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Abstract. We design an evolutionary heuristic for the combinatorial
problem of de-novo DNA assembly with short, overlapping, accurately
sequenced single DNA reads of uniform length, from both strands of a
genome without long repeated sequences. The representation of a candi-
date solution is a novel segmented permutation: an ordering of DNA reads
into contigs, and of contigs into a DNA scaffold. Mutation and crossover
operators work at the contig level. The fitness function minimizes the
total length of scaffold (i.e., the sum of the length of the overlapped
contigs) and the number of contigs on the scaffold. We evaluate the algo-
rithm with read libraries uniformly sampled from genomes 3835 to 48502
base pairs long, with genome coverage between 5 and 7, and verify the
biological accuracy of the scaffolds obtained by comparing them against
reference genomes. We find the correct genome as a contig string on the
DNA scaffold in over 95% of all assembly runs. For the smaller read sets,
the scaffold obtained consists of only the correct contig; for the larger
read libraries, the fitness of the solution is suboptimal, with chaff contigs
present; however, a simple post-processing step can realign the chaff onto
the correct genome. The results support the idea that this heuristic can
be used for consensus building in de-novo assembly.

Keywords: De Novo DNA assembly · Genetic algorithm · Consensus
genome

1 Introduction

Sequencing technologies have increasingly low cost and feasible runtimes; they
can generate deep coverage of mammal genomes within days, such that many
new projects attempt to sequence previously unsequenced organisms. The raw
sequence data generated in such a project is a set of overlapping, either single
or paired-end DNA reads, from either of the two reverse-complementary strands
of a DNA molecule. Single reads are either short (102 bases for most available
second-generation sequencers, with high single-read accuracy: 99.9% for Illumina
dye sequencing [1]) or long (104 bases with lower single-read accuracy: 80–90%
for third-generation SMRT [2] and MinION sequencing [3], with predominantly
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 67–82, 2017.
DOI: 10.1007/978-3-319-55849-3 5



68 D. Bucur

insertion and deletion errors). Short-read second-generation sequencers are in
wide use; a sufficient number of overlapping short reads need to be obtained in
order to cover the underlying genome multiple times over. This coverage c is the
average coverage of each base on the DNA strand, c = n · r/G, where n is the
number of reads, r the read length, and G the expected length of the genome.

We look at the problem of assembling accurate, single, short DNA reads with
uniform length and a medium depth of coverage of the original genome. The
overlapping DNA reads (essentially, strings over a four-letter alphabet) must be
totally linearly ordered such that each pair of adjacent reads overlaps. Continu-
ously overlapping sequences of short reads form a DNA contig, and the contigs
obtained are ordered on a DNA scaffold which equates the genome. This is a
combinatorial problem, yielding a computationally hard assembler; the larger
the genome sequenced and the deeper its coverage, the larger the read set in
input and the more difficult the computation. Some genomes and read sets are
comparatively more difficult to assemble than others; current DNA assembling
algorithms are themselves not optimal, and may obtain different solutions for
the same input [4–6].

De-novo assembly refers to sequencing DNA reads in the absence of a refer-
ence genome, i.e., a closely related genome whose internal structure is essentially
the best accuracy metric with which to verify the assembly obtained: the newly
assembled genome must align back onto the reference. In absence of a reference
genome, only an estimate of the length of the reference genome can replace it as
an imperfect accuracy metric. In practice, consensus is used: a newly sequenced
genome is considered correct if a number of different assembly algorithms (or
parameter settings to the algorithms) computed it. Obtaining consensus is effec-
tively the current accuracy metric in absence of a reference genome.

We employ all three accuracy metrics above to verify our method: the length
of the genome as a fitness function, aligning back to the reference genome as a
post-factum evaluator for the correctness of a single assembly, and consensus as
a post-factum evaluator for the method as a whole.

The novel points in this study are:

Algorithmic. We build on prior work using Evolutionary Computation in DNA
assembly. We introduce a new representation for a candidate solution which
models the scaffold as a segmented permutation, with DNA contigs as build-
ing blocks. The corresponding genetic operators mutate and crossover DNA
contigs natively, i.e., operate at macro level rather than over individual reads.
This representation closely models a real genome, and allows assembly metrics
to be written as computationally simple fitness functions.

Fitness functions. A new fitness function is used: the length of the DNA scaf-
fold, together with the number of contigs on the scaffold (to be minimized).
This fitness function is the closest option to an accuracy metric for a de-novo
problem, and also makes possible to write a stopping condition for the com-
putation when the length of the scaffold matches the estimate length of the
reference genome.
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Correct assemblies. We evaluate this method with read sets uniformly sam-
pled from existing consensus genomes 3835 to 48502 base pairs long and
genome coverage between 5 and 7. In over 95% of all assemblies, even with
suboptimal fitness, the correct genome is obtained as a contig on a multi-
contig scaffold; a simple realignment of the “chaff” contigs in the solution
then yields a correct genome.

Consensus among assemblies. Since the algorithm often obtains the correct
genome across repeated assemblies with different random seeds and parameter
settings, the algorithm can serve effectively as a consensus builder for a new
genome.

2 Related Work

On a theoretical note, assuming that the shortest assembled genome is desired,
the assembly problem has been recast into the shortest common superstring
(SCS) problem, i.e., the problem of finding, for n given finite strings s1, s2, . . . , sn
over an alphabet of size greater than 2, a shortest superstring S such that every
string si can be obtained by deleting zero or more elements from S. The SCS
problem is known to be NP-complete [7], as is the simpler version of SCS in
which the n strings are totally ordered in a superstring [8].

In this section, we summarize results from two research areas: the perfor-
mance of existing, commercial-grade assemblers, and the closely related prior
work on using artificial genetic algorithms to sequence natural genetic material.

2.1 Lessons Learned from Existing Assemblers

Current short-read DNA sequencers implement heuristics which order short
DNA reads onto contigs based on maximizing the overlap between adjacent
reads, on maximizing the sum of overlaps across the scaffold, and on incorpo-
rating the most reads in the final assembly. As summaries of these techniques,
we point to recent comparative studies such as [4–6], and give an overview of
knowledge they gained from these comparative campaigns, which can act as a
baseline of expectations for our own method. [4] experimented with 8 assemblers
for paired-end short reads, and compared the results against reference genomes.
[5] compared 43 assemblies from 21 teams over both short- and long-read, single-
and paired-end read sets, without reference genomes. In [6] long-read MinION
sequence data was assembled with 4 assemblers from all algorithmic classes.

No Optimal Assembly Strategy Exists. In [4], endemic problems were found
across the board: the contiguity of an assembled genome varied wildly among
both assemblers and genomes under sequence. When comparing the assemblies
obtained to a reference genome, the following issues we found: many “chaff”
contigs (of length under twice the read length), unnecessarily duplicated con-
tigs, compressions of true repeat sequences (a widespread problem for short-read
assemblers), contig “misjoins” (i.e., the assembler joined two contigs which are
in fact distant in the reference genome), many indels (insertions and deletions
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in the assembly compared to the reference). In [5], a high degree of variability
was found among assemblies, to the extent that the result of a single assembler
and set of assembler parameters is not to be trusted. This supports the idea of
consensus: an assembly obtained by different methods is likelier to be accurate.

Assembly Metrics are Error-prone; Use Accuracy Metrics. The metrics
used to evaluate the assembled genome in absence of a reference genome are
error-prone [4]; these assembly metrics (e.g., the number of contigs obtained, or
various basic statistics over the sizes of the contigs) were found not to correlate
very well with accuracy metrics, which compare the assembly against a true ref-
erence genome (when available), by computing the degree to which the reference
genome is covered by the assembly, and the percentage of contigs alignable onto
the reference genome. It remains unclear how to assess the quality of the assem-
bled genomes, because no assembler performed well by all assembly metrics and
all genomes [5]. In the evaluation of an assembly, one should not trust a single
assembly metric. In [6], assemblies of poor accuracy were seen: for one species, all
assemblers obtained very low genome coverage (between 0% and 12%); a greedy
assembler had both the genome coverage and the percentage of alignment under
5% for both species.

Some Genomes and Read Sets are More Difficult to Assemble. In [4],
the accuracy of the reads had larger negative effect upon the quality of the
genome assembled than the assembler itself. A uniform read length r and reads
uniformly distributed across the genome both improve the efficiency and accu-
racy of the assembly [9]. Also, a widespread problem is that genomes with
repeated subsequences are more difficult to assemble: repeat sequences longer
than the read length may create a gap, a misjoin, or may be compressed [4].

In consequence, we take the following decisions for this study:

– We simplify the problem to an extent by sequencing genomes or genome seg-
ments which are small and have no repeats longer than the read length.

– We control the shape of the read set by artificially sampling it using a random
uniform sampler, from a reference genome.

– We use accuracy metrics (the reference genome, and consensus among assem-
blies) to evaluate our method both via the runtime fitness and post-factum.

2.2 Previous Genetic Representations and Operators

A major issue with prior work sequencing DNA using an evolutionary approach
is that their fitness functions only model assembly metrics which state nothing
about the accuracy of the result (also a widespread issue across other assemblers,
per Sect. 2.1). Table 1 summarizes prior work using an evolutionary approach.

[8] builds on genetic algorithms for the TSP problem. If a candidate were
to be represented as a permutation of n read identifiers, then classic two-point
crossover leads to illegal offspring, so a complicated individual representation
is used, not directly linked to the order in which the reads are placed in the
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Table 1. Related work

[8] [10–12] [13]

Candidate
representation

Sorted-order
representation

Permutation (array of
read identifiers)

Permutation (array of
read identifiers)

Mutation
operators

Classic bit
point mutation
(micro)

Read swap (micro),
contig inshift (macro),
contig reverse (macro)

Read swap (micro)

Crossover
operators

Classic bit
two-point
crossover
(micro)

Edge recombination,
order crossover
(micro)

Order crossover (micro)

Fitness
functions

Total adjacent
overlap (↑)
Total distant
overlap (↓)

Total adjacent overlap
(↑)
Total distant overlap
(↓)

Total adjacent overlap (↑)
Number of contigs (↓)

assembly. In the evaluation, it was found that this candidate representation
doesn’t construct increasingly improved solutions, and is thus not useful.

Two fitness functions model the total overlap between adjacent fragments in
a layout: F1 =

∑n−1
i=1 w(i, i + 1), where w(i, j) is the degree of overlap between

fragments i and j (linear, and to be maximized), and F2 (square) a variant
minimizing the total degree of overlap w(i, j) among all fragment pairs i and j
at distant locations in the assembly. Neither of these functions, when evaluated
over a candidate solution, can directly tell how closely the assembly relates to
the true genome. A greedy algorithm outdid this decisively in contig counts and
marginally in terms of F1.

In [10,11] (with further parameter tuning in [12]) the fitness functions from
[8] are kept, but a simpler and more effective permutation representation is used,
i.e., an ordered list of read identifiers as appearing in the assembly. This requires
specialized genetic operators listed below (in some cases renamed, to clarify that
we preserve the semantics of 3 out of 5 in this work). Each operator is either
micro, if it operates over reads, or macro, when at contig level:

Order crossover (micro): random read indices l and r are selected, the sub-
sequence between l and r on the first parent is copied into the offspring pre-
serving absolute position, and the remaining slots in the offspring are filled
from left to right with the reads not yet in the offspring, in the relative order
in which they appear in the second parent.

Edge recombination (micro): greedily attempts to preserve read adjacencies
from the parents into the offspring. Selects the first read r from the first
parent, and follows it with that read s which (i) is adjacent to r in both
parents, or, failing that, (ii) has the most adjacencies left.

Swap (micro): two random reads are swapped; in [12], late swaps (to avoid local
optima) become greedy by overlap rather than randomly.
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Reverse-complement (macro): reverts a random contig (with the contig
bounds being probabilistic in [12]).

Inshift (macro): moves a random contig between a random two previously
adjacent contigs.

The number of contigs is not used as a fitness function. From the functions
used, F1 is found to be adequate (and better than F2), but not ideal; the authors
leave the design of a more appropriate function for future research. Neither
function can be seen as an accuracy metric.

PALS [13] adds as fitness to F1 the number of contigs and obtains one contig
for all but the largest read set. In this candidate representation, the calculation
of the number of contigs has high time complexity, and their method to esti-
mate this is done via delta-increments from the application of operators at each
iteration.

In our evaluation, we experiment with the genomes used in this prior work
(under 105 base-pairs long, with low coverage between 5 and 7, a cutoff value
for overlap of 30 base pairs, and read sets generated artificially from a reference
genome without long repeats). More importantly, while all prior work makes
an effort to compare against other assemblers in terms of the number of contigs
obtained (and occasionally the abstract assembly metric F1), it makes no effort to
measure how well the reference genome is actually covered by the best assemblies
they obtained. Here, we bridge this gap between the abstract evaluation of the
algorithm, and the practical, domain-specific evaluation of the solutions.

3 Methodology

In Fig. 1 and Table 2, we summarize our design choices in terms of the genetic
representation, operators, and fitness functions. Previous work borrowed from
evolutionary-inspired solutions to the TSP problem, and represented a candi-
date solution as a simple permutation of DNA reads (a comparative overview
was given in Table 1 in the related-work Sect. 2.2). This representation made it
natural to then design primarily micro genetic operators, i.e., operations chang-
ing the location of individual DNA reads in the permutation. Macro operators,
modifying a DNA contig, required more effort in recovering the contig structure
from this representation. We build on these early designs, and lift the candidate
representation and all operators to macro level, to then be able to write compu-
tationally simple fitness functions and stopping conditions, both of which reflect

AATTT GGGCCDNA scaffold:

DNA contig strings: AACCCAATTT GGCCCAA

CCCAAAACCC CCAAT

Fig. 1. The representation of a candidate with reads of length 5 base pairs, 5 reads
in the read set, 2 contigs currently on the scaffold, and a minimum overlap threshold
of 2 base pairs. A reverse-complement bit of True is shown as a backward arrow; the
reverse-complement of GGGCC is GGCCC.
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Table 2. Method for this work

Candidate representation Segmented permutation

Mutation operators (R) contig reverse-complement (All macro)

(S) contig split

(I) contig inshift

(M) contig merge

Crossover operators (O) one-point order crossover for scaffolds

Fitness functions Length of DNA scaffold (↓)

Number of DNA contigs (↓)

the metrics measuring the accuracy of a DNA assembly, learnt from recent stud-
ies of commercial DNA sequencers (Sect. 2.1). These design choices are detailed
in the remaining of this section.

3.1 Representation of Candidate Solution

A segmented permutation arranges the DNA reads in the input read set in an
order, to model a DNA scaffold, as a simple permutation would also do. How-
ever, it also logically segments this scaffold into DNA contigs, where each is a
subarray (of length at least one) of DNA read identifiers. This essentially mem-
orizes the boundaries of contigs at the level of the candidate solution, and also
allows to write a fitness function and a stopping condition for the evolutionary
process which compare a candidate solution’s scaffold length against its expected
length, as given by a reference genome (i.e., an accuracy metric from Sect. 2.1).
A candidate (with a sketch in Fig. 1) is an object with the following attributes:

DNA scaffold: a segmented permutation of the unmodified DNA reads in the
input set, of which the reads in any segment (modelling a DNA contig) will
have adjacent overlaps above a certain minimum overlap threshold.

Reverse-complement bits: for each DNA read, a Boolean variable which is
True if the corresponding read is used it its reverse-complemented form in
this candidate scaffold with respect to the input read set.

DNA contig strings: for each DNA contig on the scaffold, the overlapped
contig (i.e., a relatively short string). Initially, all contigs contain a single
read. The sum of the lengths of these contig strings will thus start at value
n ·r, where n is the number of reads in the input set, and r is the read length,
and will decrease in time, as contigs merge.

3.2 Operators Over Candidate Solutions

All genetic operators work natively over DNA contigs. This is a generalization
rather than a limitation in comparison to the micro operators from the related
work, since a contig here may well consist of a single read, and any DNA scaffold
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Parent:

complement(C):
Reverse−

Split(C,3):

Inshift(C,1):

Merge(1):

contig C

Parent 2:

Parent 1:

Offspring 2:

Offspring 1:

Fig. 2. Mutation (top) and crossover (bottom) operators. From the candidate represen-
tation, only the DNA scaffold and the reverse-complement bits are shown (a backward
arrow models a True value). Indices are 1-indexed. This crossover example uses index
2, i.e., preserves the first two contigs from the first parent into the first offspring.

may be obtained via either set of operators. However, macro operators may be
more efficient in that they apply a mutation (such as a transposition of a portion
of DNA from one place in the scaffold to another) for an entire existing contig,
in one step, rather than read by read.

Our set of genetic operators are listed below, and shown in Fig. 2.

Reverse-complement: as the corresponding operator in prior work [10–12].
The corresponding DNA contig string in the representation becomes the
reverse-complement of the original.

Inshift: also as in prior work. It preserves the internal structure of all contigs.
Split: a randomly selected contig is split (if it consists of at least two reads)

at a random point, forming two new adjacent contigs. Two new DNA contig
strings are computed for the scaffold.

Random Merge: a random pair of adjacent contigs is merged into a new contig,
with a new DNA contig string computed for the scaffold. The merge only
occurs for pairs of contigs which overlap by a number of base pairs above a
configurable threshold (the higher this threshold, the fewer the merge options
are). The two contigs may overlap by a number of base pairs longer than the
read length: in this case, the newly formed contig is an interleaving of the
two original contigs. We also experimented with a variant of this operator:
Greedy Merge: among the list of all possible merges on a given candidate

scaffold, the highest 50% in terms of overlap are selected, and a random
choice is made out of these.

Order crossover: a random index is selected between two adjacent contigs on
the first parent. All the contigs to the left of this point are preserved (in both
position and internal structure) in the first offspring. The remaining reads for
this offspring will come from the second parent, in the order in which that
parent has them on its scaffold; two of these reads will be adjacent in the same
contig only if they were arranged as such on the second parent (otherwise,
they will form separate contigs).



De Novo DNA Assembly with a Genetic Algorithm 75

We abbreviate these operators by their initials, R, S, I, M, O. They are
applied in the evolutionary process to a candidate solution in a configurable
order (e.g., RSIMO), each operator at a configurable rate of application.

With one exception, each operator performs a modification of a candidate
solution which cannot be achieved by any combination of other operators—
in other words, this operator set is minimum. The exception is the crossover
operation, which may be modelled by a long sequence of mutation operators;
the innate advantage of crossover is speed, i.e., it drastically raises the rate of
change in the population.

The time complexity of applying each operator to a candidate with n total
reads and r read length, and copying in the offspring, is up to O(nr) in all cases
except Greedy Merge, where an extra O(n log n) worst-case factor is needed (NB:
this factor may be dominated by O(nr)).

3.3 Candidate Fitness

Good options for fitness functions are accuracy metrics from the literature. Since
it has been observed that the assembly metrics regularly used in comparative
studies do not correlate well with accuracy metrics [4], we use fitness functions
which borrow from both categories.

The length of the candidate scaffold, i.e., the sum of lengths of DNA contig
strings, is the main fitness, to be minimized. This is essentially an assembly
metric, except if an estimate length of the reference genome is known: then it
also acts as an accuracy metric.

The number of DNA contigs is the second, less crucial, component of the
fitness, to be minimized. The two functions are summed up. This fitness reflects
purely an assembly metric; unlike the first fitness component, it states nothing
about the accuracy of the solution, since many assemblies may exist, of various
scaffold lengths, which will have exactly one contig. For this reason, most of the
early related work [8,10–12] does not use this fitness function at all, while the
more recent work [13–16] uses it in conjunction with another assembly metric.

The time complexity of computing the scaffold length over a candidate with
c contigs on the scaffold, in our candidate representation, is Θ(c): the length of
the scaffold is the sum of the lengths of the DNA contig strings included in the
representation (Sect. 3.1). Computing the number of contigs is constant-time if
the length of the data structure modelling the segmented permutation is stored
explicitly in the implementation.

4 Evaluation

4.1 Datasets

We obtain read libraries from existing consensus genomes. The reads are gener-
ated artificially, as in some of the prior work, rather than being selected from
sequenced read libraries. This brings several advantages (argued as desirable in
Sect. 2.1):



76 D. Bucur

– This gives a reference genome, so we can compute accuracy metrics to evaluate
any assembly obtained against the original genome itself.

– We know the raw reads to be accurate.
– We can verify that adjacent reads have an overlap above 30 base pairs.
– The genome lacks repeat sequences longer than the read length.

The genomes used in the evaluation (Table 3) were also used in the related
work. X60189 and M15421 are fragments of human DNA (in the case of M15421,
sequenced from messenger RNA); J02459 is the whole genome of a phage virus,
the Enterobacteria phage lambda. The difference to [10,11,13,17] is that we take
reads of uniform length, as uniform-length reads of length on the order of 102

are most common in current commercial sequencers, and we use the entirety of
the J02459 (rather than the first 40% of the sequence, as done previously in
[10,11,13,17]); we thus have a larger read library for J02459. We generated 10
distinct read libraries for X60189 and M15421, and one read library for J02459.
Each read library was assembled 20 times, using different random seeds for the
genetic algorithm.

Table 3. Reference genomes and read libraries used in the evaluation

X60189 [18] M15421 [19] J02459 [20]

Genome length (base pairs) 3835 10089 48502

Read length (base pairs) 400 400 400

Coverage 5 5 7

Number of reads 48 127 849

4.2 Genetic Parameters and Implementation

Candidate solutions are selected via tournament (of tournament size 5 across all
experiments), and 5 elites are kept in the population. Two stopping conditions
are placed upon the evolutionary process: the fitness reaching the expected, opti-
mal fitness for that genome (i.e., the length of the scaffold: an accuracy metric),
and a stagnation condition upon the number of generations without improve-
ment in fitness; the latter is set equal to the population size. The population size
and the number of stagnating generations are always 100.

The genetic operators are applied sequentially in the basic order RSIMOM,
i.e., with a Merge mutation after each chain of other operators which is likely
to break down contigs (i.e., Split and Order crossover); the default is a Ran-
dom Merge. The rates of application for the operators are 0.5 for all mutation
operators, and 0.1 for the crossover.

The software implementation uses the inspyred [21] Python framework for
bio-inspired algorithms, which is easily extensible with new candidate represen-
tations and genetic operators.
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4.3 Results and Evaluation via Fitness Values

For the smallest read sets and genomes, the algorithm, when run repeatedly with
different random seeds, always obtains the optimal solution. The optimal fitness
value is the length of the reference genome plus one (the latter being the contig
count). For the second genome, the optimal fitness is obtained in a majority of
the runs; for the third, no run was optimal. We discuss this outcome later.

Fig. 3. Assemblies obtained for 10 different read sets sampled from the X60189 genome
(top) and the M15421 genome (bottom). For each of the 10 read sets, 20 assemblies
were run with different random seeds. Parameters as in Sect. 4.2. Optimal assembly
length shown in red (grey in print). (Color figure online)

We first gain an insight as to the frequency and the cost of reaching the
optimal fitness: in Fig. 3, we show assemblies for 10 read sets obtained from the
X60189 genome, and for 10 read sets from the M15421 genome. For each of these
read sets, 20 assemblies are run, with different random seeds, for a total of 200
per plot.

All assemblies used the parameter settings in Sect. 4.2. Each data point shows
the best solution obtained by an assembly, in terms of fitness; the fitness is shown
with its two components explicitly separate: the scaffold length (in base pairs)
on the vertical axis, and the number of contigs as an annotation to each point.
The optimal number of contigs is naturally one, and the optimal scaffold length
is shown as a threshold line. On the horizontal axis, the number of generations
required to reach the best assembly per run gives a measure of the method’s
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runtime. For all the read sets, some or all of the assemblies found an optimal
solution, i.e., the reference genome in either forward or reverse-complemented
form. Not surprisingly, the smaller the read set, the likelier optimality is. For
the largest genome (J02459), no assembly was optimal in fitness.

4.4 Results and Evaluation via Accuracy Metrics

Here, we evaluate the best assemblies obtained against the ground truth provided
by the reference genome. Figure 4 shows the internal breakdown into contigs of
the 20 assemblies obtained from a read set of the two largest genomes. The
scaffold is shown with the longest contig first (without loss of information: as
they are disjunct, contigs may be rearranged). Almost all assemblies in Fig. 4
computed a contig of length equal to the reference genome, which is a strong
hint that this contig also aligns fully with the genome, and is thus an accurate
assembly by itself.

Fig. 4. Scaffolds obtained as best assemblies for the largest genomes, for one read set
per genome. For each scaffold, the lengths of the internal contigs are shown, with the
longest contig first. A check mark is placed on all contigs which are identical to the
reference genome. Optimal assembly length shown in red (grey in print). (Color figure
online)

We verify this in a separate step. All assemblies for X60189 obtained a single
contig identical to the reference genome. Similarly, 131 out of 200 assemblies
for M15421 obtained a single optimal contig, with the remaining assemblies
consisting of a multi-contig scaffold, where the longest contig is identical to the
reference; these results, together with a comparison with results from the related
work and an account of the runtime of our method in the current implementation,
are summarized in Table 4. The related work in [17], which also proved the
optimality of the solution, is based on particle swarm optimization. We executed
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Table 4. Summary of numerical results, including a comparison with related work and
approximate average runtimes for our method (with sequential execution on 3-MHz
computing cores). A ✓symbol is placed near a result when the single-contig assembly
obtained there was verified to be the optimal solution; when not verified, no symbol
is added. The full genome J02459 was assembled before in [16], but using a smaller
read library of longer, 700-bp reads, so it is not listed in the table; this related work
obtained a single contig, but did not verify its accuracy.

X60189 (5) M15421 (5) J02459 (7)

best num. contigs in
related work

1 [10,13,16], 1 ✓ [17],
3 [22]

1 [13,16], 1 ✓ [17],
13 [22]

11 [22]

best num. contigs
here

1 ✓ 1 ✓ 41

% runs optimal
assembly

100% 66% 0%

% runs accurate
contig

100% 100% 95%

average runtime per
assembly

35 s 7min 10 h

the greedy heuristic SSAKE [22] ourselves on these read sets; the parameters
were -w 10 -m 20.

The results support the idea that the evolutionary algorithm can be used for
consensus building.

There remains the problem of chaff contigs obtained in the assembly alongside
the correct genome; the chaff can be seen in Fig. 4, and is loosely understood here
as contigs of lengths shorter than 3–4 times the read length. This is a weakness of
the evolutionary algorithm, also encountered in the prior work [12,13]: the best
solution obtained by the GA may be suboptimal in fitness. However, suboptimal
solutions are easily refinable into optimal ones: it is provable that, when a long
contig is the accurate solution, a simple, deterministic, post-processing step can
align each individual read left in chaff contigs back onto the long contig. This
remains for future work.

4.5 Random vs. Greedy Merge

We found some variability in the results of assembly runs due to the type of the
Merge operator. Figure 5 (left) shows the fitness values for the 20 assemblies of a
M15421 read set, executed separately with either of the Merge operators. While
a Random Merge contributed to an optimal fitness in slightly over half the runs
(and did construct a correct contig in all the runs), the Greedy Merge under
the same GA parameters never led to optimal fitness, but still did construct a
correct contig in half the runs — Fig. 5 (right) shows the scaffolds obtained with
the Greedy Merge. A greedy behaviour in this method may thus lead to local
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Fig. 5. The effect of the type of Merge upon assemblies over one read set for the
M15421 genome. (left) 20 assembly runs with either Random Merge or Greedy Merge;
(right) the scaffolds obtained with Greedy Merge. Parameters as in Sect. 4.2. Optimal
assembly length shown in red (grey in print). (Color figure online)

minima, depending on the read library assembled; the type of Merge made no
difference in assembling the smaller X60189 genome.

5 Conclusions

We summarize our results as follows:

– An evolutionary algorithm will often find an accurate solution to the assembly
problem, for genomes and read sets of type and size used here.

– For large problems, chaff contigs is unavoidable, and an optimal fitness
unattainable. However, even in these cases, the accurate genome is obtained
after a simple post-processing refinement step.

– Accuracy metrics must be used to evaluate an assembly algorithm against
reference genomes. De novo assemblies (without the advantage of reference
genomes) can be validated by consensus.

– Evolutionary algorithms are eminently suitable as consensus builders: repeated
executions will yield a number of large DNA contigs, among which the correct
genome is found in majority.

Many practical difficulties remain for future work, in order that this method
applies in commercial-grade assembly: (a) a uniform distribution is unlikely to
be obtained in practice due to bias in some DNA fragmentation methods [9]; (b)
the read sets to assemble may have far larger sizes and smaller reads, leading to a
more complex problem; finally, (c) largest genomes will have long DNA repeats,
which pose difficulties to all short-read assembly algorithms.



De Novo DNA Assembly with a Genetic Algorithm 81

References

1. Illumina: Illumina sequencing technology, October 2016. http://www.illumina.
com/documents/products/techspotlights/techspotlight sequencing.pdf

2. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C.,
Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W., Korlach, J.:
Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing
data. Nat. Methods 10(6), 563–569 (2013)

3. Ip, C., Loose, M., Tyson, J., de Cesare, M., Brown, B., Jain, M., Leggett, R.,
Eccles, D., Zalunin, V., Urban, J., Piazza, P., Bowden, R., Paten, B., Mwaigwisya,
S., Batty, E., Simpson, J., Snutch, T., Birney, E., Buck, D., Goodwin, S., Jansen,
H., O’Grady, J., Olsen, H.: MinION analysis and reference consortium: phase 1
data release and analysis. F1000Research 4, 1075 (2015)

4. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S.,
Treangen, T.J., Schatz, M.C., Delcher, A.L., Roberts, M., Marçais, G., Pop, M.,
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