and nontheory-based simu-
lations share an independence of theory and there are
likely to be similarities between them, but there are also
profound differences.

One kind of simulation that is important in this re-
gard is agent-based modeling. Keller [5.14] has labeled
much agent-based modeling as modeling from above
in the sense that such models are not constructed us-
ing a mathematical theory that governs the motions of
agents. Agents follow local interactions rules. In many

fields in the social sciences and biology differential
equations cannot be used to aggregate accurately agent
or population behavior, but it is nonetheless possible
to hypothesize or observe the structure of individ-
ual interactions. An agent-based model can be used
to run those interactions over a large population to
test whether the local structures can reproduce aggre-
gate behavior [5.15]. As noted by Grüne-Yanoff and
Weirich [5.16] agent-based modeling facilitates con-
structing remarkably complex models within computa-
tionally tractable constraints that often go well beyond
what is possible with equation-based representations.

Agent-based models provide one exemplar of sim-
ulations that are not theory-driven. From an episte-
mological perspective, these simulations exhibit weak
emergence [5.17]. The underlying mechanisms are
thoroughly opaque to the users, and the way in which
emergent properties come about can simply not be
reassembled by studying the simulation processes.
This opacity raises questions about the purpose and
value of agent-based modeling. What kind of expla-
nation and understanding does an agent-based simu-
lation provide if the multiscale mechanisms produced
in a simulation are cognitively inaccessible? Further,
how is one to evaluate predictions and explanations
from agent-based simulations which, in fields like ecol-
ogy and economics, commonly simplify very com-
plex interactions in order to create computationally
tractable simulations. If a simplistic model captures
a known behavior, can we trust its predictions? To
address questions such as these we need an episte-
mology that can evaluate proposed techniques for es-
tablishing the robustness of agent-based models. One
alternative is to argue that agent-based models re-
quire a novel epistemology that is able to rationalize
their function as types of fictions rather than as rep-
resentations [5.18, 19]. Another alternative, presented
by Grüne-Yanoff and Weirich [5.16], is to argue that
agent-based models provide in many cases functional
rather than causal explanations of the phenomena they
simulate [5.20]. Agent-based model simulations rarely
control for all the potential explanatory factors that
might be relevant to a given phenomenon, and any
choice of particular interaction mechanism is usually
thoroughly underdetermined. In practice, all possible
mechanisms cannot be explored. But agent-based mod-
els can show reliably how particular lower-level ca-
pacities behave in certain ways, when modeled by
suitably general interactions rules, and can constitute
higher-level capacities no matter how multiply real-
ized those interactions might be. Hence, such mod-
els, even though greatly simplified, can extract useful
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information despite a large space of potential ex-
plananda.

Nontheory-driven forms of simulation such as
agent-based models provide a basis for reflecting more
broadly on the role theory plays in the production of
simulations, and the warrant a theory brings to simu-
lations based on it. Comparative studies of the kinds of
arguments used to justify relying on a simulation should
expose the roles well-established theories play. Our in-
vestigations of integrative systems biology (ISB) have
revealed that not all equation-based modeling is theory-
driven, if theory is construed in terms of theory in the
physical sciences. The canonical meaning based on the
physical sciences is something like a background body
of laws and principles of a domain.

In the case of systems biology, researchers gener-
ally do not have access to such theory and in fact the
kinds of theory they do make use of have a function dif-
ferent from what is usually meant by theory in fields
like physics [5.21]. There are certain canonical theories
in systems biology of how to mathematically represent
interactions among, for instance, metabolites, in the
form of sets of ordinary differential equations. These
posit particular canonical mathematical forms for repre-
senting a large variety of interactions (see Biochemical
Systems Theory [5.22]). In principle, for any particular
metabolic network, if all the interactions and reactants
are known, the only work for the modeler is to write
down the equations for a particular network and calcu-
late the parameters. The mathematics will take care of
the rest since the mathematical formulations of inter-
actions are general enough that any potential nonlinear
behaviors should be represented if parameters are cor-
rectly fixed.

For the most part, however, these canonical frame-
works do not provide the basic ontological information
from which a representation of a system is ultimately
drawn, in the way say that the Navier-Stokes equations
of fluid dynamics describe fluids and their component
interactions in a particular way. In practice, modelers
in systems biology need to assemble that information
themselves in the form of pathway diagrams which
more or less list the molecules involved and then make
their own decisions about how to represent molecular
interactions. A canonical framework is better inter-
preted as a theory of how to approximate and simplify
the information that the systems biologist has assem-
bled about a pathway in order to reliably simulate the
dominant dynamics of a network given sparse data and
complex nonlinear dynamics. Hence, there is no real
theory articulation in Winsberg’s terms. Researchers do
not articulate a general theory for a particular applica-
tion. The challenge for systems biologists is to build
a higher level or system level representation out of the

lower level information they possess. We have found
that canonical templates mediate this process by pro-
viding a possible structure for gluing together this lower
level information in a tractable way [5.21]. These theo-
ries do not offer any direct explanatory value by virtue
of their use.

Theory can in fact be used not just to describe
a body of laws and theoretical principles, but also to
describe principles that instruct scientists on how to re-
liably build models of given classes of phenomena from
a background theory. As Peck puts it [5.18, p. 393]:

“In traditional mathematical modeling, there is
a long established research program in which stan-
dard methods, such as those used for differential
equation modeling, are used to bring about certain
ends. Once the variables and parameters and their
relationships are chosen for the representation of the
model, standard formulations are used to complete
the modeling venture.”

If one talks about what physical scientists often
start with it is not just the raw theory itself but well-
established rules for formulating the theory and ap-
plying it with respect to a particular phenomenon. We
might refer to this latter sense of theory as a theory of
how to apply a background theory to reliably represent
a phenomenon. The two senses of theory are exclusive.
In the case of the canonical frameworks, what is meant
by theory is something closer to this latter rather than
former sense.

Additionally, the modelers we have studied are
never in a position to rely on these frameworks un-
critically and in fact no theory exists that specifies
which representations to use that will reliably lead to
a good representation in all data situations. In integra-
tive systems biology the variety of data situations are
very complex, and the data are often sparse and are
rarely adequate for applying a set mathematical frame-
work. This forces researchers in practice into much
more intensive and adaptive model-building processes
that certainly share much in common with the back and
forth processes Winsberg talks about in the context of
theory application. But these processes have the added
and serious difficulty that the starting points for even
composing the mathematical framework out of which
a model should be built are open-ended and need to be
decided based on thorough investigation of the possibil-
ities with the specific data available.

Canonical frameworks are just an option for mod-
elers and do not drive the model-building process in
the way physical theories do. Currently, systems bi-
ology generally lacks effective theory of either kind.
Modelers have many different choices about how to
confront a particular problem that do not necessarily
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involve picking up a canonical framework or sticking
to it. MacLeod and Nersessian [5.21] have documented
how the nontheory-derived model-building processes
work in these contexts. Models are strategic adaptations
to a complex set of constraints system biologists are
working under [5.23]. Among these constraints are:

� Constraints of the biological problem: A model
must address the constraints of the biological prob-
lem, such as how the redox environment is main-
tained in a healthy cell. The system involved is often
of considerable complexity.� Informational/data constraints: There are con-
straints on the accessibility and availability of ex-
perimental data and molecular and system parame-
ters for constructing models.� Cost constraints: ISB is data-intensive and relies
on data that often go beyond what are collected
by molecular biologists in small scale experiments.
However, data are very costly to obtain.� Collaboration constraints: Constraints on the abil-
ity to communicate effectively with experimental
collaborators with different backgrounds or in dif-
ferent fields in order to obtain expert advice or new
data. Molecular biologists largely do not understand
the nature of simulation modeling, do not under-
stand the data needs of modeling, and do not see the
cost-benefit of producing the particular data systems
biologists ask from them.� Time-scale constraints: Different time scales op-
erate with respect to generating molecular experi-
mental data versus computational model testing and
construction.� Infrastructure constraints: There is little in the way
of standardized databases of experimental informa-
tion or standardized modeling software available for
systems biologists to rely upon.� Knowledge constraints: Modelers’ lack knowledge
of biological systems and experimental methods
limits their understanding of what is biologically
plausible and what reliable extrapolations can be
made from the data sets available.� Cognitive constraints: Constraints on the ability to
process and manipulate models because of their
complexity, and thus constraints on the ability to
comprehend biological systems through modeling.

Working with these constraints requires them to be
adaptive problem-solvers. Given the complexity of the
systems, lack of data, and the ever-present problem of
computational tractability, researchers have to exper-
iment with different mathematical formulations, dif-
ferent parameter-fixing algorithms and approximation
techniques in highly intensive trial and error processes.

They build models in nest-like fashion in which bits of
biological information and data and mathematical and
computational techniques, get combined to create stable
models. These processes transform not only the shape
of the solutions, but also the problems, as researchers
figure out what actual problem can be solved with the
data at hand. Simulation plays a central exploratory role
in the process. This point goes further than Lenhard’s
idea of an explorative cooperation between experimen-
tal simulation and models [5.8]. Simulation in systems
biology is not just for experimenting on systems in or-
der to sound out the consequences of a model [5.8,
p. 181], but plays a fundamental role in incrementally
building the model and learning the relevant known and
sometimes unknown features of a system and gaining
an understanding of its dynamics. Simulation’s roles as
a cognitive resource make the construction of represen-
tations of complex systems without a theoretical basis
possible (see also [5.24, 25]).

Similar conclusions have been drawn by Peck for
ecology which shares with systems biology the com-
plexity in its problems and a lack of generalizable
theory. As Peck [5.18, p. 393] points out:

“there are no formal methodological procedures for
building these types of models suggesting that con-
structing an ecological simulation can legitimately
be described as an art.”

This situation promotes methodological pluralism
and creative methodological exploration by modelers.
Modelers in these contexts thus focus our attention on
the deeper roles (sometimes called heuristic roles [5.5])
that simulation plays in the ability of researchers to
explore potential solutions in order to solve complex
problems.

These roles have added epistemological importance
when it is realized that the downward character of sim-
ulation can be fact reversed in both senses we have
mentioned above. This is a potentially significant dif-
ference between cases of theory and nontheory-driven
simulation. Consider again systems biology. Firstly, the
methodological exploration we witness amongst the
researchers we have studied can be rationalized as pre-
cisely an attempt by the field to establish a good theory
of how to build models of biological systems that work
well given a variety of data situations. Since the com-
plexities of these systems and computational constraints
make this difficult to know at the outset, the field needs
its freedom to explore the possibilities. Lab directors do
encourage exploration, and part of the reason they do is
to try to glean which practices work well and which do
not given a lack of knowledge of what will work well
for a given problem.
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Secondly, systems biology aspires to a theory of bi-
ological systems which will detail general system-level
characteristics of biological systems but also the de-
sign principles underlying biological networks [5.26,
27]. What is interesting about this theory, if it does
emerge, is that it will in fact be theory generated by
simulation rather than the other way around. Simula-
tion makes possible the exploration of quite complex
systems for generalities that can form the basis of
a theory of systems biology. As such the use of sim-
ulations can also be upwards, not just downwards, to
perhaps an unprecedented extent. Upward uses of sim-
ulation requires analysis that appears to fit better with

more traditional philosophical analysis of how theories
are in fact justified, only in this case robust simu-
lation models will possibly be the more significant
source of evidence rather than traditional experiment
and observation. How this affects the nature and re-
liability of our inferences to theory, and what kind
of resemblance such theory might have to theory in
physics, is something that will need investigation. Thus,
further exploration of nontheory-driven modeling prac-
tices stand to provide a rich ground for investigation
of novel practices that are emerging with simula-
tion, but also for exploring the roles and meanings of
theory.

5.3 What is Philosophically Novel About Simulation?

The question of whether or not simulation introduces
new issues into the philosophy of science has emerged
as a substantial debate in discussions of computational
simulation. Winsberg [5.1, 3–5] and Humphreys [5.11,
12] are the major proponents of the view that simulation
requires its own epistemology. Winsberg, for instance,
takes the view that simulations exhibit “distinct epis-
temological characteristics . . . novel to the philosophy
of science” [5.9, p. 443]. Winsberg and Humphreys
make this assertion on the basis of the points we out-
lined in Sec. 5.2; namely, 1) the traditional limited
concern of philosophy of science with the justification
of theory, and 2) the relative autonomy of simula-
tions and simulation-building from the theory. The steps
involved in generating simulations, such as applying
approximation methods designed to generate compu-
tational tractability, are novel to science. These steps
do not gain their legitimacy from a theory but are “au-
tonomously sanctioned” [5.1, p. 837]. Winsberg argues,
for instance, that while idealization and approxima-
tion methods have been discussed in the literature it
has mostly been from a representational perspective in
terms of how idealized and approximate models rep-
resent or resemble the world and in turn justify the
theories on which they are based. But since simulations
are often employed where data are sparse, they cannot
usually be justified by being compared with the world
alone. Simulations must be assessed according to the
reliability of the processes used to construct them, and
these often distinct and novel techniques require sep-
arate philosophical evaluation. Mainstream philosophy
of science with its focus on theoretical justification does
not have the conceptual resources for accounting for
applications using computational methods. Even where
theory is concerned, both Humphreys and Winsberg
maintain that neither of the established semantic and
syntactic conception of theories, conceptions which fo-

cus on justification and representation, can account for
how theories are applied or justified in simulation mod-
eling.

However, Frigg and Reiss [5.28] have countered
that these claims were overblown and in fact simulation
raises no new questions or problems that are specific to
simulation alone. Part of the disagreement might sim-
ply come down to whether one construes philosophy of
science narrowly or broadly by limiting philosophical
questions to in-principle and normative issues, while
avoiding practical methodological ones. Another part of
the disagreement is over how one construes new issues
or new questions for philosophy, since certainly at some
level the basic philosophical questions about how rep-
resentations represent and what makes them reliably do
so, are still the same questions.

To some extent, part of the debate might be con-
strued as a disagreement over the relevance of contexts
of discovery to philosophy of science. Classically con-
texts of discovery, the scientific contexts in which
model-building takes place, are considered irrelevant
to normative philosophical assessments of whether
those models are justified or not. Winsberg [5.3] and
Humphreys [5.12] seem willing to assert that one of
the lessons for philosophy of science from simulation is
that practical constraints on scientific discovery matter
for constructing relevant normative principles – both in
terms of evaluating current practice, which in the case
of simulation-building is driven by all kinds of practical
constraints, and in terms of normatively directing prac-
tice sensitively within those constraints.

Part of the motivation for using the discov-
ery/justification distinction to define philosophical in-
terest and relevance is the belief that there is a clear
distinction between the two contexts. Arguably Frigg
and Reiss are reinforcing the idea of a clear dis-
tinction by relying on widespread presupposition that
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validation and verification are distinct independent pro-
cesses [5.4]. Validation is the process of establishing
that a simulation is a good representation, a quintessen-
tial concept of justification. Verification is the process
of ensuring that a computational simulation adequately
captures the equations fromwhich it is constructed. Ver-
ification, according to Frigg and Reiss, represents the
only novel aspects of modeling that simulation intro-
duces. Yet it is a purely mathematical exercise that is of
no relevance to questions of validation. As such, sim-
ulations involve no new issues of justification beyond
those of ordinary models. Winsberg [5.3, 4], however,
counters that there is, in practice, no clear division
between processes of verification and validation. The
equations chosen to represent a system are not simply
selected on the basis of how valid they are, but also
on the basis of decisions about computational tractabil-
ity. Much of what validates a representation in practice
occurs at the end stage, after all the necessary tech-
niques of numerical approximation and discretization
have been applied, by comparing the results of simula-
tions with the data. As such, [5.5]:

“If we want to understand why simulation results
are taken to be credible, we have to look at the epis-
temology of simulation as an integrated whole, not
as clearly divided into verification and validation –
each of which would look inadequate to the task.”

Hence what would otherwise seem to be distinct
discovery and justification processes are in the context
computational simulation interwoven.

Frigg and Reiss are right at some level that simu-
lations do not change basic epistemological questions
connected to the justification of models. They are also
right that Winsberg in his downward, motley and au-
tonomous description of simulation, does not reveal any
fundamentally new observations on model-building that
have not already been identified as issues by philoso-
phers discussing traditional modeling. However, what
appears to be really new in the case of simulation
is: 1) the complexity of the philosophical problems
of representation and reliability, and 2) the different
methodological and epistemological strategies that have
become available to modelers as a result of simulation.

Winsberg, in reply to Frigg and Reiss, has clarified
what he thinks as novel about theory-based simulation
as the simultaneous confluence of downward, motley
and autonomous features of model-building [5.4]. It is
the reliability and validity of the complexmodeling pro-
cesses instantiated by these three features that must be
accounted for by an epistemology of simulation, and
no current philosophical approaches are adequate to do
so, particularly not those within traditional philosophi-
cal boundaries of analysis.

As a first step in helping with this task of assess-
ing reliability and validity of simulation, philosophers
such as Winsberg [5.29] have drawn lessons from com-
parison with experimentation, which they argue shares
much with simulation in both function (enabling, for in-
stance, in silico experiments) and also in terms of how
the reliability of simulations is generated. Scientific re-
searchers try to control for error in their simulations,
and fix parameters, in ways that seem analogous to how
experimenters calibrate their devices. Simulations build
up credibility over long time scales and may have lives
of their own independent of developments in other parts
of science. These observations suggest a potentially rich
analogy between simulations and Hacking’s account of
experimentation [5.29]. In a normative step, based on
these links, Parker [5.10] has suggested that in fact
Mayo’s [5.30] rigorous error-statistical approach for ex-
perimentation should be an appropriate starting point
for more thorough evaluation of the results of simula-
tions. Simulations need to be evaluated by the degree to
which they avoid false positives when it comes to test-
ing hypotheses by successfully controlling for potential
sources of error that creep in during the simulation
process. At the same time a rather vigorous debate
has emerged concerning the clarification of the precise
epistemological dissimilarities or disanalogies between
simulation and traditional experimentation (see for in-
stance [5.31–36]). This question is in itself of inde-
pendent philosophical interest for assessing the benefits
and value of each as alternatives, but should also help
define the limits of the relevance of experimentation
as a model for understanding and assessing simulation
practices.

From our perspective, however, the new method-
ological and epistemological strategies that modelers
are introducing in order to construct and guarantee the
reliability of simulation models could prove to be the
most interesting and novel aspect of simulation with
which philosophers will have to grapple. Indeed, while
much attention has focused on the contrasts and similar-
ities between simulations, experiments and simulation
experiments, no one has called attention to the fact
that real-world experiments and simulations are also
being used in concert to enhance the ability of re-
searchers to handle uncertain complex systems. One
of the labs we have studied conducts bimodal model-
ing, where the modelers conduct their own experiments
in the service of building their models. We have an-
alyzed the case of one modeler’s behavior in which
model-building, simulation and experimentation were
tightly interwoven [5.37]. She used a conjunction of
experiment and simulation to triangulate on errors and
uncertainties in her model, thus demonstrating that the
two can be combined in practice in sophisticated ways.
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Her model-building would not have been possible with-
out the affordances of both simulation and her ability
to perform experimentation precisely adapted to test
questions about the model as she was in the process of
formulating it. Simulation and experiment closely cou-
pled in this fashion offers the possibility of extending
the capacity to produce reliable models of complex phe-
nomena.

Bimodal modeling is relatively easy to character-
ize epistemologically since experimentation is used to
validate and check the simulations as the model is
being constructed. Simulations are not relied on inde-
pendent of experimental verification. Often, however,
experimental or any kind of observational data are
hard to come by for practical or theoretical reasons.
More philosophically challenging will be to evaluate
the new epistemological strategies researchers are in
fact developing for drawing inferences in these often
deeply uncertain and complex contexts with the aid
of computation. Parker [5.38, 39], for instance, iden-
tifies the practice in climate science and meteorology
of ensemble modeling. No theory of model-building
exists that tells climate and weather modelers how to
go from physical theory to reliable models. Different
formulations using different initial conditions, models
structures and different parameterizations of those mod-
els that fit the observational data can be developed from
the physical theory. In this situation modelers average
over results from large collections of models, using dif-
ferent weighting schemas, and argue for the validity of
these results on the basis that these models collectively
represent the possibility space. However, considerable
philosophical questions emerge as to the underlying
justifiability of these ensemble practices and the proba-
bility weightings being relied upon. Background theory
can provide little guidance in this context and in the
case of climate modeling there is little chance for pre-
dictively testing performance. Further, the robustness of
particular ensemble choices is often very low and justi-
fications for picking out particular ensembles are rarely
carefully formulated.

The ability to generate and compare large num-
bers of complex models in this way is a development
of modern computational power. In our studies we
have also come across novel argumentation, particu-
larly connected with parameter-fixing [5.40]. Because
the parameter spaces these modelers have to deal with
are so complex, there is almost no chance of getting
a best fit solution. Instead modelers produce multiple
models often using Monte Carlo techniques that con-
verge on similar behavior and output. These models
have different parameterizations and ultimately repre-
sent the underlying mechanisms of the systems differ-
ently. However, modelers can nonethelessmake specific

arguments about network structure and dynamic rela-
tionships among specific variables. There is not usually
any well-established theory that licenses these argu-
ments. The fact that the models converge on the same
relevant results is motivation for inferring that these
models are right at least about those aspects of the
system for which they are designed to account. Unfor-
tunately, because access to real-world experimentation
is quite difficult, it is hard to judge how reliable this
technique is in producing robust models. What is novel
about this kind of strategy is that it implicitly treats
parameter-fixing as an opportunity, not just a problem,
for modelers. If instead of trying to capture the dy-
namics of whole systems modelers just fix their goals
on capturing robust properties and relations of a sys-
tem, the potential of finding results that work within
these constraints in large parameter-spaces increases,
and from the multiple models obtained modelers can
pare down to those that converge. The more complex
problem thus seems to allow a pathway for solving
a simpler one. Nonetheless, whether we should accept
these kinds of strategies as reliable and the models pro-
duced as robust remains the fundamental question, and
an overarching question for the field itself. It is a rea-
sonable reaction to suspect that something important is
being given up in the process, which will affect how
well scientists can assess the reliability and importance
of the models they produce. Whether the power com-
putational processes can adequately compensate for the
potential distortions or errors introduced is one of the
most critical and novel epistemological questions for
philosophy today.

The kinds of epistemological innovations we have
been considering raise deeper questions about the pur-
poses of simulation, particularly in terms of traditional
epistemic categories like understanding, explanation
and so on. Of course at one extreme some simulations of
the purely data-driven kind is purely phenomenological.
Theory plays no role in its generation, and is not sought
as its outcome. However in other cases some form of
understanding at least is sought. In many cases though,
where theory might be thought the essential agent of
understanding, the complexity of the equations and re-
sulting complexity of the computational processes that
instantiate them, simply block any way of decomposing
the theory or theoretical model in order to understand
how the theory might explain a phenomena and thus
assess the accuracy and plausibility of the underlying
mechanisms it might prescribe. Humphreys labels this
epistemic opacity [5.11]. Lenhard [5.41] in turn identi-
fies a form of pragmatic understanding that can replace
theoretical understanding when a simulation model is
epistemically opaque. This form of understanding is
pragmatic in the sense of being an understanding of how



Models and Simulations 5.4 Computational Simulationand Human Cognition 127
Part

A
|5.4

to control and manipulate phenomena, rather explain
them using background theoretical principles and laws.
Settling for this form of understanding is a choice made
by researchers in order to handle more complex prob-
lems and systems using simulations. But it is a novel
one in the context of physics and chemistry. In sys-
tems biology we recognize something similar [5.40].
Researchers give up accurate mechanistic understand-
ing of their systems for more pragmatic goals of gaining
network control, at least over specific variables. To do
so they use simplification and parameter-fitting tech-
niques that obscure the extent to which their models
capture the underlying mechanisms. Mechanistic ex-

planation is thus given up, for some weaker form of
understanding.

Finally, computational modeling and simulation in
the situations we have been considering in this section
are driving a profound shift in the nature and level of hu-
man cognitive engagement in scientific production pro-
cesses and their outputs [5.12, 24, 25, 42, 43]. So much
of philosophy of science has been based on intuitive
notions of human cognitive abilities. Our concepts of
explanation and understanding are constructed implic-
itly on the basis of what we can grasp as humans. With
simulation and big-data science those kinds of charac-
terizations may no longer be accurate or relevant [5.44].

5.4 Computational Simulation and Human Cognition

It is on this last point that we turn to consider the ways
in which human cognitive processes are implicated in
processes of simulation model-building. Computational
science, of the nonbig data or nonmachine learning kind
which we have focused on here, is as Humphrey’s calls
it, a “hybrid scenario” as opposed to an “automated sce-
nario” [5.12, p. 616]. In his words:

“This distinction is important because in the hy-
brid scenario, one cannot completely abstract from
human cognitive abilities when dealing with rep-
resentational and computational issues. . . . We are
now faced with a problem, which we can call the an-
thropocentric predicament, of how we, as humans,
can understand and evaluate computationally-based
scientific methods that transcend our own abilities.”

Unlike machine-learning contexts, computational
modeling is in many cases a practice of using compu-
tation to extend traditional modeling practices and our
own capabilities to draw insight out of low-data con-
texts and complex systems for which theory provides at
best a limited guide. In this way cognitive capacities are
often heavily involved. The hybrid nature of computa-
tional science thus motivates the need for understanding
how human agents cognitively engage with and con-
trol opaque computational processes, and in turn draw
information out of them. Evaluating these processes –
their productiveness and reliability – requires in the first
step having some understanding of them. As we will
see, although computational calculation processes are
beyond our abilities, at least in the case of systems bi-
ology the use of computation by modelers is often far
more integrated with their own cognitive processes and
understanding, and thus far more under their control,
than we might think.

As we have seen there are several lines of philo-
sophical research on computational simulation that un-

derscore it is through the processes of model-building –
taken to comprise the incremental and interwoven pro-
cesses of constructing the model and investigating
its dynamics through simulation – that the modeler
comes to develop at least a pragmatic understanding of
the phenomena under investigation. Complex systems,
such as investigated in systems biology, present per-
haps the extreme case in which these practices are the
primary means through which modelers, mostly nonbi-
ologists, develop understanding of the systems. In our
investigations, modelers called the building and run-
ning of their models under various conditions getting
a feel for the model, which enables them to get a feel
for the dynamics of the system.

In our investigations we have witnessed that model-
ers (mainly engineers) with little understanding of biol-
ogy have been able to provide novel insights and highly
significant predictions, later confirmed by biological
collaborators, for the systems they are investigating
through simulation. How is it possible that engineers
with little to no biological training can be making sig-
nificant biological discoveries? A related question con-
cerns how complete novices are making scientific dis-
coveries through simulations crowdsourced by means
of video games such as Foldit and EteRNA, which
appear to enable nonscientists to quickly build accu-
rate/veridical structures representing molecular entities
they had no prior knowledge of [5.45, 46]. Nersessian
and Chadrasekharan, individually and together [5.24,
25, 42, 47–49], have argued that the answer to this ques-
tion lies in understanding how computational simula-
tion enhances human cognition in discovery processes.
Because of the visual and manipulative nature of the
crowdsourcing cases, the answer points in the direction
of the coupling of the human sensorimotor systemswith
simulation models. These crowdsourcing models re-
represent conceptual knowledge developed by the sci-
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entific community (e.g., structure of proteins) as com-
putational representations with a control interface that
can be manipulated through the gamer’s actions. The
interface enables these novices to build new representa-
tions drawing on tacit/implicit sensorimotor processes.
Although the use of crowdsourcing simulations in sci-
entific problem solving is new, the human sensorimotor
system has been used explicitly to detect patterns,
especially in dynamic data generated by computational
models, since the dawn of computational modeling.
Entire disciplines and methods have been built using
visualized patterns on computer screens. Complexity
theory [5.50, 51], artificial life [5.52, 53] and compu-
tational chemistry [5.54, 55] provide a few exemplars
where significant discoveries have been made.

Turning back now to the computational simula-
tions used by scientists that we have been discussing,
all of the above suggests that the model-building pro-
cesses facilitate a close coupling between the model and
the researcher’s mental modeling processes even in the
absence of a dynamic visualization. The building pro-
cess manipulates procedural and declarative knowledge
in the imagination and in the representation, creating
a coupled cognitive system of model and modeler [5.25,
42, 43, 48, 56, 57]. This coupling can lead to explicit
understanding of the dynamics of the system under
investigation. The notion of a coupled cognitive sys-
tem is best understood in terms of the framework of
distributed cognition [5.58, 59], which was developed
to study cognitive processes in complex task environ-
ments, particularly where external representations and
other cognitive artifacts and, possibly, groups of peo-
ple, accomplish the task. The primary unit of analysis is
the socio-technical system that generates, manipulates
and propagates representations (internal and external to
people). Research leading to the formation of the dis-
tributed cognition framework has focused largely on
the use of existing representational artifacts and less
so on the building/creation of the artifacts. The central
metaphor is that of the human offloading complex cog-
nitive processes such as memory to the artifact, which,
for example, in the canonical exemplar of the speed bug
that marks critical airspeeds for a particular flight, re-
places complex cognitive operations with a perceptual
operation and provides a publically available represen-
tation that is shared between pilot and co-pilot.

In the research cited above, we have been arguing
that offloading is not the right metaphor for under-
standing the cognitive enhancements provided through
the building of novel computational representations.
Rather, the metaphor should be that of coupling be-
tween internal and external representations. Delving
into the modifications needed of the distributed cogni-
tion framework to accommodate the notion of a coupled

cognitive system would take use too far afield in this
review (but see [5.25]). Instead, we will flesh out the no-
tion a bit by noting some of the ways in which building
and using simulation models enhance human cognitive
capabilities and, in particular, extend the capability of
the imagination system for simulative model-based rea-
soning.

A central, but yet not well-researched premise
of distributed cognition is, as Hutchins has stated
succinctly, that “humans create cognitive powers by
creating the environments in which they exercise
those powers” [5.58, p. 169]. Since building modeling-
environments for problem solving is a major component
of scientific research [5.49], scientific practices provide
an especially good locus for examining the human
capability to extend and create cognitive powers. In the
case of simulation model-building, the key question
is: What are the cognitive changes involved in building
a simulation model and how do these lead to discover-
ies? The key cognitive change is that over the course of
many iterations of model-construction and simulation,
the model gradually becomes coupled with the mod-
eler’s imagination system (mental model simulation),
which enables the modeler to explore different scenar-
ios. The coupling allows what if questions in the mind
of the modeler to be turned into detailed explorations
of the system, which would not be possible in the mind
alone. The computational model enables this explo-
ration because as it is incrementally built using many
data sets, the model’s behavior, in the systems biology
case, for instance, comes to parallel the dynamics of the
pathway. Each replication of experimental results adds
complexity to the model and the process continues until
the model is judged to fit all available data well. This
judgment is complex, as it is based on a large number
of iterations where a range of factors such as sensitivity,
stability, consistency, computational complexity and so
forth are explored. As the model gains complexity it
starts to reveal or expose many details of the system’s
behavior enabling the modeler to interrogate the model
in ways that are not possible in the mind alone (thought
experimenting) or in real-world experiments. It makes
evident many details of the system’s behavior that the
modeler could not have imagined alone because of the
fine grain and complexity of the details.

The parallel between computation simulation ex-
perimenting and thought experimenting is one philoso-
phers have commented on, but the current framing
of the discussion primarily centers on the issue of
interpreting simulations and whether computational
simulations should be construed as opaque thought
experiments [5.60, 61]. Di Paolo et al. [5.60] have ar-
gued that computational models are more opaque than
thought experiments, and as such, require more system-



Models and Simulations 5.4 Computational Simulationand Human Cognition 129
Part

A
|5.4

atic enquiry through probing of the model’s behavior. In
a similar vein, Lenhard [5.61] has claimed that thought
experiments are more lucid than computational mod-
els, though it is left unclear what is meant by lucid
in this context, particularly given the extensive discus-
sions aroundwhat specific thought experiments actually
demonstrate. In the context of the discussion of the
relation of thought experimenting and computational
simulation, we have argued that the discussion should
be shifted from issues of interpretation to a process-
oriented analysis of modeling [5.47]. Nersessian [5.62]
casts thought experimenting as a form of simulative
model-based reasoning, the cognitive basis of which is
the human capacity for mental modeling. Thought ex-
periments (conceptual models), physical models [5.63]
and computational models [5.47, 48] form a spectrum
of simulative model-based reasoning in that all these
types of modeling generate and test counterfactual
situations that are difficult (if not impossible) to imple-
ment in the real world. Both thought experiments and
computational models support simulation of counter-
factual situations, however, while thought experiments
are built using concrete elements, computational mod-
els are built using variables. Simulating counterfactual
scenarios beyond the specific one constructed in the
thought experiment is difficult and requires complex
cognitive transformations to move away from the con-
crete case to the abstract, generic case. On the other
hand, computational simulation constructs the abstract,
generic case from the outset. Since computational mod-
els are made entirely of variables, they naturally support
thinking about parameter spaces, possible variations
to the design seen in nature, and why this variation
occurs rather than the many others that are possi-
ble.

Thought experiments are a product of a resource
environment in science where the only tools available
were writing implements, paper (blackboards, etc.) and
the brain. Computational models create cognitive en-
hancements that go well beyond those resources and
enable scientists to study the complex, dynamic and
nonlinear behaviors of the phenomena that are the fo-
cus of contemporary science.

Returning to the nature of the cognitive enhance-
ments created, the coupling of the computational model
with the modeler’s imagination system significantly en-
hances the researcher’s natural capacity for simulative
model-based reasoning, particularly in the following
ways:

� It allows running many more simulations, with
many variables at gradients not perceivable or ma-
nipulable by the mind, which can be compared and
contrasted.

� It allows testing what-if scenarios with changes
among many variables that would be impossible to
do in the mind.� It allows stopping the simulation at various points
and checking and tracking its states. If some de-
sirable effect is seen, variables can be tweaked in
process to get that effect consistently.� It allows taking the system apart as modules, sim-
ulating them, and putting them together in different
combinations.� It allows changing the time in which intermediate
processes kick in.

These complex manipulations expose the modeler
to system-level behaviors that are not possible to exam-
ine in either thought alone or in real-world experimenta-
tion. The processes involved in building the distributed
model-based reasoning system comprising simulation
model and modeler enhance several cognitive abilities.
Here we will conclude by considering three (for a fuller
discussion see [5.25]). First, the model-building pro-
cess brings together a range of experimental data. Given
Internet search engines and online data bases, current
models synthesize more data than even before and cre-
ate a synthesis that exists nowhere in the literature and
would not be possible for modelers or biologists to
produce on their own. In effect, the model becomes
a running literature review. Thus, modeling enhances
the synthesizing and integrating capabilities of the mod-
eler, which is an important part of the answer as to how
a modeler with scant biological knowledge can make
important discoveries. Second, an important cognitive
effect of the model-building is to enhance the mod-
eler’s powers of abstraction. Most significantly, through
the gradual process of thousands of runs of simulations
and analyses of system dynamics for these, the modeler
gains an external, global view of the system as a whole.
Such a global view would not be possible to develop
just from mental simulation, especially since the inter-
actions among elements are complex and difficult to
keep track of separately. The system view, together with
the detailed understanding of the dynamics, provides
the modeler with an intuitive sense (a feeling for the
model) of the biological mechanisms that enables her
to extend the pathway structure in a constrained fash-
ion to accommodate experimental data that could not
be accounted for by the current pathway from which
the model started. Additionally, this intuitive sense of
the mechanism built from interaction with the model
helps to explain the success of the crowdsourcing mod-
els noted above (see also [5.64]).

Finally, the model enhances the cognitive capac-
ity for counterfactual or possible-worlds thinking. As
noted in our discussion of thought experimenting, the
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model-building process begins by capturing the re-
actions/interactions using variables. Variables provide
a place-holder representation, which when interpreted
with combinations of numbers for these variables, can
generate model data that parallels the known experi-
mental data. One interesting feature of the place-holder
representation is that it provides the modeler with a flex-
ible way of thinking about the reactions, as opposed to
the experimentalist who works with only one set of val-
ues. Once the model is using the experimental values,
the variables can take any set of values, as long as they
generate a fit with the experimental data. The modeler
is able to think of the real-world values as only one
possible scenario, to examine why this scenario is com-
monly seen in nature, and envision other scenarios that
fit. Thinking in variables supports both the objective
modelers often have of altering or redesigning a reac-
tion (such as the thickness of lignin in plant wall for
biofuels) and the objective of developing generic design
patterns and principles. More broadly, the variable rep-
resentation significantly expands the imagination space
of the modeler, enabling counterfactual explorations of
possible worlds that far outstrip the potential of thought
experimenting alone.

A more microscopic focus like this one on the actual
processes by which computational simulation is cou-
pled with the cognitive processes of the modeler begins
to help break down some of the mystery and seeming
inscrutability surrounding computation conveyed by the

idea that computational processes are offloaded auto-
mated processes from which inferences are derived.
The implications of this research into hybrid nature of
simulation modeling are that modelers might often have
more control over and insight into their models and
their alignment with the phenomena than philosophers
have realized. Given the emphasis placed in published
scientific literature on fitting the data and predictive
success for validating simulations, we might be missing
out on the important role that these processes internal
to the model-building or discovery context appear to
be playing (from a microanalysis of practice) in sup-
port of the models constructed. Indeed, the ability of
computational modeling to support highly exploratory
investigative processes makes it particularly relevant for
philosophers to have fine-grained knowledge of model-
building processes in order to begin to understand why
models work as well as they do and how reliable they
can be considered to be.
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