
Improving Error Resilience Analysis Methodology of Iterative
Workloads for Approximate Computing

G.A. Gillani and A.B.J. Kokkeler
Faculty of EEMCS, University of Twente, Enschede 7500 AE, Netherlands

{s.ghayoor.gillani,a.b.j.kokkeler}@utwente.nl

ABSTRACT
Assessing error resilience inherent to the digital processing work-
loads provides application-speci�c insights towards approximate
computing strategies for improving power e�ciency and/or per-
formance. With the case study of radio astronomy calibration, our
contributions for improving the error resilience analysis are focused
primarily on iterative methods that use a convergence criterion as a
quality metric to terminate the iterative computations. We propose
an adaptive statistical approximation model for high-level resilience
analysis that provides an opportunity to divide a workload into
exact and approximate iterations. �is improves the existing error
resilience analysis methodology by quantifying the number of ap-
proximate iterations (23% of the total iterations in our case study) in
addition to other parameters used in the state-of-the-art techniques.
�is way heterogeneous architectures comprised of exact and in-
exact computing cores and adaptive accuracy architectures can be
exploited e�ciently. Moreover, we demonstrate the importance of
quality function reconsideration for convergence based iterative
processes as the original quality function (the convergence crite-
rion) is not necessarily su�cient in the resilience analysis phase. If
such is the case, an additional quality function has to be de�ned to
assess the viability of the approximate techniques.

CCS CONCEPTS
•Computingmethodologies →Model development and anal-
ysis; •Hardware →Power and energy; •Computer systems or-
ganization →Heterogeneous (hybrid) systems;

KEYWORDS
Error resilience analysis, iterative workloads, quality function, ap-
proximate computing, heterogeneous architectures

ACM Reference format:
G.A. Gillani and A.B.J. Kokkeler. 2017. Improving Error Resilience Analy-
sis Methodology of Iterative Workloads for Approximate Computing. In
Proceedings of CF’17, Siena, Italy, May 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3075564.3078891

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CF’17, Siena, Italy
© 2017 Association for Computing Machinery. ACM.
ISBN 978-1-4503-4487-6/17/05. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3075564.3078891

1 INTRODUCTION
Computational workload analysis provides the essential insights
about the applications that help in the optimization process for
mapping e�ectively on the contemporary heterogeneous architec-
tures to achieve maximum performance and energy e�ciency [9].
Approximate computing—sometimes coined as best-e�ort comput-
ing or so� computing—can be regarded as aggressive optimization
because it allows legitimate inexactness and provides results with
the bare minimum accuracy to improve run-time and/or power
consumption. �e aforesaid advantages have been demonstrated
for error resilient applications such as multimedia digital signal pro-
cessing, search engines and scienti�c computing [13, 27]. �e major
approximation techniques include loop/code perforation [5, 11],
pa�ern reduction [21], thread fusion [22], approximate memoiza-
tion [1], voltage over-scaling [8, 14] and using the approximate
storage/arithmetic units/accelerators [3, 24, 25] to name some.

Error resilience is inherent to an application due to its possi-
bly redundant/noisy real-time inputs, probabilistic or self-healing
computational pa�erns, and/or a range of acceptable outputs [2].
However, there are error-sensitive parts or kernels within every
error-resilient application. �erefore, it is important to analyse the
applications for error resilience to separate the error-sensitive parts
from that of error-tolerant parts and to get insights of promising
approximation techniques before employing the implementation
e�orts [2, 11, 12, 18, 19, 23]. �e procedure of the error resilience
analysis is to apply approximations o�ine while monitoring the
quality function to verify that the approximations produce accept-
able results. In this way, approximate computing techniques are
substantiated for a workload that can be employed in the imple-
mentation/online phase to achieve the desired bene�ts.

Heterogeneous architectures have the ability to handle various
workloads e�ciently while using di�erent power and performance
trade-o� computing nodes, e.g. ARM’s big.LITTLE architecture [6].
However, in the approximate computing domain, the de�nition of
heterogeneous architecture extends further to include exact and
inexact computing units, where control instructions and sensitive
computational parts run at precise cores while the error resilient
parts run at the error-prone cores to achieve the overall e�ciency
in speed and energy [7, 23]. Moreover, with the advent of accuracy-
con�gurable architectures like adaptive voltage over-scaling [8]
and adaptive processors comprised of con�gurable adder/multiplier
blocks [25], where the quality-cost1 trade-o� can be controlled at
run time, it is of remarkable importance to analyse a workload for
Adaptive Error Resilience (AER) as well. We believe that AER has
the potential to reveal approximation opportunities even in strict
quality function (relatively less error resilient) workloads, where
1Cost refers to power consumption, latency and on-chip area required for maintaining
the speci�c quality of output

CF’17, May 2017, Siena, Italy G.A. Gillani and A.B.J. Kokkeler

they can be processed adaptively for varying approximation levels
to gain energy/performance bene�ts.

Furthermore, as iterative methods are common candidates for
approximate computing like K-means [10], GLVQ training [2], and
model predictive control [17]; we propose the Adaptive Statistical
Approximation Model (Adaptive-SAM) to analyse the high-level ap-
proximation space of iterative workloads. Adaptive-SAM performs
be�er than the Statistical Approximation Model (SAM) [2] by quan-
tifying the number of approximate iterations (NAI) in addition to
the statistical approximation space that will be discussed in Section
2, and therefore can be�er exploit the heterogeneous/accuracy-
con�gurable architectures by assigning resilient iterations to the
approximate computing cores/modes and the sensitive iterations
to the exact counterparts.

In this paper, we elaborate the Adaptive-SAM analysis method-
ology (Section 3) and present its signi�cance with a case study of
the radio astronomy calibration application (Section 4). In practice,
the error resilience or the approximation space of an application
is quanti�ed by injecting the errors de�ned by the approximation
models (statistical or technique speci�c) and monitoring the overall
output of the application in compliance with the quality function.
�e range of error injection within an approximation model for
which the quality function is satis�ed can be regarded as the ap-
proximation space of the application. �erefore, de�ning a quality
function is a very deliberate task in the approximate computing
domain. In Section 5, we demonstrate that the original quality
function of an iterative process may not be necessarily su�cient in
the error resilience analysis procedure, which requires de�ning an
additional quality function to serve the purpose.

2 RELATEDWORK
�is section reviews some state-of-the-art approximate computing
architectures that motivate statistical and adaptive-statistical error
resilience analysis. Moreover, we discuss contemporary analysis
methodologies/tools and the need of Adaptive-SAM analysis.

�e quality-cost trade-o� for an accurate multiplier (AccMul)
and two approximate multipliers (AxMul1 and AxMul2) have been
presented in [25]. �ese multipliers are 2x2 (input size=2 bits for
each operand) that can construct the higher order multipliers e.g.
4x4, 8x8 and so on. AxMul1 has be�er area and power costs as
compared to AccMul with 1 error case (error magnitude=2) out of 16
possible cases. AxMul2 is evenmore energy e�cient as compared to
AxMul1. However, the error rate for AxMul2 is 3 out of 16 possible
cases (error magnitude=1). In short, AxMul2 has higher error rate
and lower error magnitude as compared to AxMul1 while o�ering
be�er energy e�ciency. �e selection from such design choices is
based on workload’s error resilience characteristics that whether
the target workload can tolerate higher error rate or higher error
magnitude. Moreover, this design space (number of alternatives)
becomes larger for higher order multipliers that can have a number
of such multipliers (approximate or accurate) and a number of
adders (approximate or accurate) for the adder tree to compute the
�nal higher order product [16]. For that ma�er, it is important to
analyse a workload for statistical error distribution that can provide
the error-resilience pro�le of an application based on statistical
parameters: error mean (EM), error predictability (EP) and error

rate (ER). EP and EM determine the magnitudes of the injected
errors and correspond to the variance and mean of the normal error
distribution while ER de�nes the rate at which errors are injected
in the approximation analysis. �e aforesaid error resilience pro�le
helps to reduce the available design space in order to choose the
best possible quality-cost design alternative.

�e idea of adaptive accuracy or accuracy-con�gurable architec-
tures composed of approximate accelerators has been proposed in
[25]. �ese architectures contain accuracy-con�gurable operators,
such as multipliers and adders, which can change the computation
mode from accurate to approximate and vice-versa during the run-
time. �is helps in run-time adjustment of quality-cost trade-o�
based on the workload’s error resilience. Moreover, the adaptive
voltage over-scaling (AVOS) [8] has shown the improvements in
power e�ciency (25% to 30%) at negligible quality loss for texture
decompression application. �e aforesaid scheme reduces the sup-
ply voltage till the limited number of errors are introduced and can
increase the voltage again to a�ain error-free operation. �erefore,
AVOS can also adjust the quality-cost trade-o� during run time. In
this context, we argue that the aforementioned adaptive accuracy
architectures can be be�er exploited provided that the error re-
silience pro�le of an iterative workload also quanti�es the number
of approximate iterations in addition to the statistical parameters
(EM, EP and ER) in order to adaptively apply approximations during
the run-time to gain target bene�ts.

Over the past few years, many tools have been presented to as-
sess the applications for intrinsic error resilience. �ality of service
(QoS) pro�ling utilized loop perforation as a compiler pass to skip
some iterations in order to identify sub-computations that can be
replaced with less accurate counterparts [11]. Intel’s open-source
approximate computing toolkit (iACT) assesses the scope of ap-
proximations within the applications using programmer annotated
pragmas to analyse the programmer guided parts of the code [12].
iACT has the ability to apply static approximate transformations
such as precision scaling, run-time approximations like memoiza-
tion, and the noisy hardware e�ects during the error resilience
analysis simulations. Automatic sensitivity analysis for approxi-
mate computing (ASAC) applies statistical perturbation of program
data to study the overall e�ects on the quality of workload’s output
[18]. Program analysis for approximation-aware compilation (PAC)
provides a relatively faster way to study the degree of accuracy
required by each component in an application to achieve an overall
quality of output [19]. Approximate C compiler for energy and
performance trade-o�s (ACCEPT) is another open-source tool that
applies a conservative approach to perform safe approximate re-
laxation analysis within a workload [23]. �e aforesaid tools are
limited in assessing the error-resilience of a workload as they do
not cover all the approximation strategies and they do not provide
a statistical error resilience pro�le to reduce the available design
space (alternatives) as discussed earlier.

On the other hand, the application resilience characterisation
(ARC) framework [2] is a state-of-the-art methodology that includes
the statistically distributed error injection model to generate the
statistical pro�le of a workload. �e overview of the ARC method-
ology is shown in Fig. 1. �e �rst step is to identify the dominant
kernels based on their run-time share. �e kernels that run for at
least 1% of the total execution time are selected to perform analysis.

Improving Error Resilience Analysis Methodology of Iterative Workloads for Approximate Computing CF’17, May 2017, Siena, Italy

Figure 1: Error resilience analysis methodology - ARC

Secondly, the error resilience is identi�ed by injecting random er-
rors in the outputs of the dominant kernels and the overall output
of the application is compared with a relaxed quality function to dis-
tinguish potentially resilient kernels from that of the sensitive ones.
Relaxed quality function means that the error injected output is
only checked for relatively bigger errors rather than the actual qual-
ity required by the application. Finally, high-level and Technique
Speci�c Approximation Models (TSAM) are applied to characterize
the resilience by using the actual quality function. �e high-level
model is also termed as Statistical Approximation Model (SAM) be-
cause it injects errors based on the statistical (Gaussian) distribution.
�is de�nes a high-level approximation space of an application by
providing a quality pro�le based on statistical parameters and can
help to narrow down technique-speci�c approximation choices
such as arithmetic operations, data representation and algorithm
level approximations [2]; for instance, choosing AxMul1 or AxMul2
as discussed earlier. However, in order to be�er utilize the adaptive
accuracy architectures, we need Adaptive-SAM analysis of iterative
workloads that can quantify the adaptive resilience by identifying
the number of approximate iterations in addition to the statistical
parameters.

3 ADAPTIVE STATISTICAL APPROXIMATION
MODEL (ADAPTIVE-SAM)

As discussed earlier, our aim is to improve the high-level error
resilience analysis of iterative workloads in order to be�er exploit
accuracy con�gurable and heterogeneous architectures. In this
regard, we present Adaptive-SAM that can replace SAM in the
error resilience analysis methodology shown in Fig. 1 to provide
the number of approximate iterations (NAI) in addition to statistical
parameters of approximation space (EM, EP and ER).

To elaborate the Adaptive-SAMmethodology, Algorithm 1 shows
the pseudo code of an iterative workload example. Although such
workloads may have any number of inputs and outputs, we as-
sume two inputs (x1,x2) and one output (K op) for the sake of
simplicity. �e algorithm iterates to improve the output by utilizing
the inputs and previously computed result (last iteration), where
i is the current iteration and N is the maximum number of itera-
tions. �e algorithm also uses an intermediate variable (im var)
that is computed by calling a kernel: function im, having input
arguments as x1 and the computed output of previous iteration
K op(i − 1). �en the output is computed by calling another kernel:
function Kop that has input arguments as x2 and im var . Subse-
quently, the convergence metric (converдence met) is computed

by calling function conv kernel that considers the current output
K op(i) and the previously computed output K op(i − 1) to gener-
ate the convergence metric. Iterative workloads may use di�erent
arithmetic operations within function conv, but the aim is gener-
ally to compute the improvement in result within two consecutive
iterations. Finally, Algorithm 1 checks the convergence metric for
the allowed tolerance limit (tol) based on the quality function of
the iterative workload. If the convergence is reached, the iterative
process is terminated to provide the �nal outcome.

Algorithm 1 An Iterative Workload Example.
Input: x1,x2
Output: K op
1: Initialize K op(0)
2: for i = 1, 2, ...,N do
3: im var = function im(x1,K op(i − 1));
4: K op(i) = function Kop(im var ,x2);
5: converдence met = function conv(K op(i),K op(i − 1));
6: if (converдence met ≤ tol) then
7: break; // convergence reached
8: end if
9: end for

As discussed in Section 2, the error resilience methodology iden-
ti�es the dominant kernels in the �rst place. �ese kernels are
selected based on the percentage of their run-time or �oating point
operations (FLOPs) relative to the overall workload. �e kernels
that have the higher share are regarded as dominant kernels as it
is likely to a�ain desired bene�ts (area, power or latency) while
approximating them. In Algorithm 1, we assume that function Kop
is a dominant kernel to explain Adaptive-SAM analysis. Fig. 2
shows the signal �ow of Adaptive-SAM. We assume N number
of iterations/stages where i is the current iteration (1 ≤ i ≤ N).
�e output of iteration i of a dominant kernel (K op(i)) is added to
a Gaussian error (Error (i)) if the randomized errors (ER rand(i))
and approximate iterations �ag (ax iter f laд) allow error injection
to this stage. �is �ag is controlled via a parameter: NAI, which
is the number of initial iterations to be instrumented with errors.
It is important to note that Error (i) is a function of the normally
distributed EP and EM. Finally, the approximate (Ax) kernel output
is assessed for quality function compliance to test the validity of
the approximation space. �erefore, Adaptive-SAM quanti�es the
high-level error resilience of an application based on the acceptable
range of normally distributed errors for the quanti�ed approxi-
mate iterations. �is helps to assign the approximate iterations
to the inexact cores (fast and/or energy e�cient) with the speci-
�ed approximation space while running the exact iterations on the
exact cores (slow and/or high power) to be�er exploit the hetero-
geneous architectures. Similarly, in case of accuracy con�gurable
architectures, the approximate iterations can run in approximate
(error prone) hardware modes at higher energy e�ciency and/or
performance.

4 EXPERIMENTAL SETUP AND RESULTS
We have applied SAM and Adaptive-SAM on an iterative workload,
which is the radio astronomy calibration algorithm (StEFCal) [20].

CF’17, May 2017, Siena, Italy G.A. Gillani and A.B.J. Kokkeler

Figure 2: Proposed high-level error resilience analysis model - Adaptive-SAM

�e said algorithm has been instrumented with the run-time sta-
tistical error injection in Matlab. �e quality function compliance
has also been checked at run-time to determine the statistical error
tolerance limits. In this way, we have quanti�ed the high-level error
resilience for StEFCal by using SAM and Adaptive-SAM models.

4.1 Radio Astronomy Calibration – StEFCal
Radio astronomy studies celestial objects at radio frequencies. �e
sky spatial intensity distributions are estimated over the �eld of
view in a radio telescope to generate the sky images [15]. Perhaps,
the signal processing pipeline in radio astronomy can be consid-
ered as error-tolerant application because it re�ects the a�ributes
of the inherent resilience explained in Section 1; namely: real-
life/redundant data input, and approximate/statistical/self-healing
computation pa�erns. �erefore, we analyse a radio astronomy
application (calibration) as a case study to quantize error resilience
based on SAM and Adaptive-SAM techniques. �e calibration
algorithm, also known as StEFCal (statistically e�cient and fast
calibration), is a strict quality-of-service alternating direction im-
plicit (ADI) method that estimates complex antenna gains (дp) for
the P sensors in a radio telescope [20]. �e algorithm computes a
дp vector based on a measured signal/array covariance matrix (R)
and the model covariance matrix (M), where each ADI iteration (i)
computes linear least squares problems as:

д
[i]
p =

RH:,p .Z
[i−1]
:,p

(Z [i−1]:,p)H .Z [i−1]:,p
(1)

Where RH:,p is the hermitian transpose of array covariance matrix’s
pth column, and Z [i−1]:,p is the element-wise product of д[i−1]p and
the model covariance matrix’spth column (M:,p). It should be noted
that д[i−1]p is the antenna gains vector computed in the previous
iteration. In our experiments, representative input data (R andM
matrices) of the LOFAR facility [26] has been utilized (for P = 124).

�e convergence criterion of StEFCal is based on the relative
di�erence in length of consecutive iterations’ solution vectors in
the Euclidean space [20],

Convergence = | |д
[i] − д[i−1] | |F
| |д[i] | |F

≤ 1.10−6 (2)

In our initial experiments, we de�ned our quality function solely
based on the convergence criterion. However, this proved to be

insu�cient in the approximate computing domain as explained in
Section 5. For that ma�er, we have de�ned an additional quality
metric: Di� rel, which is the relative di�erence in length between
the exact (ex) and approximate (ax) solution vectors,

Di� rel = | |д
[i]
ex − д

[i]
ax | |F

| |д[i]ex | |F
≤ 1.10−5 (3)

�e tolerance limit in Eq. 3 is higher than that of Eq. 2 due to
assumed acceptable error for approximately computed output. Fur-
thermore, we assume that the quality acceptance range is satis�ed
(QARS), if and only if both the convergence (Eq. 2) and Di� rel (Eq.
3) criteria are satis�ed.

4.2 High-level Error Resilience Analysis
To apply SAM and Adaptive-SAM, the initial steps are the same
as elaborated in Section 2, i.e. distinguishing dominant kernels
that run at least 1% of the total execution time and identifying
error resilience by injecting the random errors in the outputs of the
dominant kernels. �ree dominant kernels have been identi�ed in
StEFCal by using [4], which are Z vector computation (27% of the
computational load) and the two dot products (72% of the compu-
tational load) as shown in Eq. 1. We have analysed the aforesaid
three kernels for high-level error resilience. As the response of the
dot products is almost similar to Z, we only present the simulation
results for Z computation here that are su�cient to demonstrate
the comparison between SAM and Adaptive-SAM outcomes.

Fig. 3 shows the response of StEFCal for SAM analysis. It can be
seen that Di� rel is increased as we increase the error mean (EM)
and error rate (ER), while it has no remarkable e�ect due to changes
in error predictability (EP). However, the convergence limit is only
achieved at minimum EP andmaximum ER. In practice, there can be
some cases where the bene�ts of energy e�ciency/performance are
achieved even if the approximate computation runs for more itera-
tions than the exact computation [17]. Nonetheless, for the sake of
simplicity, we assume that the convergence limit is satis�ed when
the number of iterations required to converge for error-injected
computation is less or equal to that of exact computing counter-
part. While quantifying the error resilience intrinsic to StEFCal for
SAM analysis, QARS is achieved for EM ≤ 0.002%, EP ≤ 2.10−4 at
ER = 100%. �is shows a very small approximation space.

�e results of Adaptive-SAM analysis of StEFCal are shown in
Fig. 4 for various number of approximate iterations (NAI) and error

Improving Error Resilience Analysis Methodology of Iterative Workloads for Approximate Computing CF’17, May 2017, Siena, Italy

Figure 3: StEFCal response for SAM analysis

Figure 4: StEFCal response for Adaptive-SAM analysis

mean (EM) values. In this case, error predictability and error rate
are �xed to the values that allow the solution to converge (EP=0 and
ER=100%). As expected, the Di� rel decreases with the decrease
in NAI and EM. �is suggests that the more the number of exact
computing iterations, the be�er the quality of output and vice versa.
While quantifying the error resilience, QARS is achieved for NAI ≤
23%, EM ≤ 12%, EP ≤ 0.2 at ER = 100%; this shows the availability
of an approximation space for 23% of the total iterations. �erefore,
Adaptive-SAM reveals additional error resilience opportunities by
quantifying the number of approximate iterations in addition to
EM, EP and ER for the iterative workloads.

5 SIGNIFICANCE OF QUALITY FUNCTION
RECONSIDERATION

In error resilience analysis, the approximation models are applied
during run-time and are validated using the quality function. �is
makes the selection of a quality function very crucial as it can
possibly reject or accept some approximation strategies unfairly.
�erefore, in order to utilize the original quality metric of an itera-
tive application (convergence criterion) in the approximate comput-
ing domain, it has to be reconsidered rigorously to a�ain reliable
insights about the approximation space. In our case study of an
iterative workload (StEFCal), the convergence criterion is utilized

for the exact computing case. �is computes the relative distance in
Euclidean space between the current and previous solution vectors
and is assumed to be satis�ed if the improvement within two con-
secutive iterations is less or equal to 1.10−6, which means that the
solution has already been converged and no further precision can
be achieved by computing more iterations. However, in the error
resilience analysis process, it can not be guaranteed that the accept-
able solution is achieved when it satis�es convergence. Perhaps,
the solution is converged in the wrong plane, which is very dis-
tant from that of acceptable solution plane. We have observed this
phenomenon during the error-resilience identi�cation phase. As
discussed in Section 2, random errors are injected in the resilience
identi�cation analysis while using a relaxed quality function. Two
cases are shown in Fig. 5 to illustrate the problem. �e �rst case
is randomly skipping of computations (Fig. 5a and 5b), while the
second case is an arbitrary error injection in the �rst element of
the Z vector output (Fig. 5c and 5d). For the �rst case, we can
see a comparable response of approximate and exact computing
for gains outputs, albeit with no quality improvement beyond a
speci�c number of iterations for the convergence metric. However
in the second case, although the approximate solution converges
quickly (Fig. 5c), it produces unacceptable gains (Fig. 5d). �is
shows that the original quality metric of StEFCal (the convergence
criterion) is not su�cient in the resilience analysis process. For that
ma�er, we introduced an additional quality parameter: Di� rel (Eq.
3) that can ensure the convergence of approximate solution within
an acceptable distance to that of exact solution in the Euclidean
space.

6 CONCLUSIONS
Our proposed Adaptive-SAM has shown improvements in the er-
ror resilience analysis of iterative workloads by quantifying the
number of resilient iterations (23% of the total iterations in our case
study) in addition to high-level analysis parameters. Moreover, we
have shown that the quality function must be reconsidered in the
error resilience analysis process as the original quality metric of an
iterative workload (convergence criterion) might not be necessarily
su�cient. In which case, an additional quality metric has to be
de�ned for reliable quality assessment to establish the promising
approximate computing strategies.

ACKNOWLEDGMENTS
�is work was conducted in the context of the ASTRON and IBM
joint project, DOME, funded by the Netherlands Organization for
Scienti�c Research (NWO), the Dutch Ministry of EL&I, and the
Province of Drenthe. Authors are also thankful to Dr. S. H. Gerez
for the valuable discussions.

REFERENCES
[1] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour.

2011. Proving programs robust. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of so�ware engineering.
ACM, 102–112.

[2] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan.
2013. Analysis and characterization of inherent application resilience for approxi-
mate computing. In Proceedings of the 50th Annual Design Automation Conference.
ACM, 113.

[3] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
acceleration for general-purpose approximate programs. In Proceedings of the

CF’17, May 2017, Siena, Italy G.A. Gillani and A.B.J. Kokkeler

(a) Case 1: Convergence

(b) Case 1: Complex sensor gains (P=124)

(c) Case 2: Convergence

(d) Case 2: Complex sensor gains (P=124)

Figure 5: Error resilience identi�cation; convergence (loga-
rthmic scale) w.r.t the number of iterations (a) and (c); com-
plex sensor gains for P=124 (b) and (d)

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 449–460.

[4] Qian Hang. 2015. Counting the Floating Point Operations (FLOPS). In MATLAB
Central File Exchange. No. 50608, Ver. 1.0, Retrieved Oct 7, 2016.

[5] Henry Ho�mann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin
Rinard. 2009. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Massachuse�s Inst. Technol. (MIT), Cam-
bridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2009-042 (2009).

[6] Shubham Kamdar and Neha Kamdar. 2015. big. LITTLE Architecture: Heteroge-
neous Multicore Processing. International Journal of Computer Applications 119,
1 (2015).

[7] Ulya R Karpuzcu, Ismail Akturk, and Nam Sung Kim. 2014. Accordion: To-
ward so� near-threshold voltage computing. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE, 72–83.

[8] Philipp Klaus Krause and Ilia Polian. 2011. Adaptive voltage over-scaling for
resilient applications. In Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2011. IEEE, 1–6.

[9] Jim kukunas. 2015. Power and Performance: So�ware Analysis and Optimization.
Morgan Kaufmann, Waltham, MA 02451, USA.

[10] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. 2009. Best-e�ort
parallel execution framework for recognition and mining applications. In Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE,
1–12.

[11] Sasa Misailovic, Stelios Sidiroglou, Henry Ho�mann, and Martin Rinard. 2010.
�ality of service pro�ling. In Proceedings of the 32nd ACM/IEEE International
Conference on So�ware Engineering-Volume 1. 25–34.

[12] Asit K Mishra, Rajkishore Barik, and Somnath Paul. 2014. iACT: A so�ware-
hardware framework for understanding the scope of approximate computing. In
Workshop on Approximate Computing Across the System Stack (WACAS).

[13] Sparsh Mi�al. 2016. A survey of techniques for approximate computing. ACM
Computing Surveys (CSUR) 48, 4 (2016), 62.

[14] Debabrata Mohapatra, Vinay K Chippa, Anand Raghunathan, and Kaushik Roy.
2011. Design of voltage-scalable meta-functions for approximate computing. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011. IEEE,
1–6.

[15] Shahrzad Naghibzadeh, Ahmad Mouri Sardarabadi, and Alle-Jan van der Veen.
2016. Radioastronomical image reconstruction with regularized least squares. In
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Confer-
ence on. IEEE, 3316–3320.

[16] Semeen Rehman, Walaa El-Harouni, Muhammad Sha�que, Akash Kumar, and
Jörg Henkel. 2016. Architectural-space exploration of approximate multipliers.
In Proceedings of the 35th International Conference on Computer-Aided Design.
ACM, 80.

[17] Antonio Roldao-Lopes, Amir Shahzad, George A Constantinides, and Eric C
Kerrigan. 2009. More �ops or more precision? Accuracy parameterizable linear
equation solvers for model predictive control. In Field Programmable Custom
Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on. IEEE, 209–216.

[18] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014. Asac:
Automatic sensitivity analysis for approximate computing. In ACM SIGPLAN
Notices. ACM, 95–104.

[19] Pooja Roy, Jianxing Wang, and Weng Fai Wong. 2015. PAC: program analysis
for approximation-aware compilation. In Proceedings of the 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems. IEEE
Press, 69–78.

[20] Stefano Salvini and Stefan J Wijnholds. 2014. Fast gain calibration in radio as-
tronomy using alternating direction implicit methods: Analysis and applications.
Astronomy & Astrophysics 571 (2014), A97.

[21] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Sco� Mahlke.
2014. Paraprox: Pa�ern-based approximation for data parallel applications. In
ACM SIGARCH Computer Architecture News. 35–50.

[22] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Sco�
Mahlke. 2013. Sage: Self-tuning approximation for graphics engines. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 13–24.

[23] Adrian Sampson. 2015. Hardware and so�ware for approximate computing. Ph.D.
Dissertation. University of Washington.

[24] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2014. Approximate
storage in solid-state memories. ACM Transactions on Computer Systems (TOCS)
32, 3 (2014), 9.

[25] Muhammad Sha�que, Rehan Ha�z, Semeen Rehman, Walaa El-Harouni, and
Jörg Henkel. 2016. Invited: Cross-layer approximate computing: From logic to
architectures. InDesign Automation Conference (DAC), 2016 53rd ACM/EDAC/IEEE.
IEEE, 1–6.

[26] MP Van Haarlem, MWWise, AW Gunst, George Heald, JP McKean, JWT Hessels,
AG De Bruyn, Ronald Nijboer, John Swinbank, Richard Fallows, and others. 2013.
LOFAR: �e low-frequency array. Astronomy & Astrophysics 556 (2013), A2.

[27] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. 2016. Approximate computing:
A survey. IEEE Design & Test 33, 1 (2016), 8–22.

	Abstract
	1 Introduction
	2 Related Work
	3 Adaptive Statistical Approximation Model (Adaptive-SAM)
	4 Experimental Setup and Results
	4.1 Radio Astronomy Calibration – StEFCal
	4.2 High-level Error Resilience Analysis

	5 Significance of Quality Function Reconsideration
	6 Conclusions
	Acknowledgments
	References

