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In optimal design research, designs are optimized with respect to some statistical criterion 
under a certain model for the data. The ideas from optimal design research have spread into 
various fields of research, and recently have been adopted in test theory and applied to item 
response theory (IRT) models. In this paper a generalized variance criterion is used for se- 
quential sampling in the two-parameter IRT model. Some general principles are offered to 
enable a researcher to select the best sampling design for the efficient estimation of item 
parameters. 
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The problem of designing experiments has been encountered in various fields of 
research and several aspects have been studied in the statistical literature on optimal 
designs. Reviews of these developments are given by Atkinson (1982) and Steinberg 
and Hunter (I984), among others. Only in the past few years have the ideas from 
optimal design research been applied to test theory and item response theory (IRT) 
models. Berger and van der Linden (1992) give a review. 

Designs and tests are generally optimized by maximizing information on the pa- 
rameters of an IRT model. Van der Linden (1987) used information about the ability 
parameters to optimally design tests. Lord and Wingersky (1985), Thissen and Wainer 
(1982), and de Gruijter (1985, 1988) used asymptotic variances of the estimators of the 
item parameters to compare relative efficiencies of tests and models. Stocking (1990) 
uses information functions to find optimum ability levels. When IRT models are applied 
to different groups, matrix sampling designs can be used. The results of Lord (I962) and 
Pandey and Carson (1976) stress the importance of multiple matrix sampling designs. 
Berger (1989, 1991) and van der Linden (1988) investigated the efficiency of some 
sampling designs for IRT models and Vale (1986) applied sampling designs to minimize 
equating errors. 

In this paper the problem of optimal sampling of examinees for the two-parameter 
logistic model is considered. For the one-parameter logistic model it is well-known that 
the information on the difficulty parameter is maximal if all examinees have abilities 
equal to the (unknown) difficulty parameter (van der Linden, 1988). If abilities and item 
parameters are unknown, then estimates can be used to match abilities and item diffi- 
culties in so-called two-stage, or more generally, sequential testing procedures. 

Some results will be given for the optimal sampling of examinees for the simulta- 
neous estimation of item parameters in the two-parameter logistic model. These results 
are especially useful for large scale item calibration studies and for efficient estimation 
in two-stage and sequential design procedures. It should be noted that some of these 
problems can be solved by mathematical programming models. In this paper, however, 
easy and straightforward principles are given to enable practitioners to select an effi- 
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cient design for the two parameter  model. These principles can of  course also facilitate 
the choice of  starting points in mathematical programming algorithms. 

The Two-Parameter  IRT Model 

Consider the two-parameter  logistic model, which gives the probability of  a correct  
response (Uij = 1) to item i (i = 1 . . . .  , n) as a function of  the ability parameter  Oj 

R for examinee j ( j  = 1, . . .  , N):  

Pi(Oj) = {1 + exp [-ai(Oj - bi)]} -1. (1) 

I tem i is character ized by the pair of  parameters  {ai, bi} ~ R + × R, where R + × R 
is a two-dimensional rectangular set of  positive real and real numbers,  respectively.  A 
whole test of  n items is characterized by the pair of  vectors {a, b} containing ai's and 
bi's for each of the items. 

A design for an IRT model is determined by the sampling procedure  and can be 
denoted by the following vector  of  abilities 0 = [ 0t ,  0z, • • • ,  Oc ]' and the correspond-  
ing vector  of  weights W = [w 1 , w z, . . . ,  wc]'. The vector  0 consists of  c distinct 
abilities Oj and is also referred to as a vector  of  design points. It is assumed that wj >- 
0 f o r j  = 1 , . . . ,  c, ~.j wj = N,  and 1 - c -< N.  I f  c = N and wj = 1 for all c classes, 
then all examinees in the sample have different abilities. For  c = 1 the sample consists 
of  N examinees,  all with the same abilities. The same design arises when 1 -< c -< N 
and all but one of  the c weights wj are equal to zero. The calibration of  items will often 
take place without actually knowing the ability vector  0. In situations where it is not 
possible to exactly select examinees with certain Oj- values, it will be assumed that the 
pair of  vectors  {0, W} denotes a sampling design with abilities selected by means of  a 
stratified random sample from a population of  abilities. The class (strata) means are Oj, 
and the mean of  the population of  abilities t~0 is est imated by  (~j wjOj)/~j Wj. 

f f  the proportion of  correct  responses in each of  the c classes or groups is given by 
P = [ P l ,  P2 . . . .  , P c ] ' ,  then the likelihood function based on 0 and p is 

c 

L = 1--I Pi(Oj)WJpJ[ 1 - P i ( O j ) ]  wj(1-pj), (2) 
j = l  

and the asymptotic efficiency of  the maximum likelihood estimators of  the two item 
parameters  for  a large sample of  examinees is related to the Fisher information matrix: 

where 

c 

J(ai ,  bilO, W) = Z wj{Pi(Oj)[l  - P i ( O j ) ] }  X X' ,  (3) 
j= l  

- (  Oj - bi) ] 
X =  [ ai " 

The information matrix for a set of  n items is a superdiagonal matrix J(a ,  bl 0, W), with 
main diagonal matrices given by (3). 

Each dichotomous response contains a certain amount  of  information about  the 
parameters  of  interest. The amount  of  information in the sample depends on two fac- 
tors, namely,  the total number  of responses and the variability of  the responses in the 
sample. Because each response will cost money,  a researcher  will have to determine 
how many responses (i.e., how much information on the parameters)  must be bought. 
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Too little information will prevent the researcher from obtaining good estimates, while 
too much information is a waste of time. The objective of using a sampling design for 
the estimation of item parameters is to maximize information on these parameters at a 
minimum cost. This can be done by selecting values for 0 and W that will maximize 
some function of the information contained by J(a, bl0, W) for the pair {a, b}. In the 
following section an optimality criterion for the maximization of information will be 
given. 

Choice of An Optimality Criterion 

In the literature on optimal designs, several optimality criteria have been proposed 
that are defined on the space of the information matrix. Atkinson (1982) reviews the 
three most familiar ones, namely, the D-optimality, A-optimality, and E-optimality 
criteria. Although each has certain advantages, we propose to apply the D-optimality or 
Determinant criterion, because this measure has some useful properties. 

If hi and/;i are the ML estimators of a i and b i and N is sufficiently large, then the 
likelihood region for a response Uij = uij is given by 

I c ] {a i ,  b i }  : X wj[ln/j(fii, ~i) -- In lj(ai, bi ) ]  -< C , (4) 
j = l  

where for each response uij under (1), In l j ( a i ,  b i )  = u i j ( a i (  O j - h i )  ) - In [exp (ai( Oj 
-- b i ) )  + 1], and C is a constant. This region can be approximated by the ellipse 
(Minkin, 1987): 

[{a i ,  b i}  : [ai  - c l i ,  bi  - ~ i ]J (c t i ,  ~i l0 ,  W ) [ a i  - ct i, bi  - ~ i ] '  <- 2C]. (5) 

For a given value of C, the volume of this ellipse is V ~ Det [J(~l i, ~il0, W) -1/2] (i.e., 
maximizing Det [ J(~l i ,  ~ i  I 0, W)] will minimize the volume of a confidence region in the 
parameter space). This criterion has already been proposed by Ward (1943) and is 
known as the generalized variance criterion (Anderson, 1984) of the D-optimality cri- 
terion (Kiefer, 1959), and is related to Shannon's (1948) information measure of uncer- 
tainty about the parameters (see Berger, 1991). 

There is, however, a disadvantage connected with the use of this criterion. When 
the volume of an ellipse is minimized, this may result in an elongation in one direction 
and may lead to disturbing results. Another disadvantage is that the criterion depends 
on an adequate specification of the model. D-optimality criteria based on models with 
a different number of parameters are not comparable. It must be noted, however, that 
this problem also holds for the other well-known criteria. 

One of the main advantages of  the D-optimality criterion is that it is invariant under 
linear transformation of the parameter scale. Since it is related to the volume of a 
confidence region, it also has a natural interpretation. Moreover, some useful upper 
bounds of this criterion have been derived by Khan and Yazdi (1988). For these reasons 
the D-optimality criterion will be used to define optimality of  sampling designs in the 
following paragraph. 

The Fisher information matrix in (3) is a function of the parameters, and thus one 
will have to know the parameters before one can actually find a D-optimal design. One 
of the easiest solutions is to use the generalized variance criterion with some prelimi- 
nary (ML) estimate of the parameters. Asymptotically this is justified, because the 
inverse of the expected information matrix is the asymptotic variance-covariance ma- 
trix of the parameter estimates. In small sample cases, however, the optimality of a 
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design will depend on the accuracy of the ML estimates. Generally, it will not be 
possible to locate one D-optimal design for all possible {a, b}. This is why the term 
"local optimality" has been introduced. Local optimality refers to optimality for a 
given pair of parameters {a, b}. 

Analogous to a definition of a D-optimal design given by Khan and Yazdi (1988), 
the following definition of a locally D-optimal sampling design for a pair of parameter 
vectors {a, b} will be given. 

Dejnition. A sampling design D {O*, W*} with vector of ability parameters 0* = 
[O:, O;, . . . , O*,]', 8* E Re,  where RC is a c-dimensional set of real numbers, and 
a vector of weights W* = [w 5 , w ;, . . . , w *,] ' is locally D-optimal if Det [ J(a, ble*, 
W*)] 1 Det J(a, bl8, W)], for a given pair {a, b} E X Rn,  8 E liFtC and W, with 
xjwj = xjw;. 

An expression for the generalized variance criterion is given by 

n 

Det [J(a ,  bl8, W)] = n Det [J(a i ,  bile, W)], 
i =  I 

where 

and Gj = aiPi(Bj)[l - Pi(Oj)]. Khan and Yazdi (1988) showed that when Pi( Oj) is a 
logistic cumulative distribution function and 8 E RC is a vector of abilities with weights 
W, the following inequality will hold: 

[ ~ e t  [J (a i ,  bi18*, W t j ]  if N is even, 
Det [J (a i ,  bi18, W)] 5 

[Det [J (a i ,  bile*, Wyj] if N is odd, 
(7) 

where the design vector 8* = [-x, +XI' has weights WT = [N/2, N/2]' if number N 
is even and W2 = [(N - 1)/2, ( N  + 1)/2]' if N is odd. It can be shown (Abdelbasit 
& Plankett, 1983; Khan & Yazdi, 1988) that for the two-parameter logistic model, x = 
8 - bi = 1 .5434/ai, and that the maximum obtainable value for Det [J (a i ,  bi 18, W)] 
is 0.0501 x N ~ .  

From (7), the following two conclusions may be drawn: A design with equally 
weighted design points 8* = [-x, +XI' will have more information on a set of param- 
eters {ai, b ;) than any other equally weighted c = 2 point design. This suggests that 
information on {ai ,  b ;} will become maximal when abilities are sampled symmetrically 
around bi . Among all designs with points 0* = [-x, +XI ' , the most informative will 
be the one where examinees have abilities evenly distributed over the two points. This 
indicates that a bimodally distributed sample of abilities would be more informative for 
{ai ,  bi} than a unimodal sample of abilities. 

In the following section two types of designs will be discussed: two-stage designs 
where item parameters are unknown but can be estimated in the design procedure, and 
sequential designs which are very flexible and can easily be modified. First, however, 
the case of known item parameters will be considered. 
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D-optimality and A-optimality criteria based on information for the two-parameter IRT model with 2 design 
points. 

K n o w n  I t e m  P a r a m e t e r s  

In this section some results are given for known item parameters.  Although in most 
cases these item parameters are unknown, these results will help understand the un- 
derlying mechanisms. 

In Figure 1 the information on the parameters a i and b i of  the logistic model in (1) 
is given as a function of  Pi(Oj)  for a two-point design 0 = [01, 02]', with weights W = 
[N/2 ,  N / 2 ] ' .  This design consists of  a sample of  N examinees with two distinct abilities 
01 and 02, symmetric about b i, such that Pi(01) --- 1 - Pi (02 ) .  

To restrict the range of  the actual plotted values, the information on the parameters  
is divided by N.  The computations show that the information on b i is maximal for  
P i ( 0 1 )  = 1 - P i ( 0 2 )  = 0 . 5  a n d  t h a t  t h e  i n f o r m a t i o n  o n  a i is  m a x i m a l  f o r  P i ( O 1 )  = 

(1 -- P i ( 0 2 ) )  = 0.08. Figure I also shows that more information for estimating a i is 
obtained when the value of  a i is low than when its value is high. An explanation for this 
phenomenon is given by Stocking (1990). As has been noted by Stocking, the abilities 
with maximal contributions to the information on a i differ from the optimal abilities for  
b i . The two abilities that contributed most to the information on a i are those for which 
Pi(Oj)  = 0.08 and Pi(Oj)  = 0.92, respectively, while the ability that contributes most 
to the information on b i is connected with Pi(Oj)  = 0.5. 
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D-optimality and A-optimality criteria based on information for the two-parameter IRT model with 3 design 
points. 

The D-optimality criterion and the A-optimality or Trace criterion, which is the 
trace of the information matrix in (3) are also given in Figure 1. Since the information 
on a i and b i is divided by N, the value for the Trace criterion is also divided by N and 
the D-optimality criterion is divided by N 2 . The D-optimality criterion has the same 
function value for different a i values because this criterion is invariant under linear 
transformation of the parameter scale and for the logistic model a maximum value is 
obtained at Pmax = Pi(O1)  = (1 - Pi(02))  = 0.824. The A-optimality criterion, 
however, does not lead to such a result. Different values for a i lead to different max- 
imum values for this criterion. 

Similar computations for a c = 3 point design 0 = [01, 02, 03]' with weights W = 
[ N / 3 ,  N / 3 ,  N / 3 ] ' ,  such that Pi(Ol)  = ( 1 -  Pi(03))  and Pi(02)  = 0.5, are given in 
Figure 2. The maximum value for the D-optimality criterion is now located at Pi(01 ) = 
( 1  - Pi(03))  = 0.864. The maximum D-optimality criterion value for this design is 
0.0433 x N 2 and is somewhat smaller than that of the c -- 2 point design. Figures 1 
and 2 show that the D-optimality criterion for the c = 3 point design is only a little 
larger than that of the c = 2 point design when Pi(Oj) approaches zero or one. 

The results in these figures are symmetrical, in that Pi(O1) = 1 - Pi(02)  for the 
c = 2 design, and P i ( O l )  = 1 - Pi(03)  for the c = 3 d e s i g n .  In  concurrence with the 
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FIGURE 3. 
D-optimality criterion for the two-parameter IRT model with a bimodal normal sample of abilities. 

conclusions drawn from the previous section, these figures show that one should al- 
ways choose design points that are located symmetrically around the item parameter 
b i . 

In most cases, however, the abilities will be unknown and the best thing to do is to 
sample abilities from a certain population. Since a design based on c = 2 equally 
weighted design points I - x ,  +x] is the most optimal one, it seems reasonable to infer 
that a bimodal sample of abilities with modes - x  and +x would approach such an 
optimal sampling design very well. In Figure 3 the results are given for samples selected 
from two normal distributions of abilities with modes located symmetrically around b i 

(i.e., the differences between the two modes and b i a r e  equal). The five lines in each 
plot correspond to samples with S D  o = 0.0, 0.5, 1.0, 1.5, 2.0, respectively. The 
computations are given for a i = 0 . 5 ,  1.0, 1.5, and 2.0. The D-optimality criterion is 
given as a function of the difference between each of the modes and b i and is computed 
for different S D  o values. 

As already shown in Figure 1, the maximum value 0.0501 × N 2 is obtained for 
samples with S D  o = 0 and modes equal to b i - 1 . 5 4 3 4 / a  i a n d  b i + 1 . 5 4 3 4 / a  i ,  

respectively. The results also show that as the value of a i increases, the smaller the 
difference between the mode and b i will have to be to approach maximal information. 
If we are prepared to accept about 80% of the maximal obtainable information, then 
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samples with 1 - SD o <- 2, and a difference between the modes and b i of about 1.5/a i 
points, would be the most appropriate when ai is 0.5 or 1.0. For large a i values (i.e., 
1.5 or 2.0), these samples would account for about 60% of the maximal achievable 
information. 

Two-Stage Designs 

The main purpose of using two-stage testing procedures has been to increase the 
precision of the ability estimates by matching item difficulty to the ability level of an 
examinee. Two-stage designs, however, can also be applied to increase the efficiency of 
item parameter estimates and to overcome the problem of unknown item parameters. 
If suitable initial estimates are available, these can be used and updated to increase 
efficiency in subsequent stages. 

Suppose that N examinees are available and a l and 61 are initial estimates of  a i 
and b i . Then the following two-stage procedure which was proposed by Abdelbasit and 
Plankett (1983) can be used for a c = 2 point design where Pmax = 0.824 and Qmax = 
1 - Pmax- 

First stage. The first stage consists of a design with vector Of = [01, 02]' and 
weights W = [N/4, N/4]' ,  where: 

0 1 = 61 -- [In (Pmax/amax)]/al, 
(8) 

02 = 61 - [In (emax/Qmax)]/fil. 

The design point 01 and 02 will maximize the criterion Det [ J(fi 1,611Of, W)] based on 
estimated parameters ~1 and 61, and the accuracy of these initial estimates will deter- 
mine how close the maximum value for the information on the true parameters is 
approached. The data obtained in the first stage can be used to update the parameter 
estimates. Let fi2 and 62 be such updated estimates for use in the second stage. 

Second stage. In the second stage a design is selected with vector 0 s = [ 03, 04]' 
and the same weights W. The second stage design points are: 

03 = 62 - [In (emax/amax)]/fi2, (9) 

0 4 -~- 6 2 + [In (emax/Qmax)]/a2. 

These design points will maximize Det [J(a2,  6210s, W)]. This maximization does not 
take into account the accuracy of the initial estimates, that is, accurate initial estimates 
do not have more weight than inaccurate initial estimates. The total information about 
the parameters for a sample of size N over the two stages is: 

J(ai,  bilOt, W t ) =  J(ai,  bilOf, W ) +  J(ai,  bilOs, W), (10) 

where 0t = [Of, 0s]'  and Wt = IN~4, N/4,  N/4,  N/4]' .  
It should be emphasized that such a two-stage procedure maximizes the informa- 

tion on the estimated parameters in each step and that Det [J(ai ,  bilO t, Wt)] is not 
maximized directly. But it may be assumed that Det [J(a i, bilO t, Wt)] is a more 
accurate approximation of the maximal achievable criterion value than 
Det [J(a i ,  bilOf, W*)], where W* = [N/2, N/2]' .  

It should also be noted that although J(ai ,  b ilO/, W t) can be used to construct an 
ellipse, there is no asymptotic theory to support the use of likelihood regions for 
sequential sampling inference. 
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The accuracy of Det [ J ( a i ,  b i lOt ,  Wt) ] will of course depend on the accuracy of 
both initial estimates h 1 and ~; 1. In Table 1 the relative efficiencies of  a two-stage design 
are given for parameter values a i = 1.0 and b i = 0.0. The relative efficiency is 
obtained by dividing Det [ J ( a i ,  b i lOt ,  Wt) ] for the two-stage design by 
Det [ J ( a i ,  b i 10f, W*)] for a single-stage design. The results show that the two-stage 
design is more efficient than a one-stage design especially when the initial estimates 
differ from the actual parameter values. Note that when/ ;1  = bi and ~l = a i ,  the 
efficiency criterion is somewhat smaller than that of the single-stage design because of 
sampling fluctuations. The results in Table 1 also show that the advantage of a two- 
stage design over a single-stage design is greater than a i is underestimated than when 
a i is  o v e r e s t i m a t e d .  

In Table 1 the criterion value Det [ J ( a i ,  b i lOt, Wt)] is also related to the maximal 
achievable value for the c = 2 point design. These efficiencies are given within paren- 
theses and show that the criterion is smaller when a i is initially underestimated than 
when a i is overestimated. This seems to indicate that overestimating a i in the first stage 
will lead to a more optimal design than underestimating a i . 

The extension of  this procedure to more stages is straightforward. The results in 
Table 1, however, indicate that an increase of the number of stages seems only worth- 
while in terms of efficiency when the initial estimates are inaccurate. For small differ- 
ences between the initial estimates and the parameters a two-stage procedure seems to 
approximate the maximum achievable efficiency very well. Such a two-stage procedure 
will become more complicated when a whole set of items is taken into account and both 
item and ability parameters are unknown and have to be estimated. 

In the previous sections some mechanisms were explained to enable optimal esti- 
mation of the item parameters by selecting distinct samples of subjects. To verify 
whether these mechanisms also apply to situations where both item and ability param- 
eters are unknown, the following simulation experiment was conducted. 

Consider a set of achievement items that, for example, cover a 5th grade mathe- 
matics course. Let such a test consist of n --- 10 items with unknown parameters b = 
[ b  1 , b 2 ,  . . .  , bn] '  and a = [ a l ,  a 2 ,  . . .  , a n ] ' ,  where b i E [ - 3 ,  +3] and a i E [ 0 ,  

2] for i = 1, . . .  , n. Item calibration usually takes place by administering the math- 
ematics test to a random sample of pupils from a 5th grade population and by estimating 
the item parameter vectors a and b jointly. From the previous sections it can be inferred 
that it would be more efficient to estimate item parameters from data obtained from two 
samples of pupils. One sample, for example, contains 4th grade pupils for which the 
items are generally too difficult (i.e., they have a probability of answering the items 
correctly of approximately Pmax = 1 - 0.824), and a second sample of 6th grade pupils 
for which the items are generally too easy (i.e., with approximately Pmax = 0.824). 

In the simulation experiment ten replications were performed. The parameter vec- 
tors a and b were generated for each replication from a uniform distribution and sam- 
ples from distinct normal ability distributions were drawn. Since it is generally not very 
difficult to distinguish easy items from hard items, the n = I 0 items were grouped into 
5 easy and 5 hard items. Design A consists of three equally sized random samples of 
pupils. The first sample was drawn from a 4th grade population with mean ability/z 0 -- 
- 2  and variance o -2~,~ = 1. The second sample came from a 5th grade ability population 
with/z  0 = 0 and o.~ = 1, and the third sample came from a 6th grade population with 
/x 0 = 2 and o.2 = 1. The first two samples take the five easy items and the last two 
samples take the five hard items. Thus each of the n -- I 0 items is administered to a 
total of N A pupils from two equally sized samples. In design B one random sample of 
N B pupils from a 5th grade, ability population with/z  0 = 0 and o.2 = 1 takes the whole 
test. 
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TABLE 2 
The Cost Ratio NB/N A for a Single- and a Two-Stage Design 

531 

Replications Single-Stage Two-Stage 

1st Stage 2nd Stage 

1 1.38 1.06 1.32 

2 1.49 1.06 1.39 

3 1.42 1.29 1.39 

4 1.68 0.96 1.47 

5 1.46 1.10 1.42 

6 1.55 1.29 1.47 

7 1.33 1.08 1.28 

8 1.48 1.44 1.35 

9 1.53 1.13 1.34 

10 1.35 0.94 1.28 

Mean 1.47 1.13 1.37 

SD 0.10 0.15 0.07 

By means of the model in (1), data were generated and item parameters a and b 
estimated and rescaled for both designs. From the estimated parameters an estimate of 
Fisher information matrix can be obtained. If it can be assumed that the number of 
pupils taking an item is directly related to the cost of testing, the following ratio will give 
an indication of the costs related to the two designs: 

{log {Det [/(a, bl0a, WA)]/] 
NB \D-e-t [ J (a ,  blOB, WB)]] (11) 
NA = exp 2n ' 

where 3(a, bl0a,  W A ) is a 2n × 2n super-diagonal matrix with estimated information 
on the item parameters. The cost ratios relating design A to B for a single-stage design 
procedure are presented in Table 2 under the column headed "Single-Stage". 

These cost ratios show that for the single-stage procedure, about 1.5 times as many 
pupils will be needed in design B as in design A to obtain the same amount of infor- 
mation on the item parameters. This means that efficiency will be greater in design A 
than in design B. 

Cost ratios for a two-stage design procedure are also presented in Table 2. The 
two-stage procedure differed from the single-stage procedure, in that the items are not 
first grouped into easy and difficult items. In the first stage the n = 10 items are 
randomly divided in two groups of five items each, and the information is estimated 
from the parameter estimates ,q and b. In the second stage the items are grouped by 
means of their estimated ~i's into easy and hard items and the parameters estimated 
again by means of another sample. The results in Table 2 show that the cost ratios for 
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the first stage are approximately equal to one. Such a result, of course, can be expected. 
The cost ratios for the second stage, however, are about 1.4 (i.e., about 1.4 times the 
number of pupils will be needed in design B to obtain the same amount of information 
as in design A). 

Such two-stage design procedures can easily be implemented but are also rather 
rigid. Not only does the test have to be divided into an easy and a difficult part, distinct 
populations or examinees must also be specified in advance. In the following section a 
more flexible procedure will be proposed. 

Sequential Designs 

One of the main problems in finding optimal designs is that it is often very ineffi- 
cient to compute efficiencies for all combinations of weights with all possible values of 
0. This is why the following simple procedure, which is an extension of an algorithm 
proposed by Wynn (1970), is offered. The procedure is based on a vector 0 = [01, 02, 
• • • ,  Oc] ' ,  which contains all possible design points. The corresponding weights are W 
= [Wl, w2, • . . ,  W c ] '  and the maximization o fDe t  [J(a,  hi0, W)] is only constrained 
by the sample size N. This means that the maximization procedure continues as long 
as ~.j  w j  <~ N .  

Starting with an initial set of abilities 00 and weights W0, the procedure consists of 
a sequential addition of design points, such that in the (k + 1)-th step, the value Ok+l 
with weight wk+l is selected that has the largest possible value for 

n 

I-I {Det [J(ai, bilOk, W k )  + Wk+ IPi,k+ 1Qi,k+ l X k +  I X~:+ 1]}. 
i=l 

(12) 

J(a i, bilOk, W k )  is the information matrix from the previous k steps and is based on 
the set of design points Ok and corresponding weights Wk. Xk+I = [ - (0k+l  - bi), 
ai]' a n d  Pi,k+l = [1 -- Qi,k+l], where Pi,k+l is the probability of  obtaining a correct 
response for 0k+ l- Wynn (1970, Theorem 1) showed that such a stepwise maximization 
will approximately lead to an optimal criterion value under the condition that for each 
step the design is admissible (i.e., for each step, {J(ai, bilOk, Wk)} -1 is nonsingular). 
It can also be shown (see Wynn) that this procedure is equivalent to maximizing a 
variance function of the expected responses for each 0k+ 1. 

It must be emphasized that the sequence of selected design points is not unique and 
that several alternative designs may result in the same maximal criterion value. Thus, 
this procedure may lead to alternative solutions. In most cases, however, one is only 
interested in obtaining an optimal design as fast as possible and one is generally not 
interested in knowing whether such a design is unique. 

For those cases where item and ability parameters are unknown, the procedure can 
be modified by replacing the parameters in (12) by their estimates. The information on 
the parameters can thus be updated in each step by newly estimated parameters. It 
must be noted, however, that in this case the stability of the procedure will be lower. 

The procedure can also be applied to those cases where a sample of examinees is 
already available and one wants to increase efficiency by adding as few examinees as 
possible. Finally it should be mentioned that although usually for each step w k  = 1 

(i.e., one design point is added in each step), it is possible to speed up the procedure by 
increasing the weights wk of the design points for each step. In the following section 
this sequential procedure will be applied to some sets of real test items. 
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Locally D-optimal sampling designs for typical sets of test items. 

b : [ -3 .0  0 3.0 ] 

Examples 

To illustrate the sequential design procedure,  a typical  set o f  test  i tems given by 
Hamble ton  and Swaminathan (1985, p. 231) is analyzed.  The  set consists o f  two iden- 
tical subsets  having nine items each with the following combinat ions  of  parameters :  

I tems: 1 2 3 4 5 6 7 8 9 
b b] b2 b3 bl bE b3 b] bE b3 
a a] a] al a2 a2 a2 a3 a3 a3 

To examine possible effects of  variation in i tem paramete r  values,  the following six 
combinat ions  of  pa ramete rs  (i.e., six tests), including those given by Hamble ton  and 
Swaminathan  (1985), are considered: < b  1 = - 1 . 5 ,  b E = 0.0,  b 3 = 1 . 5 > ,  < b l  = 
- -3 .0 ,  b E = 0.0,  b 3 = 3 . 0 > ,  and < a  I = 0.19, a 2 = 0.59,  a 3 = 0 . 9 9 > ,  < a  t = 0.59,  
a 2 = 0.99,  a3 = 1 . 5 9 > ,  and < a l  = 0.99, a 2 -- 1.59, a3 = 1 . 9 9 > ,  respect ively.  
Note  that in many  cases the logistic model in (1) is applied with a scaling factor  D = 
1.7. In those cases the ai parameters  should be lowered by  this factor.  The ranges of  
pa ramete rs  es t imated here will span most  situations encountered in practice.  

The procedure  is based on a design vector  0 = [ - 3 ,  - 2 . 5 ,  - 2 ,  - 1 . 5 ,  - 1 ,  - 0 . 5 ,  0, 
0.5, 1, 1.5, 2, 2.5, 3] and starts with a weight vector  of  ones. Starting the procedure  with 
other  weights will generally not lead to different results for N = 1000. Smaller  sample  
sizes, however ,  may  show some different results. 

The  sequential design procedure  is applied to each  combinat ion of  i tem paramete rs  
and the resulting probabil i ty mass  functions are given in Figure 4. For  a test  with low 
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discriminating items < a 1 = 0.19, a 2 = 0.59, a 3 = 0.99 >,  a locally optimal sampling 
design would have about 40% of the sample located at ability levels 01 = 3 and 03 = - 3  
and about 20% of the sample located at 02 = 0. The results in Figure 4 also show that 
for higher discriminating items, the best design can be obtained by selecting abilities in 
such a way that the whole range for the difficulty parameter is divided into nearly equal 
pieces. For example, when <b 1 = -3 .0 ,  b2 = 0.0, b 3 = 3.0> and < a l  = 0.59, 
a 2 = 0.99, a 3 = 1.59>, a locally optimal sampling design will be a design where about 
25% of the sample has abilities equal to 01 = -3.0,  02 = -1.0,  03 = 1.0, and 04 = 3.0, 
respectively. The relative efficiencies (RE) for each of these optimal designs are also 
computed by comparing the Det [ J(a, bl0, W)] of each design to the criterion based on 
a sample with normally N(0, 1) distributed abilities. In Figure 4 the logarithms of the 
RE's are given. The results show that the relative efficiency is highest for tests with low 
discriminating items and a large range in difficulties. This indicates, that compared to a 
sample of normally distributed abilities the largest improvement of efficiency can be 
obtained for tests with hard and easy items having low discrimination parameter values. 
Substitution of these REs into (11) will show that these optimal designs lead to a 
considerable reduction of the sample size compared to samples with N(0, 1) distributed 
abilities. For the six optimal designs in Figure 4 the percentage of examinees needed to 
obtain the same efficiency in estimating the item parameters as a sample with N(0, 1) 
distributed abilities ranges from 52% to 87%. 

To also provide somewhat more realistic examples, three different real tests were 
considered. The first test was the n = 15 TOEFL test given earlier by Wingersky and 
Lord (1984, p. 351-352). The estimated parameters were used as true parameters and 
are given in Table 3. The second test was a SAT test with n = 15 items. The estimated 
item parameters were based on responses of 2250 whites and given by Lord (1980, p. 
221). These estimated parameters are also treated as true parameters. The last test has 
also been considered by McLaughlin and Drasgow (1987, p. 166). This test consisted of 
n = 50 items and the items parameters are also given in Table 3. It will be assumed that 
all these parameters come from model (1), without a scaling factor. As mentioned 
above, the inclusion of a scaling factor D = 1.7 means that the ai parameters in Table 
3 should be lowered by this factor. 

For each of these tests the sequential design procedure was based on the same 
design vector 0 and started with the same weight vector as above. The probability mass 
functions for the locally optimal designs are presented in Figure 5. From Figure 5 it can 
be inferred that for all three tests an optimal design would be a design with a trimodal 
sample of abilities. Two modes are located at the extreme points of the difficulty 
(ability) scale and the third mode is located near the center of the difficulty (ability) 
scale. This result is in concurrence with that of the typical test with low discriminating 
items in Figure 4, because these tests mainly had low or moderately discriminating 
items. The logarithms of the REs of these designs, compared to a N(0, 1) distributed 
sample of abilities, are also given in Figure 5, and give an indication of the efficiency of 
these designs. Substitution of the REs into (11) will show, for example, that the optimal 
design in Figure 5 for the test discussed by McLaughlin and Drasgow (1987) will reach 
the same efficiency in estimating the item parameters as a sample with N(0, 1) distrib- 
uted abilities with only 75% of the number of examinees. For the TOEFL test (Lord & 
Wingersky, 1985) and the SAT test (Lord, 1980) this percentage will be about 80% and 
66%, respectively. 
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Wingersky & Lord (1980) 
Lord (1984) Data 

Data 

Item a i b i Item a i b i 

TABLE 3 

Three Real Tests 

McLaughlin & Drasgow (1987) 
Data 

Item a i b i Item a i b i 

1 0.99 -2.01 1 0.87 -1.5 1 1.1 -0.7 
2 0.35 -1.61 2 0.28 -3.3 2 0.7 4).6 
3 1.38 -1.09 3 0.63 -1.1 3 0.4 0.1 
4 0.78 -0.77 4 0.85 0.1 4 0.9 0.9 
5 0.42 4).67 5 0.35 - 1.9 5 1.2 0.7 
6 0.92 4).34 6 0.82 4).4 6 1.6 1.1 
7 0.92 -0.15 7 0.56 4).6 7 1.6 1.1 
8 1.06 0.00 8 0.50 1.2 8 1.6 -0.1 
9 1.34 0.11 9 1.43 0.5 9 1.2 0.5 

10 1.54 0.26 10 1.09 0.7 10 2.0 1.6 
11 0.87 0.46 11 1.64 1.7 11 1.0 1.6 
12 0.62 0.57 12 0.49 1.9 12 1.5 1.7 
13 1.09 0.68 13 1.63 1.7 13 1.0 0.7 
14 1.39 0.90 14 1.27 2.6 14 1.1 2.0 
15 1.50 1.16 15 0.68 3.4 15 1.1 2.4 

16 2.0 1.4 
17 1.7 1.3 
18 0.5 -0.6 
19 0.9 1.6 
20 1.3 0.4 

21 1.1 1.2 
22 1.2 1.1 
23 1.3 0.2 
24 1.3 0.2 
25 0.5 4).8 
26 0.7 0.5 
27 0.7 0.5 
28 O.4 -0.4 
29 0.4 4).4 
30 1.2 -0.5 
31 0.7 -1.0 
32 0.2 -0.2 
33 0.7 -0.2 
34 0.5 0.0 
35 0.9 0.5 
36 I.I 1.4 
37 1.2 4).6 
38 1.2 4).6 
39 0.6 4).5 
40 1.6 0.3 
41 1.1 0.0 
42 1.5 2.0 
43 1.9 1.9 
44 0.9 -0.5 
45 0.7 -0.5 
46 1.4 1.6 
47 1.4 1.6 
48 1.0 1.7 
49 1.2 1.1 
50 1.2 1.1 

Note. Copyright 1984 and 1987, Applied Psychological Measurement, Inc. Reproduced by 
permission. 

Discussion 

In this paper the idea of selecting a sampling design for the optimal estimation of 
item parameters in the two-parameter IRT model was explored. Since the item param- 
eters are usually estimated jointly, it is better to consider an optimality criterion that 
takes into account both the information on the discrimination and dit~culty parameter 
and the joint information on the two parameters, than to just examine the information 
on each of these parameters separately. 

A generalized variance or D-optimality criterion was used to examine this problem. 
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FIGURE 5. 
Locally D-optimal sampling designs for two tests with n = 15 items (Lord, 1980; Wingersky & Lord, 1984) 

and an n = 50 item test (McLaughlin & Drasgow, 1987). 

Although this criterion has several nice properties it depends on the unknown param- 
eters and an optimal design selected by means of this criterion will also depend on 
unknown parameters. Several procedures to get around this problem have been sug- 
gested (see Berger & van der Linden, 1992 ). In this study the problem of unknown item 
parameters was handled by using two-stage designs and sequential designs, and the 
problem of not knowing the ability parameters was handled by drawing samples of 
examinees from distinct ability populations. The presented results showed that two- 
stage and sequential design procedures will lead to a considerable increase of efficiency 
in estimating the item parameters. 

The result that a more uniform shape of the ability distribution will reduce the 
standard errors of  the item parameters has been presented by Wingersky and Lord 
(1984) and was further supported by Stocking (1990). She argues strongly for the use of  
calibration samples of which the true ability distribution is close to uniform or even 
bimodal. Some of the results from this study concur with these conclusions. The pre- 
sented two-stage design procedure makes use of the notion that an optimal criterion 
value is obtained when the sample has examinees with abilities located symmetrically 
around the item difficulty. The proposed sequential design procedure, however, leads 
to locally D-optimal sampling designs that are generally based on a trimodal sample of 
abilities. From the examples in this study, it may be inferred that for a whole test of 
items with distinct difficulties and low discrimination parameters, the most efficient 
sample would be a trimodal sample of abilities with two modes located at the extremes 
of the difficulty (ability)scale and the third mode located near the center of the scale. 
For a test with highly discriminating items it would be better to sample abilities uni- 
formly from the whole ability scale. Although the presented locally optimal sampling 
designs only hold for the specific sets of items, this conclusion seems to apply to a 
variety of tests. The proposed sequential design procedure can easily be applied to 
other sets of test items. If it is not possible to provide a rough initial assessment of the 
item parameters, the procedure can be modified to provide sequential estimates of the 
item parameters. Since this will affect the stability of the procedure and possible bias of 
the estimates may occur, further research on the sequential estimation of  item param- 
eters will be needed. 
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The proposed procedures are applied to a two-parameter IRT model. Although the 
mechanisms can also be applied to a three-parameter model, the results may become 
quite different and the sequential design procedure may become less stable. Because of  
the well-known problems connected with the estimation of  the lower asymptote  c i 

(Thissen & Wainer, 1982), and the possibility of  multiple solutions to the likelihood 
function (Yen, Burket & Sykes, 1991), it is generally wise to avoid estimating ci .  In 
many cases where the three-parameter model is used, the lower asymptote is fixed in 
advance and updated after estimating the other item parameters. In these cases it is not 
necessary to incorporate the information on ci and its joint information with the other 
item parameters in the sequential optimal design procedure,  because ci is not really 
estimated jointly with the other item parameters. 

Finally it should be emphasized, that the advantage of  using a more informative 
sampling design in terms of  reducing the cost of testing, will depend heavily on the test 
situation. Even if it is possible to reduce the sample size by, for example, 33%, then this 
will only be worthwhile in practical testing situations when a substantial reduction in 
the cost  of  testing is also achieved. 
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