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 Abstract Uncertainty plays a major role in Integrated Coastal
 Zone Management (ICZM). A large part of this uncertainty is
 connected to our lack of knowledge of the integrated function
 ing of the coastal system and to the increasing need to act in a
 pro-active way. Increasingly, coastal managers are forced to
 take decisions based on information which is surrounded by
 uncertainties. Different types of uncertainty can be identified
 and the role of uncertainty in decision making, scientific
 uncertainty and model uncertainty in ICZM is discussed. The
 issue of spatial variability, which is believed to be extremely
 important in ICZM and represents a primary source of com
 plexity and uncertainty, is also briefly introduced. Some prin
 ciples for complex model building are described as an ap
 proach to handle, in a balanced way, the available data, infor
 mation, knowledge and experience. The practical method of
 sensitivity analysis is then introduced as a method for a poste
 rior evaluation of uncertainty in simulation models. We con
 clude by emphasising the need for the definition of an analysis
 plan in order to handle model uncertainty in a balanced way
 during the decision making process.

 Keywords: Coastal management; Coastal system; Keystone
 process; Model; Simulation.

 Introduction

 In order to carry out a successful Integrated Coastal
 Zone Management (ICZM), a thorough understanding
 of the functioning of the coastal system is required. This
 can be achieved by studying the relevant processes in
 geomorphology, ecology, coastal land use, and socio
 economy, and especially their interdependencies, within
 the coastal zone. Currently there is a lack of understand
 ing of the integrated functioning of the coastal system.
 Perhaps equally significant is that at present the elemen
 tary knowledge for a truly interdisciplinary approach is
 also still lacking.

 The development of integrated models can help to
 investigate the processes and feedback mechanisms be
 tween geomorphology, ecology, coastal land use, and
 socio-economy. The development and also the use of
 these models is, however, surrounded by uncertainties.
 These uncertainties may already originate in the initial
 phases of the model building processes, for instance

 when considering the choice of key variables or key
 processes. The search for key processes in the complex
 issue of integrated assessment draws on Holling's (1992)
 argument that the dynamic behaviour of many ecosys
 tems can be explained by a few driving forces, namely
 the keystone processes. Other matters of uncertainty
 concern the choice of temporal and spatial aggregation
 levels. One of the major difficulties in the linking of
 different processes in integrated assessment and inte
 grated modelling is the linking of the available informa
 tion and the process knowledge both in space and time.
 Different systems work along different time scales
 (Costanza 1991), for example biology, economics and
 geology work from seasons to millions of years. Spa
 tially, processes may display an equally large variabil
 ity. The linking of processes in space and time basically
 corresponds to defining the mechanisms of downscaling
 and upscaling of processes.

 Uncertainty is also produced by the lack of knowl
 edge about the external influences that the coastal sys
 tem is subject to. Both natural and human-induced influ
 ences can affect the functioning of coastal systems.
 There is always uncertainty surrounding the predictions
 for change and of the rates of change, for instance in the
 context of climatic change related forces (possible rela
 tive sea level change, change of storminess, etc.) and in
 the context of future coastal land use settings and socio
 economic scenarios.

 Other sources of uncertainty arise from the institu
 tional settings in which the Integrated Coastal Zone
 Management action is undertaken. Such settings are
 hardly ever optimal. There are many different actors
 involved, who have very diverse interests, are distrib

 uted in space and act on different scales during the
 various phases of problem analysis, planning, imple
 mentation and evaluation. The various actors further

 complicate the problem of evaluating the modelling
 results by imposing their subjective interpretations or
 specific interests upon the model outputs eventually
 presented by the coastal scientists.

 All such sources of uncertainty are investigated here
 with reference to the coastal area and Integrated Coastal
 Zone Management. The aim is to make the model uti
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 lization more and more generally applicable, so that it
 becomes less dependent on the specific model to which
 it is applied. This can be achieved by introducing, and
 using, principles and guidelines for systematic analysis
 and communication of uncertainty.

 The existence of uncertainty cannot be a justifica
 tion for not undertaking Integrated Coastal Zone Man
 agement. At the same time, however, representing, quali
 fying, and quantifying uncertainty is central to support a
 proper and robust decision making. A model-based as
 sessment may use heuristic schemes to communicate
 uncertainties, for instance by assigning degrees of con
 fidence to the main concluding statements that result
 from the model runs. However, more systematic analy
 sis and communication of uncertainty should also be
 possible by defining scenarios of change and undertak
 ing guided sensitivity analyses.

 Types of uncertainty

 On the sources of uncertainty

 The literature provides an extensive overview of
 different classifications of uncertainties. This is not

 surprising, since the issue of uncertainty has invariably
 been an important one in (physical) science (Morgan &
 Henrion 1990). Science and the role of science, how
 ever, evolve with developments in society. The emer
 gence of large scale environmental problems and the
 public concern over these issues has changed the tasks
 for scientists.

 Funtowicz & Ravetz (1990) introduce the term 'post
 normal science' which indicates the passing of Kuhnsian
 'normal science' associated with puzzle-solving. In the

 post-normal era, scientific problems are introduced
 through policy issues. The issues of risk and environ

 ment impose new tasks on those scientists and experts
 who provide information and advice on policy prob
 lems, the so-called policy related research (Funtowicz
 & Ravetz 1990; Funtowicz & Ravetz 1991; Morgan &
 Henrion 1990). Despite the progress in technology and
 science we now have to cope with increasing uncertain
 ties surrounding complex environmental problems and
 threats. Dealing with these uncertainties involves a new
 challenge for scientists.

 The relationship between policy and science has
 changed over the years. In the past science provided the
 'hard' (numerical) facts and handed them over to the
 'soft' (interest driven) politics (Funtowicz & Ravetz
 1990). Nowadays policy makers more often have to

 make 'hard' decisions based on 'soft' scientific infor

 mation. Furthermore, the view of policy makers taking
 over to make decisions after scientists have finished

 their job of providing the facts, is no longer satisfactory.
 If the policy making process is going to make adequate
 use of science, a careful and iterative process of analysis
 and interpretation is required.

 Policies can no longer be assumed to be based on
 scientific information which has a high degree of cer
 tainty (Funtowicz & Ravetz 1990). A common response
 of decision makers and the public is to demand at least
 the appearance of certainty. Problems arise, however,
 when policy and decision makers do ask scientists for
 'certain' information (Capobianco & Otter 1997). In

 many cases policy makers expect straightforward infor
 mation as input into their decision making process. In
 other words, the 'politically correct' way of presenting
 model results to the end-user (e.g. decision-maker) is to
 produce a single value answer. Thus, if a model is
 calibrated and validated it is considered to be reliable

 and to add an uncertainty interval would be equivalent
 to doubting the results (Cunge 1998).

 In this context, Funtowicz & Ravetz (1990) assert
 that "our culture invests a quality of real truth in num
 bers...". The reliance on numbers, which are not only
 considered necessary, but also generally sufficient, can
 easily lead to the conviction that all problems will be
 solved with bigger and faster computers. But, bigger is
 not necessarily better and small improvements will even
 tually require increasingly large efforts. The term 'ap
 propriate models' can be used (analogous to appropriate
 technology) to indicate models in which the various
 degrees of accuracy, reliability and uncertainty are tuned
 to one another (Vreugdenhil 1997). The 'tuning' of the
 various aspects determines the quality of the model.

 A very general typology of uncertainties, based on
 the division into a natural system and a human system, is
 given by Rotmans et al. (1994). They distinguish:

 Scientific uncertainties: occurring in the environ
 mental system and which arise from the degree of
 unpredictability of global environmental change proc
 esses and may be narrowed as a result of further scien
 tific research or more detailed and appropriate model
 ling;

 Social and economic uncertainties: occurring in the
 human system and which arise from the degree of
 unpredictability of future geopolitical, socio-economic
 and demographic evolution and which are inherently
 'unknowable' or in practice unpredictable.

 The first statement, however, is in conflict with the

 observation that non-linear systems can exhibit determin
 istic chaos and thus become inherently unpredictable.

 Funtowicz & Ravetz (1990) distinguish between
 three sorts of uncertainty, namely technical, methodo
 logical and epistemological uncertainty. Technical un
 certainty relates to inexactness of data or the spread of
 data sets. Methodological uncertainty corresponds to
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 Table 1. Sources of uncertainty with respect to planning phases (modified from EPA; Anon. 1996).

 Activity Source of uncertainty  Solution

 Data Unclear communication
 collection

 Descriptive errors

 Variability and definition of
 representative values

 Uncertainty about a
 quantity's true value

 Data gaps

 Contact principal investigator or other study participants if objectives and methods of studies are unclear
 Document decisions made during the course of the assessment

 Verify that data sources have followed appropriate Quality Assurance/Quality Control (QA/QC) procedures

 Describe heterogeneity using point estimates (e.g. central tendency and high end) or by constructing probability
 or frequency distributions

 Differentiate from uncertainty due to lack of knowledge

 Use standard statistical methods to construct probability distributions or point estimates (e.g. confidence limits)
 Evaluate power of designed experiments to detect differences
 Consider taking additional data if sampling error is too large
 Verify location of samples or other spatial features

 Describe approaches used for bridging gaps and their rationales
 Promote the routine application of synoptic and long-term monitoring techniques
 Differentiate science-based judgements from policy-based judgements

 System Model structure uncertainty
 analysis (process models)

 Uncertainty about a model's
 form (empirical models)

 Uncertainty about model and
 data integration

 Beware of the problem of practical identifiability and of the problem of overcalibration
 Discuss key aggregations and model simplifications
 Compare model predictions with data collected in the system of interest

 Evaluate whether alternative models should be combined formally or treated separately
 Evaluate the practical applicability of empirical models in the context of interest

 Compare model predictions with data collected in the system of interest
 Evaluate their degree of balance

 Decision Uncertainty related to the
 making attribution of values

 Uncertainty related to
 intercomparison of values

 Distinguish different classes of values
 Consider the possibility for values to change in time
 Update values regularly

 Consider the need to deal with 'monetary' and 'non-monetary' values
 Distinguish between 'use' and 'non-use' of natural resources

 Uncertainty related to scale Consider that the implementation of one decision on a certain spatial scale produces effects at larger as well as
 effects of decisions shorter spatial scales

 the unreliability or the level of confidence to be placed
 in a quantitative statement. Epistemol?gica! uncertainty
 is connected to ignorance and represents all the different
 gaps in our knowledge not encompassed in the previous
 sorts of uncertainty.

 Morgan & Henrion (1990) list three types of uncer
 tainty about which analysts should be explicit:

 uncertainty about technical, scientific, economic and
 political quantities;

 uncertainty about the appropriate functional form of
 technical, scientific, economic and political models;

 disagreements among experts about the value of
 quantities or the functional form of models.

 The US Environmental Protection Agency (Anon.
 1996) discusses sources of uncertainty that arise during
 the evaluation of information and conceptual model
 development (combined under the subject of scenario
 uncertainty), when evaluating the value of a parameter
 (e.g. an environmental measurement), and during the
 development and application of models. Many of the
 sources of uncertainty discussed by EPA (Anon. 1996)

 are relevant to characterising both exposure and envi
 ronmental effects. The sources and example strategies
 for the analysis phase are shown in Table 1.

 Each of the phases which can be discerned in Inte
 grated Coastal Zone Management (ICZM) involves a
 certain degree of uncertainty related to the various ac
 tivities. In Fig. 1 a non-exhaustive overview is given of
 possible uncertainties. The type of uncertainties we are
 most interested in, are those related to problem recogni
 tion and analysis and to the planning activities where the
 decision making process has its central moment. ICZM
 may require sequential decisions to be undertaken and
 methodologies to formulate and solve sequential deci
 sion making problems under uncertainty with continu
 ous decision and/or random variables are increasingly
 being developed (Stonebraker & Kirkwood 1997).

 We do not discuss here in detail the uncertainty for
 all phases. We aim to make clear that a fully determinis
 tic approach cannot handle uncertainty related to the
 various phases of a generic coastal zone management
 task.
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 Fig. 1. Uncertainties in coastal zone management.

 Uncertainty in decision making

 Risk can be defined as an exposure to a chance of
 injury or loss and since risk involves chance or probabil
 ity it thus also needs to deal with uncertainty (Morgan &
 Henrion 1990).

 Risk assessment has become the central guiding
 principle at environmental management agencies (see,
 for instance the American EPA) but true uncertainty has
 yet to be adequately incorporated into environmental
 protection strategy. Even the most recent and advanced
 initiatives for the adoption of environmental manage

 ment standards avoid tackling the problem of uncertain
 ties (Anon. 1995a, b). The reason why our current
 approaches to environmental management and policy
 making have difficulty in handling uncertainty may be
 clear. The goal of decision makers is to make unambigu
 ous, defensible policy decisions. Often these decisions
 are codified in the form of laws, regulations, and proce
 dures. While legislative language is often open to inter
 pretation, regulations are much easier to write and en
 force if they are stated in clear and absolutely certain
 terms. But many scientific studies come to just conclu
 sions in terms of probability (or conditional probabili
 ties) because that is the nature of the phenomenon.

 When trying to enforce the regulations after they have
 been drafted, the problem of true uncertainty about the
 impacts remains. As they are currently set up most envi
 ronmental regulations demand certainty and the absence
 of certainty may lead to frustration and poor communica
 tion. Because of uncertainty, environmental issues can
 often be manipulated by political and economic interest
 groups. Uncertainty about global wanning is perhaps the
 most visible current example of this effect.

 One way in which the environmental regulatory
 community has begun to deal with the problem of true
 uncertainty, is through the 'precautionary principle'.
 The principle states that rather than await certainty,
 regulators should act in anticipation of any potential
 environmental harm in order to prevent it. The precau
 tionary principle is so frequently invoked in interna
 tional environmental resolutions that it has come to be

 seen by some as a basic normative principle of interna
 tional environmental law. The principle, however, of
 fers no guidance as to what precautionary measures
 should be taken. It 'implies the commitment of re
 sources now to safeguard against the potentially adverse
 future outcomes of some decision', but does not tell us
 how many resources or which adverse future outcomes
 are most important (Funtowicz et al. 1995).

 Scientific uncertainty

 Science treats uncertainty as a characteristic of all
 information that must be honestly acknowledged and
 communicated. Over the years scientists have devel
 oped increasingly sophisticated methods to measure and
 communicate uncertainty arising from various causes.
 Progress has been made in the sense that the occurrence
 of many types of events can be predicted with a certain
 degree of confidence. At the same time, however, sci
 ence has uncovered even more uncertainty, rather than
 leading to the absolute precision. In this case the scien
 tific method can only set boundaries to the limits of our
 knowledge (Capobianco 1998). It can define the bounda
 ries of what is known. For instance, science can tell us

 the range of uncertainty about global warming and
 relative sea level rise, and maybe something about the
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 relative probabilities of different outcomes. In most
 important cases, however, it cannot tell us which of the
 possible outcomes will occur with any degree of accu
 racy. In that case the definition of ranges or limits can
 already provide a very important result.

 One of the principal reasons for the problems with
 current methods of Integrated Coastal Zone Manage
 ment, and of Environmental Management in general, is
 scientific uncertainty which can be defined here as the
 uncertainty surrounding our integral understanding of
 the coastal system. Especially in the context of sustain
 able development, uncertainty is mainly related to the
 long time horizon and the economic-ecological interac
 tions (van den Bergh & Nijkamp 1991). Much uncer
 tainty emerges from unforeseeable qualitative changes
 in a system, which are due to integral shifts in behav
 ioural patterns, exogenous impacts or changes in policy
 institutions. Some problems with temporal scale in the
 linking of human and biophysical processes concern the
 discounting of the future, depreciating natural assets,
 the existence of cumulative change (Lonergan &
 Prudham 1994), etc.

 The differences in handling temporal aspects in the
 various disciplines becomes explicit when comparing
 models of economic and ecological systems. Economic
 data is usually aggregated over time, so that models are
 developed to represent what happens during a calendar
 year. In ecology, processes are simulated at short time
 scales and treated entirely as recursive and consequently
 high time resolution models are adopted (Bockstael
 1996). In addition, ecologists are also interested in long
 time horizons and especially the long-term implication
 of human action (Bockstael et al. 1995). Economists,
 however, tend to ignore the very long run because of the
 inherent unpredictability of the future.

 Similar difficulties are encountered when linking
 processes operating at different spatial scales. Land
 resources vary in space and this spatial variability repre
 sents an important source of complexity and uncertainty
 (Costanza et al. 1993). In addition, space is one of the
 neglected areas in economics (Nijkamp 1986; Armstrong
 & Taylor 1995). Economists are not used to working
 with the concept of space. When human behaviour is
 studied or modelled, the focus is on informational flows

 such as money and prices and (virtual) markets which
 have no geographical dimensions. Natural scientists
 concentrate on actual flows of physical quantities. Ecolo
 gists, for example, think in terms of water, biomass and
 energy flows which all have spatial characteristics. Con
 sequently, ecologists have made great progress in the
 development of spatial models while economists have
 not (Bockstael et al. 1995).

 There are various ways to account for spatial vari
 ability, each having its advantages and drawbacks. A

 fundamental problem is how to estimate the value of a
 certain piece of land, based on a set of existing samples
 of nearby locations. The variation is not completely
 random over space, but very often exhibits spatial de
 pendence. This implies that knowing the value of a land
 characteristic at a certain point already provides infor

 mation about non-sampled points nearby.
 Interest in quantifying spatial uncertainty has in

 creased with the increasing use of geographic informa
 tion systems and the development of modelling ap
 proaches that can be directly integrated with them
 (Engelen et al. 1995). Major advances have been made
 in general computer hardware and software capabilities,
 which have facilitated far more sophisticated geographic
 data bases and manipulation possibilities (Martin 1996).
 Strategies include verifying the locations of remotely
 sensed features, ensuring that the spatial resolution of
 data or a method is commensurate with the needs of the

 assessment, and using methods to describe and use the
 spatial structure of data.

 Model uncertainty

 Models can be used to develop our understanding of
 integrated coastal systems. We distinguish between dif
 ferent classes of models that can be developed and
 applied to a variable extent in the phases of problem
 analysis, planning, implementation, and evaluation (see
 Fig. 1) of Integrated Coastal Zone Management. An
 important aspect of the decision making process is risk
 assessment, concerning the risk of not taking action as
 well as that of taking action.

 Conceptual model development, in the sense of build
 ing a qualitative, schematic model, may account for one
 of the most important sources of uncertainty in a risk
 assessment. A conceptual model may precede the build
 ing of a quantitative model or be a model in its own right.

 If important relationships are missed or specified
 incorrectly, risks could be seriously under- or overesti

 mated in the planning phase. Uncertainty can arise from
 lack of knowledge on how the coastal system functions,
 failing to identify and interrelate temporal and spatial
 parameters, not describing influencing factors and driv
 ing forces, or not recognising secondary effects. In the
 context of changes in coastal land use and land cover it
 has been recognised that the interdependencies among
 human behaviours, land cover and the state of the envi

 ronment should be studied and modelled (Rayner 1994).
 There is considerable speculation about the importance
 of various human factors as drivers of land use and they
 are less systematically described and investigated than
 the biogeophysical factors. Uncertainty also still re

 mains about some of the biogeophysical processes in
 volved (Veldkamp & Fresco 1996; Rayner 1994).
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 Uncertainty associated with conceptual models can
 be reduced by developing alternative conceptual models
 for a particular assessment to explore possible relation
 ships. In cases where more than one conceptual model is
 plausible, the risk assessor must decide whether it is
 feasible to follow separate models through the analysis
 phase or whether the models can be combined into a
 better conceptual model. Developing models is an itera
 tive process and it is important to revisit, and if necessary

 revise, conceptual models during risk assessments to
 incorporate new information and re-check the rationale.
 It is valuable to present conceptual models to risk manag
 ers to check for completeness and clarity and to ensure the
 models address the key concerns that the managers have.

 Sources of uncertainty that arise primarily during
 the development and application of models originate
 from the structure of process models and the description
 of the relationship between two or more variables in
 empirical models. Especially the choice for so called
 'key variables' or 'key processes' is surrounded by

 uncertainty. Uncertainty in process or empirical models
 can be quantitatively estimated by comparing model
 results to measurements taken in the system of interest
 or by comparing the results obtained using different
 model alternatives.

 In the practical application of a generic coastal zone
 model like that of Fig. 2 (Capobianco & Otter 1996),
 links will be further detailed between all the subsystems
 used to describe the coastal area. Links can be indicated

 in qualitative terms, but also be represented by:
 One mathematical formula, describing the functional
 dependencies of the link. Uncertainty here can be
 such that various mathematical formulas can be

 equally justified.
 A series of possible values, e.g.: the height of the
 embankments, the monthly or yearly fluxes of water
 required to irrigate or drain an agricultural field.
 Uncertainty here can be reduced by more detailed or
 more prolonged field data acquisition.
 A series of if-then conditions, which describe the
 management practices as well as the regulatory sys
 tem and which are linked to possible expert systems
 based approaches. Uncertainty here is often related
 to the possible unknown or hidden practices as well
 as to the problem of scales.
 The indication of a *submodel*, which can handle
 downscale transitions leading to a higher resolution.
 More than one submodel, with different para
 meterizations, can be applied here.
 Other, in the sense that we do not expect to have
 solved all the possible situations, even with such a
 general framework.
 Dynamic simulation models can easily have a large

 number of parameters. Each of these must be established

 Fig. 2. Generic conceptual model for a coastal system.

 by calibration based on available data or derived from
 'first' principles. A major problem is that very often

 parameters are linked, while the possible interactions are
 unknown. Also, many adjustments of parameters can
 lead to the same final results. What is needed is insight
 into the natural and human processes and their interac
 tions, many of which are poorly understood. Understand
 ing the interactions between natural and human processes
 is indeed a fundamental aspect of integrated modelling.
 The integration is however still faced with unresolvable
 problems, partly because natural sciences and human
 sciences are based on conflicting epistemologies.

 Together with the rapid growth in integrated analy
 ses and the development of integrated models, the cri
 tique on these integrated approaches has also grown.
 Especially the large scale integrated models, which use
 scenarios to provide predictions or projections of the
 future, are under fire. Sometimes a number of these
 unverified models are linked to each other which leads

 to speculations without an empirical check. Such an
 approach is sometimes considered as being unscientific
 (see also Funtowicz & Ravetz 1990).

 Principles for complex model building

 Considering the uncertainties in decision making, in
 scientific knowledge, and especially in model build
 ing, it is worth following some fundamental principles
 in the model building process to deal with these uncer
 tainties (see Table 2). We expect the application of such
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 Table 2. Principles for complex model building.

 Principle  Description  Explanation

 The principle of
 balance

 The principle of
 indeterminacy

 The available knowledge and representa
 tion of forcings, processes & output must
 be compatible.

 We have to accept that there are aspects of
 the forcings, processes & output that can
 not be determined on a certain time and
 space scale.

 They should not be 'unrealistically' unbalanced. Particularly the problem of balancing
 available information with model complexity should be handled here. Nevertheless, at
 same time it is important to take into account the possible utilisation of new technologies
 and methodologies, such as the use of remote sensing or radiometric analysis techniques
 to quantify processes that could not be otherwise detected.

 In quantum physics the principle recognises that, on the atomic level, any measuring
 process involves energy which by necessity interferes with the energy measured. This is
 something that we cannot avoid and we just must accept. The practical problem consists
 in the identification of the balance between processes on certain scales and observables
 on the same scales.

 The principle of
 parsimony

 The principle of
 complexity

 The principle of
 uncertainty
 invariance

 The number of unknown parameters must
 be kept at the minimum possible to repro
 duce the forcings, processes and output.

 Complexity can only be handled in a sim
 ple way.

 When transforming a system, the amount
 of information in the resulting system should
 be as close as possible to the original.

 In such a way we can aim to understand the dynamics and not introduce useless and
 dangerous mechanisms of complication. In cybernetics and systems science1 this is also
 known as Occam's Razor: 'one should not increase, beyond what is necessary, the
 number of entities required to explain anything'.

 This principle is connected to the Principle of parsimony. We should aim to handle the
 emerging simple features rather than reproduce the complex, potentially chaotic, dy
 namics. We would end into other complex and chaotic dynamics.

 In other words, when transforming or translating a system or a problem formulation from

 one representation to another, we should aim at neither gaining nor losing any informa
 tion. This can, of course, be difficult to achieve if uncertainty and information are
 represented in different ways in the different representation frames.

 *In cybernetics and systems science the principle of parsimony can be related to the principle of uncertainty maximization in inductive reasoning (use all but
 not more of the available information) and the principle of uncertainty minimisation in deductive reasoning (lose as little information as possible).

 principles to allow for balancing the available data, infor
 mation, knowledge and experience both during the model
 building process and during the model utilization phase.

 Table 2, which contains a description and short
 explanation of the principles of complex model build
 ing, is followed by some background information about
 each principle.

 The principle of balance recalls the need to consider
 forcing factors, processes, and output in their relation.
 Dealing with integrated modelling of complex environ
 mental systems, it would be extremely inefficient and
 potentially dangerous to look at them in a completely
 independent way, simply because they are never fully
 independent. This also implies that there should be a
 balance between available data and modelled processes,
 starting from the consideration that both data and mod
 els are just a limited representation of reality. Cunge
 (1998) work, along this line of thinking.

 The principle of indeterminacy introduces some con
 ceptual limitations to the type of scale transitions that
 can be resolved in practical applications. There are
 limits to the resolution that can be achieved for certain

 processes in the real world. The difficulty we are facing
 is the quantitative determination (even if expressed in a
 fuzzy way) of such limits (Capobianco 1998).

 The principle of parsimony represents, in practice, a
 way to prioritize the selection of possible theories or

 models. This is extremely important especially for those
 situations where different parameter sets produce the
 same observable response. The more parameters there
 are in a model, the easier it could be to fit a given set of
 'calibration data'. On the other hand a large parameter
 set could also result in a greater uncertainty and a larger
 sensitivity of the model output to variations of the input.

 The principle of complexity can be considered as a
 corollary to the principle of parsimony. In practice, if
 the occurrence of a feature is a recognised character of
 the system under given conditions, it is easier to de
 scribe its behaviour rather than try to describe its forma

 tion and its behaviour together. Practically speaking
 such a principle is being implicitly used in theoretical

 morphodynamics to describe the occurrence of morpho
 logical patterns (e.g. Hulscher et al. 1993).

 The principle of uncertainty invariance is extremely
 useful while trying to build integrated models when
 models for non-integrated processes already exist. In
 other words, if the aim is to keep information, every
 action is justified if it does not increase uncertainty.

 Sensitivity analyses

 Integrated modelling can be achieved by setting up a
 problem specific model in an intrinsically integrative
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 way. More often, however, integrated modelling of com
 plex coastal systems is attained by linking formal disci
 plinary models. In dealing with the integration of differ
 ent formal model structures, the evaluation of sensitiv

 ity of model outputs is essential for the quantification of
 uncertainty.

 Sensitivity analysis can be used to evaluate how
 model output changes with changes in input variables,
 and uncertainty propagation can be analysed to examine
 how uncertainty in individual parameters can affect the
 overall uncertainty of the assessment. The availability
 of software for Monte Carlo analysis1 has greatly in
 creased the use of probabilistic methods (see Meeuwissen
 1996, for a formal treatment of the problem). Other

 methods (such as for example fuzzy mathematics and
 Bayesian methodologies) are available, but have not yet
 been extensively applied to ecological risk assessment.
 No matter what technique is used, all the sources of
 uncertainty discussed above should be addressed.

 Simulation modelling requires a large number of
 model parameters (calibration values) and input data.
 An important issue in modelling is the sensitivity of the
 model to variations in parameters or data. Sensitivity
 analysis allows us to see where the model is most
 sensitive, thus on which aspects the calibration and

 modelling efforts should be concentrated. The basic
 method for sensitivity analysis requires the parameter to
 be varied in some predictable way, subsequently the
 model is run and the output recorded.

 Sensitivity analysis is a very powerful and flexible
 technique. It is applicable to variables with and without
 known probability distributions (i.e., frequency distri
 butions are acceptable). Without modern computers it
 would be impossible. Some tricky points are establish
 ing the distributions of the input variables, designing a
 sampling strategy that will give reliable results in a
 reasonable number of simulations (typically in the order
 of 1000), making sure we have examined enough
 simulations, quantifying the true distribution of the out
 put errors.

 Kinzelbach & Kunstmann (1998) discuss the quanti
 fication of uncertainty arising from the imperfect knowl
 edge of the input parameters for groundwater flow and
 transport models. They recall computationally efficient
 approaches such as Gaussian Error Propagation and the
 First Order Second Moment technique (FOSM). Gener

 1 Stochastic modelling by Monte Carlo simulation can be used to asses
 error propagation through the model and to identify the distribution
 function of the outcome of an integrated model that results from the
 distribution functions of the input data, the model parameters and the
 model relations. Due to its resource consuming character and due to
 lack of information on the distribution functions of all individual

 model constituents, Monte Carlo simulation is not common practice.

 ally speaking, the more information is available about the
 model formulation and the more it is possible to work
 analytically on the linearized system, the more efficient
 the process of sensitivity analysis turns out to be.

 Non-linearity represents both a problem and an op
 portunity. Non-linear behaviour typically occurs around
 'working points' or 'attractors'. Around given working

 points the evolution of the system and the model output
 may be relatively insensitive to variations of certain
 inputs or parameters until a certain 'threshold' is reached
 and the transition from one attractor state to another is

 achieved. Such 'thresholds' prevent sensitivity to cer
 tain inputs or to certain parameters, but at the same time
 they may cause large variations to occur from small

 modifications of the inputs if the working point is at the
 edge of rapid transition (catastrophic behaviour). These
 are important aspects in a sensitivity analysis and di
 rectly connected to the issue of risk assessment in envi
 ronmental management (i.e. the system can be relatively
 insensitive to certain actions but highly sensitive to
 certain other actions that cause a transition to occur).

 Analysis plan in the decision making process

 In the decision making process, ambiguities, errors,
 and disagreements will occur, all of which contribute to
 uncertainty. Wherever possible, these sources of uncer
 tainty should be eliminated through better planning. Not
 all uncertainty can be eliminated, and therefore a clear
 description of the nature of the uncertainties should be
 made from the initial steps of problem analysis on
 wards. Problem analysis should be considered as a
 formal process for generating and evaluating prelimi
 nary questions about why environmental effects have
 occurred, or may occur, as a result of natural forces as
 well as human activities.

 The problem analysis phase, being the first stage of
 an environmental risk assessment, provides the founda
 tion on which the entire assessment depends. Therefore,
 it is important to acknowledge and communicate data,
 information, and knowledge gaps. Any deficiencies in
 problem analysis will compromise all subsequent work
 on the uncertainty evaluation and risk assessment.
 At the end of the problem analysis phase there are three
 products that determine its success:

 adequate reflection of management goals and the
 environmental system they represent;
 conceptual models that describe key relationships
 between sources of impact or disturbance and the
 management goals;
 an analysis plan (to drive model building, sensitivity
 analysis, and decision making).
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 Essential in the development of these products is the
 effective integration and evaluation of the available infor
 mation and knowledge. An analysis plan can be a final
 stage of problem analysis, particularly in the case of
 complex assessments. The analysis plan can also deline
 ate the assessment design, data needs, measures, and
 methods for conducting the analysis phase of the risk
 assessment. It may be relatively brief or extensive de
 pending on the nature of the assessment. Furthermore it
 includes the most important pathways and relationships
 identified during the problem analysis phase and which

 will be pursued further. An important issue for the risk
 assessor is to describe what will be done and, in particu
 lar, what will not be done. Another concern is determin

 ing the level of confidence needed for the management
 decision relative to the confidence that can be expected
 from an analysis, in order to determine data needs. When

 new data are needed to conduct analyses, the feasibility of
 obtaining the data should be taken into account.

 In situations where data are few and new data cannot

 be collected, it should be possible to combine existing
 data with extrapolation models so that alternative data
 sources may be used. This allows the use of data from
 other locations or on other organisms where similar
 problems exist and data are available. When using data
 that require extrapolation, it is important to identify the
 source of the data, justify the extrapolation method and
 discuss major uncertainties apparent at this point.

 Where data are not available, recommendations for

 new data collection should be part of the problem analy
 sis. An iterative approach to the risk assessment may be
 selected to provide an opportunity for early manage

 ment decisions using newly available data. A decision
 to conduct a new iteration is based on the results of any
 previous iteration and proceeds using new data col
 lected as specified in the analysis plan. When new data
 collection cannot be obtained, pathways that cannot be
 assessed are a source of uncertainty and should be
 described in the analysis plan.

 Conclusion

 We have discussed the problem of dealing with uncer
 tainty in decision making, with scientific uncertainty, and
 with model uncertainty in Integrated Coastal Zone Man
 agement. We can conclude that the knowledge and the
 understanding of the (interacting) processes in the coastal
 zone is incomplete and characterised by large uncertain
 ties and limits to predictability. The uncertainties affect
 the estimates of future states of key variables and the
 future behaviour of system constituents. Some of these
 uncertainties are both potentially reducible, for instance
 when coming from incomplete information, incomplete

 understanding or lack of quality in data and models.
 Others are probably irreducible, coming from un
 deterministic system elements, practical unpredictability
 of chaotic system components, limits to our ability to
 know, understand and handle complexity.

 Uncertainty evaluation is an ongoing theme through
 out the various phases of the Coastal Zone Management
 Task. The objective is to describe, and, where possible,
 quantify what is known and not known about exposure
 and effects in the coastal system of interest. Uncertainty
 analyses increase credibility by explicitly describing the
 magnitude and direction of uncertainties.

 It is important to discriminate between the poten
 tially solvable and the currently unsolvable uncertain
 ties. Coastal management has to be robust towards the
 currently unsolvable uncertainties, whereas adequate
 research programs should be designed to reduce the
 potentially solvable uncertainties. Further, the method
 ology has the potential to assess the quality of model
 output and to identify the parts of the model whose
 individual lack of quality contributes the most to the
 overall lack of quality. The latter information is very
 useful for setting research priorities.

 A set of principles for complex model building was
 introduced which is believed is helpful in dealing with
 uncertainty. Particular attention is given to the aspect of
 balancing available information with model complex
 ity. Complexity can only be handled in a simple way and
 therefore we aim to fully understand and be able to
 reproduce the emerging simple features. 'As the com
 plexity of a system increases, our ability to make a
 precise and yet significative statement about its behav
 iour diminishes until a threshold is reached beyond

 which precision and significance (or relevance) become
 almost mutually exclusive characteristics' (Zadeh 1973).

 We conclude by underlining the need for the defini
 tion of an analysis plan in order to handle model uncer
 tainty in the decision making process.
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