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 The selection of optimal designs in IRT models encounters at least two
 problems. The first problem is that Fisher's information matrix is generally
 not independent of the values of the IR Tparameters, and the second problem
 is that the design points are unknown parameters and have to be estimated
 together with the other parameters. In this study, these two problems are
 taken care of by a sequential design procedure. This procedure is a modifi-
 cation of a D-optimality procedure proposed by Wynn (1970). The results
 show that this algorithm leads to consistent estimates and that errors in
 selecting the abilities generally do not affect optimality very much.

 Modifications or variations in designs have often been used to increase the
 information in the sample data for the estimation of parameters in a model.
 Such designs may lead to a reduction of the sample size needed to estimate
 the parameters efficiently. In educational measurement, this will often
 result in a reduction of the cost of testing.

 The optimal designing of tests and samples in item response theory (IRT)
 models has been studied by various researchers. In all these studies, a
 certain function of Fisher's information matrix is maximized. Wingersky and
 Lord (1984), Lord and Wingersky (1985), Thissen and Wainer (1982), and
 de Gruijter (1985, 1988) studied the relative efficiencies of tests and models
 by means of the asymptotic variances of the estimated item parameters.
 Stocking (1990) selected optimum ability levels for item calibration by con-
 sidering information on each of the item parameters separately. W. J. van
 der Linden (1988) maximized information on an item parameter by linear
 programming, and Vale (1986) used a relative efficiency measure to link
 item parameters. In addition to the above applied functions, Berger (1991)
 studied the efficiency of sampling designs and applied a determinant crite-
 rion function that not only considers the information on the parameters
 separately but also takes into account the joint information (covariation)
 among the parameters.

 There are, however, some problems connected with the optimal designing
 of samples. One of the main problems in finding optimal designs for non-
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 linear IRT models is that Fisher's information matrix generally depends on
 the values of the unknown parameters-that is, one will first have to know
 the unknown parameters before one can actually select an optimal design
 to estimate these parameters. Several procedures have been proposed to
 handle this problem. See Berger and van der Linden (1992) for a brief review
 of these procedures.

 One of the ways to deal with this problem is to estimate the parameters
 sequentially. Sequential procedures have been studied for a variety of
 models by Ford and Silvey (1980); Ford, Titterington, and Wu (1985); Wu
 (1985a); and McLeish and Tosh (1990), among others. Wu (1985b), for
 example, suggested a sequential design and parameter estimation procedure
 that has connections with the traditional stochastic approximation proce-
 dure (Robbins & Monro, 1951). This procedure is consistent and asymptot-
 ically normal under rather restrictive conditions. Berger (1992a, 1992b)
 describes some two-stage and sequential designs for IRT models. These
 procedures also make it possible to sequentially update initial estimates. In
 the following two practical settings, such a sequential design procedure may
 be very effective.

 Builders of item banks not only have to conduct costly sessions to calibrate
 items for inclusion in an item bank but also face the problem that their item
 banks become exhausted-that is, already calibrated items become out of
 date or overexposed and have to be replaced by others. Usually, the calibra-
 tion of these items takes place by administering them to a large fixed sample
 of examinees. Some parts of the thus-obtained sample data, however, may
 contain very little information on the item parameters, and the cost of such
 a large scale calibration of items may be reduced considerably by adminis-
 tering these items in separate stages. In the first stage, for example, a small
 sample of examinees may be used to obtain initial estimates of the item
 parameters, and in subsequent stages the items may be administered to a
 selected sample of examinees that will be more informative with respect to
 the estimated item parameters. In this way, efficient estimates of the item
 parameters may be obtained with a much smaller number of examinees.

 A sequentially selected sample may also produce more efficient esti-
 mates of item parameters in computerized testing programs. These pro-
 grams rely heavily on the availability of efficiently estimated item parame-
 ters. This may be obtained by choosing items for administration in a pretest
 mode on the basis of some crude knowledge of examinee ability. Examinees
 with a high contribution to the precision of the item parameter estimates
 may be selected sequentially in a pretest mode to calibrate the items.

 In this article, a sequential design procedure is proposed that will not only
 sequentially design an optimal sample but is also able to sequentially esti-
 mate the item parameters. Such a procedure will be useful in large scale
 calibration studies, but it may also be important to test constructors and
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 D-Optimal Designs

 builders of item banks and in computerized testing programs. The results
 of this article show that the procedure leads to consistent estimates and that
 optimal designs can be found relatively easily. First, however, a brief de-
 scription of sampling designs for IRT models will be given.

 Sampling Designs for IRT Models

 Item response theory models assume that the probability of a response
 Uij of an examinee j to an item i is a function of the latent abilities 0i E IR.
 This probability will be denoted by Pi(0i) and can be represented by a
 parametric function of two item parameters:

 P,(0) = F{ai(Oi - b,)}, (1)
 where F{z} may be a logistic or a normal ogive function. Item i is represented

 by the pair of parameters {ai, bg} E IR+ x IR, where IR+ x IR is a two-dimen-
 sional rectangular set of positive real and real numbers, respectively. For a
 whole test of n items, the n pairs {ai, bi} together form the pair of vectors
 {a, b}.

 A sampling design for IRT models is denoted by the pair of vectors {0, W},

 where 0 consists of distinct abilities grouped as 0 = [01, 02, - ... , 0,]' and the
 vector W consists of the corresponding weights W = [w1, w2, ... , wj'. Note
 that the sample size is equal to N = Yj wj. The elements of 0 are often called
 design points. By means of the pair of vectors {0, W}, a whole set of different
 sampling designs can be distinguished. When, for example, the number of
 distinct abilities is equal to the sample size-that is, c = N and wj = 1 for all
 j = 1,2,... , c-then all examinees in the sample have different abilities. If,
 however, 1 - c- N, and all but one of the c weights are zero, then the
 sample consists of examinees all having the same abilities. For those cases
 where the abilities cannot be selected exactly but can be drawn from rela-
 tively homogeneous ability categories, it will be assumed that the pair of
 vectors {0, W} denotes a sampling design where the abilities are drawn by
 a stratified sample from a population of abilities. In this case, the c elements

 0j are considered to be the c group (strata) means.
 The asymptotic efficiency of the maximum likelihood estimators of the

 two item parameters for the logistic function is related to Fisher's informa-
 tion matrix:

 J(ai, bi 0, W) = W w/{P,(0)[1 - Pi(O/)]}XX', (2)
 j= 1

 where

 X=[-(Oj- bi)
 ai

 and the total information matrix for a whole test with n items is a super-
 diagonal matrix J(a, b 0, W), with main diagonal matrices given by (2).
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 Although several functions defined on the space of the information matrix
 have been proposed in optimal design literature, the D-optimality (Kiefer,
 1959), or generalized variance criterion (Anderson, 1984), may be preferred
 because it has some nice properties (see Berger, 1991, 1992a). An expres-
 sion for the D-optimality criterion is given by:

 Det[J(a, b 0, W)] = I Det[J(ai, b I 0, W)], (3)
 i=1

 where Det[J(a , b 1 0, W)] is the determinant of the 2 x 2 information matrix
 for the item parameters ai and bi.

 In the next sections, the sequential generation of an optimal design and
 the sequential estimation of parameters for IRT models will be discussed.

 Sequential Generation of Optimal Designs

 One of the most straightforward procedures to find optimal designs is to
 compute an optimality criterion for all possible combinations of parameter
 values and weights. Apart from the fact that an optimal design for one
 combination of parameters may not be optimal for another (i.e., designs are
 locally optimal), such a procedure is often inefficient in terms of CPU time.
 This is why Berger (1992a, 1992b) suggested the following optimal design
 generation procedure, which is an extension of an algorithm proposed by
 Wynn (1970).

 The procedure is based on the ability vector 0 = [01, , 02,. ,X 0]', con-
 taining all possible (grouped) abilities and the vector of weights W =

 [Wl, w2,..., w ]', with an a priori chosen maximum sample size Nm. The
 procedure starts with an initial set of abilities 0(0) and corresponding weights
 W(0). Design points are added sequentially after each stage, and the maxi-
 mization procedure stops when jwj > N,,. Thus, the maximization of
 Det[J(a, b 0, W)] is only constrained by the sample size Nm.

 In the (k + 1)th step, the value 0(k + 1) with weight w?k + 1) is selected out of
 the c abilities in 0 that has the largest value for:

 S{Det[J(ai, bi 0(k), W(k)) + wk+ 1) p!k+ 1) Qk+ 1) X(k+ 1) X(k +1)]} (4) i=1

 where J(ai, bi 0(k), W(k)) is Fisher's information matrix based on the previ-

 ous k steps. X'(k+ ) = [-(0k+ 1) - bi), ail] and p!k+ 1) = [1 - Qk+ 1)], where
 p!k+ 1) is the probability of obtaining a correct response for 0k + 1). Such a
 maximization will approximately lead to optimality under the condition that

 {J(a , bi 0(k), W(k))}-1 is nonsingular for each step.
 This procedure can be applied to obtain an optimal design for a fixed set

 of parameters {a, b}. As an example, consider the three tests in Table 1 with
 n = 9 items each. These three tests cover a wide range of possible combina-
 tions of the item parameter values encountered in practice. The probability
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 D-Optimal Designs

 TABLE 1

 Three typical tests

 Test A Test B Test C

 Item ai bi Item ai bi Item a, bi
 1 0.2 -1.0 1 0.5 -2.0 1 0.5 -1.5

 2 0.2 0.0 2 1.0 -1.5 2 1.0 -1.5

 3 0.2 1.0 3 1.5 -1.0 3 1.5 -1.5

 4 1.0 -1.0 4 0.5 -0.5 4 0.5 0.0

 5 1.0 0.0 5 1.0 0.0 5 1.0 0.0

 6 1.0 1.0 6 1.5 0.5 6 1.5 0.0

 7 1.6 -1.0 7 0.5 1.0 7 0.5 1.5
 8 1.6 0.0 8 1.0 1.5 8 1.0 1.5
 9 1.6 1.0 9 1.5 2.0 9 1.5 1.5

 mass functions of the corresponding locally optimal sampling designs are
 presented in Figure 1. The logarithms of the values for the Det[J(a, b 1 0, W)]
 of each of the tests are also given in Figure 1. These values are computed
 for the sample size of Nm = 5,000. The results show that, in general, a more
 or less uniformly distributed sample of abilities would be very efficient, and
 this conforms with the conclusions drawn by Wingersky and Lord (1984) and
 Stocking (1990).
 The above-described procedure of first generating an optimal design
 sequentially and then estimating the parameters is not only very flexible but
 also makes it possible to use one model for design generation and another
 model or procedure for parameter estimation. It can also be applied to those
 cases where the abilities are not exactly known and where the examinees can
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 FIGURE 1. Probability mass functions for the locally D-optimal sampling designs
 of three tests
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 Berger

 be grouped into categories with relatively homogeneous ability levels. In
 these cases, examinees can be sampled from the ability category that has the
 largest value for (4). From experience, it can be inferred that the optimal
 design is approached very well in these cases.

 Another feature of this procedure is that its sequential nature makes it
 possible to estimate the parameters sequentially and use these updated
 estimates to refine the generation of the optimal design. In the next section,
 such a sequential design and estimation algorithm will be presented.

 Finally, it should be mentioned that the flexibility of this procedure will
 also enable a researcher to use alternative forms having different weights in
 each step. If, for example, the weight w k+1) = 1, then the procedure may
 be considered to be fully sequential, and parameter estimates can be up-
 dated after each included observation. Although such a procedure has been
 applied in other areas (see Ford & Silvey, 1980), a fully sequential procedure
 will generally not be very practical in IRT modeling. When the weights
 wik+ 1)> 1, then a whole batch of wk1+ +) design points is included in each
 step. This will not only speed up the iterations but may also improve the
 efficiency.

 Sequential Estimation Procedure

 In this section, the sequential design procedure will be combined with the
 sequential estimation of the parameters. The procedure starts with an
 initialization phase and stops when an a priori chosen maximum sample size
 N, is reached.

 Initialization Phase

 -Set the maximum number of design points-that is, the maximum sample
 size-equal to Nm. The choice of Nm is usually based on a prior chosen
 minimum precision level m.

 -Select a vector of all possible design points (abilities) 0 = [01, 02, ... , c]
 with a fixed number of distinct ability levels or classes from which design
 points can be selected.

 -Select an initial set of design points 0(0) with weights W(?), such that
 N(') = Ij w,. A suitable choice for such an initial set is a set of uniformly
 distributed design points-that is, with all the same weights wj.

 -Choose an initial set of (estimated) item parameters {a(0), b(0)}.
 -Obtain responses for the N(0) initial design points 0(0).
 -Set N(1')= N(0), 0(')= 0(0), and W(1) = W(0).

 kth Iteration

 -Estimate the item parameters {a, b} bij means of all the N(k) design points.
 -Select the value 0(k + 1)with corresponding weight wik + 1) out of all possible

 design points in 0 that have the maximum value for (4). Note that, when
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 w k+ 1) increases, the procedure will be speeded up, and that convergence
 may be reached much sooner.

 -Add w(k+ 1) (approximate) design points 0k + 1) to the previous design
 points in 0(k)--that is, N(k + 1)= N(k) + wSk+ 1).

 -Obtain responses for the wk k+1) design points ,k+ 1)
 -If 1i W1 < Nm, then continue the iteration; otherwise, stop.
 It should be emphasized that both the choice of initialization variables and

 the selection of the weights w (k+ 1) in each iteration will influence the final
 outcome. But the differences are often very small, especially when the
 number of iterations is high. The choice of Nm may be based on the cost of
 obtaining responses and on the CPU time needed for the estimation of the
 parameters. An easy choice for the minimum precision level may be
 m = Xn1, where h, is the smallest eigenvalue of the matrix J(a, b 0, W)-1
 with a priori chosen variances of the estimators on the main diagonal.
 Because a uniformly distributed sampling design is often very efficient, an
 appropriate choice for the initial set {0(o), Wo)} may be a uniformly dis-
 tributed sample. The initial sample size should be N(0) > No, where Na is the
 minimum sample size needed for the ML estimators to exist and to be
 identifiable and for J(", I (0), (0))-1 to be nonsingular. Finally, the num-
 ber of design points added in each step will often depend on the type of
 application. If, for example, the number of iterations is limited to 10, then

 the weights will become w(k+ 1) = Nm/10.

 Consistency of Sequentially Estimated IRT Parameters

 In general, there is no asymptotic theory available to support the use of
 likelihood confidence regions when data are sampled sequentially. There
 are, however, some results on the consistency of ML estimators available
 for a few cases. Wu (1985a) proposed a sequential procedure and demon-
 strated its consistency and asymptotic normality under restrictive condi-
 tions. Ford, Titterington, and Wu (1985) showed that the usual distribu-
 tional results are also often valid for sequential sampling designs, and Wu
 (1985b) discussed some properties for binary data. The consistency of
 procedures of the kind presented in this article has been discussed by Tsay
 (1976) and Wu and Wynn (1978). Recently Chaudhuri and Mykland (1993)
 gave some asymptotic results for two-stage designs which validate inferences
 on the sequential estimator, ensure the optimality of the sequentially ob-
 tained design, and guarantee efficient parameter estimates.

 If one has a sample of N observed responses and the ML estimates of {a, b}
 are available with a known variance-covariance matrix J(a, b 10, W)-1, then
 the sampling distribution of the ML estimator {a, b} will have nice properties
 asymptotically and will be strongly consistent-that is, lim {a, b} = {a, b}. If,
 however, J(a, b 10, W) is unknown, and estimation of the parameters {a, b}
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 takes place sequentially, then updates of J(ai, bI 0, W) can be obtained in
 each step.

 Suppose that X,, is the smallest eigenvalue of J(a, b 0, W) and indicates
 the precision level for the estimates based on a certain number of design
 points. If m is the required minimum precision value, then the sequential
 procedure will stop when the sample size Nm E N is achieved, where

 Nm = inf{N: Xj1 > m; N > No}. (5)

 No is the minimum sample size needed for {, Ib} to exist. Grambsch (1989)
 showed that under fairly general regularity conditions the sequential esti-
 mator {a, b}, which is based on Nm design points, is strongly consistent-
 that is:

 lim {a, b} = {a, b} (almost surely). (6)
 m---

 It may be inferred that a consequence of such a consistency is that

 J(ai, b0, W) - J(a, b 0*, W*) as N--, co, (7)
 where {0*, W*} is the optimal design for the estimation of {a, b}. These
 results indicate that one may expect the sequential estimation of the item
 parameters to lead to consistent results when the design points 0 are known.
 For those cases where 0 is unknown, but where the design points can be
 sampled from certain homogeneous classes with mean abilities 0, consis-
 tency may only be achieved when the sampling of design points is reasonably
 accurate.

 When the design points 0 = (01, 02, ..., 8)' are unknown and have to be
 estimated (approximated), then loss of information on the parameters ai and
 bi will be inevitable. Such a loss of information is caused by the fact that the
 optimal design points 0* cannot be located exactly. Analogous to the miss-
 ing information principle of Orchard and Woodbury (1972), the following
 inequality for the diagonal elements of the information matrix will hold:

 Diag {J(a, b10*, W*)} - Diag {J(a, b 0, W)}, (8)
 where {0, W} is a design that is obtained from the sequential design proce-
 dure based on the (random) sampling of abilities (design points) from the
 ability categories 0 = (01, 02, ..., 0c)'. Although such an inequality cannot
 be shown to hold for the determinant of the information matrix, one may
 expect the determinant of the information matrix based on estimated or
 approximated design points to be smaller than the corresponding determi-
 nant for known design points.

 A Simulation Study

 In this section, the results of some simulations will be given. The purpose
 of these simulations is to show that the proposed sequential procedure will
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 be consistent when the abilities (design points) are not exactly known but
 are approximated or selected randomly from distinct ability groups. Be-
 cause it is often possible in achievement testing to group examinees into
 distinct but relatively homogeneous ability groups (strata), selection of these
 design points can take place by a stratified random sampling procedure.
 Although several tests with different combinations of item parameters were
 considered, only the results of the three tests from Table 1 will be presented,
 because the results were all very similar. The tests in Table 1 consist of
 combinations of parameter values ranging from ai = 0.2 to ai = 1.6 and
 bi = -2.0 to bi = 2.0.

 Initialization phase. The maximum sample size was set equal to
 Nm = 5,000, and the initial sample consisted of all possible design points
 0(0) = [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3]', with weights
 all approximately equal to wj = N()l/c, where c = 13. Three different forms
 were considered. The first form started with an initial sample size N(O) = 50
 and increased the sample after each iteration with wjk +1) = 50 design points.
 The second form started with N(O) = 125 and included wik+11)= 125 design
 points after each iteration. Finally, a third form was used with N(O) = 500
 and wk + 1) = 500 to ensure a stable estimation procedure. The total number
 of iterations for these three forms was Nm/50 = 100, Nm/125 = 40, and
 Nm/500 = 10, respectively.

 Data generation. After each iteration, examinees were randomly drawn
 from a uniform distribution of abilities with class mean values given by the

 0i s in 0(0). Binary responses on item i for the examinees from ability level
 (class) 0j were obtained by:

 I1, if P1(01) > uij
 "Xi 0, if Pi(0) - uij,

 where ui1 is randomly drawn from a uniform U(0, 1) distribution and Pi(0j)
 is given by (1), with F{z} being a logistic function.

 Consistency measure. The most commonly used measure of perfor-
 mance of an estimator is the mean squared error (MSE). For tests consisting
 of n items which are characterized by the pair of vectors {a, b}, the mean
 squared errors are:

 MSEa = > {E[(ai - a )2]/n i=1

 and

 MSEb = > {E[(b, - b,)2]}/n. (9) i=1

 The ML estimates of the item parameters were placed on the scale of the
 true parameters by the linear transformation proposed by Stocking and
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 Lord (1983). The mean squared errors in (9) of the rescaled estimates are
 a function of both the variance of the estimators and their bias. These MSEs

 will eventually decrease to zero as more and more examinees are incorpo-
 rated into the sample (i.e., as the number of iterations increases), if and only
 if both the variance of the estimators and their bias decreases as the sample
 size increases.

 Results. In Figure 2, the results for both the parameters ai and bi are
 given for each of the three tests A, B, and C for the first 10 iterations. The
 MSE values are based on five replications. The N(O) = 50 and N(0) = 125
 forms are less stable than the N(O) = 500 form and generally have higher MSE
 values. Very inaccurate initial estimates in the N(O) = 50 and N(O) = 125 form
 continue to play an important role in subsequent iterations, because the
 initial set of examinees on which these estimates were based remains to be

 a relatively large part of the sample and because fewer examinees are added
 after each iteration. This leads to the unstable MSE pattern shown in Figure
 2 for Test A.

 Test A

 MSE for a

 0.06

 125

 0.04

 50

 0.02

 0.01

 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 MSE for b
 0.5s

 0.4

 0.3

 50

 125
 0.2

 0.1

 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 50 : Ln(Det)=1 16.90
 125: Ln(Det)=l 16.84
 500: Ln(Det)=116.83

 Test B

 MSE for a
 0.06

 0.05

 so 50

 0.04

 0.03 125

 0.02
 500

 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 MSE for b
 0.5

 0.4

 0 125
 0.3

 02

 0 1 50

 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 50: Ln(Det)=120.09
 125: Ln(Det)=120.18
 500: Ln(Det)= 120.19

 Test C

 MSE for a

 0.06

 0 00 0.04

 003 -125L

 0.02

 0.01

 0
 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 MSE for b

 0.5

 02-

 12o 0

 0 1 2 3 4 5 6 7 8 9 10

 Iterations

 50 : Ln(Det)=120.38
 125: Ln(Det)= 120.42
 500: Ln(Det)=120.31

 FIGURE 2. Mean squared errors among the parameters and their sequential
 estimates for three tests
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 In all cases, the MSE values decreased as the sample size (i.e., the number
 of iterations) increased. This means that the sequential estimation and
 design procedure are fairly consistent, though convergence seems rather
 slow in some cases.

 An indication of the relative efficiency of the designs that were generated
 by this procedure can be obtained by relating the logarithms of the determi-
 nant of the information matrix J(a, b I 0, W) to the logarithms of the deter-
 minant obtained from the sequential design procedure with known item
 parameters and design points, which are given in Figure 1. The finally
 obtained In {Det[J(a, b 0, W)]} values for the three forms are presented in
 Figure 2 and show that not much efficiency in estimating the item parame-
 ters is lost when the design points (abilities) are approximated. The N(0) = 50
 and the N(O) = 125 forms seem to produce a somewhat higher criterion value
 than the N(0) = 500 forms for tests A and C. Although these two forms start
 with higher MSE values than the N(O) = 500 forms for tests A and C, the final
 result in terms of the determinant criterion is somewhat more optimal. The
 higher flexibility of these two forms may explain this effect. Note that these
 values were all computed for the same maximum sample size Nm = 5,000.

 It must be noted that the use of other initialization variables and starting
 weights approximately leads to the same criterion values as shown in Figure
 2, although minor differences in the actual optimal samples can be found.
 These differences occur because the procedure does not lead to one unique
 solution. In most applications, however, this will not be a problem because
 one is merely interested in finding an optimal design that enables efficient
 estimation of the item parameters.

 Finally, it should be mentioned that the total amount of CPU time varied
 with the sample size but mainly consisted of the time needed to (re)estimate
 the parameters. Since the results were already very accurate after four or
 five iterations, the algorithm can be speeded up considerably by limiting the
 number of iterations to about five. An increase of the number of examinees

 to be added after each iteration will also make the algorithm faster.

 Discussion and Conclusion

 Item calibration is often a laborious and expensive process, and the use
 of more informative samples may decrease the cost of testing considerably.
 In this article, a procedure to locate D-optimal sampling designs for the
 efficient estimation of item parameters in IRT models is discussed. This
 procedure is very flexible and enables a researcher to increase the informa-
 tion on the item parameters in various ways.

 First, the procedure may be applied fully sequentially--that is, the
 parameter estimates are updated after each single included design point.
 Although such a strategy may be useful, it is often very time consuming and
 generally not efficient for IRT models because the estimation of IRT
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 parameters is relatively expensive in terms of CPU time. Another approach
 is to reestimate the item parameters after the inclusion of a whole batch of
 design points. Such a procedure is often referred to as a multistage design
 procedure. A special case is the two-stage design procedure, which has only
 an initial and a final stage, where the design points are selected on the basis
 of the estimated item parameters in the first stage. From the results in this
 article, it may be concluded that a two-stage or a three-stage design proce-
 dure will generally lead to efficient results.

 A comparison of the criterion values presented in Figure 2 with those
 presented in Figure 1 reveals that the criterion values do not differ much and
 that little efficiency is lost when the design points are approximated. Al-
 though the presented procedure generally results in an increase of effi-
 ciency, the actual increase, of course, will depend on the set of item parame-
 ters and the number of items in the test. Consider, for example, the optimal
 criterion values 117.88, 121.21, and 121.41 for the three tests A, B, and
 C in Figure 1. The corresponding values based on a sample of N, =
 5,000 examinees having N(0, 1) distributed abilities are 113.65, 116.19, and
 116.54, respectively. To obtain the optimal criterion values of the three
 locally optimal designs given in Figure 1, the normally distributed ability
 sample would need about 6,500 examinees. This means an increase of one
 fourth of the sample size.

 The results of this article also show that the procedure will generally lead
 to consistent ML estimates of the item parameters. Although the results are
 limited to those cases where the same number of design points are added
 in each step, varying the number of included design points per step will
 generally not lead to different results. Including fewer design points in each
 step will only lead to a slower convergence rate.

 Finally, it must be emphasized that this sequential procedure will not
 work very well for small samples. There is a sort of trade-off between the
 number of examinees included in each iteration and the total amount of

 CPU time, and we do not recommend including less than 100 examinees in
 each iteration.
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