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Abstract. In this paper we survey results of the following type (known as closure results).
Let P be a graph property, and let C�u; v� be a condition on two nonadjacent vertices u and
v of a graph G. Then G � uv has property P if and only if G has property P. The ®rst
and now well-known result of this type was established by Bondy and ChvaÂtal in a paper
published in 1976: If u and v are two nonadjacent vertices with degree sum n in a graph G
on n vertices, then G � uv is hamiltonian if and only if G is hamiltonian. Based on this
result, they de®ned the n-closure cln�G� of a graph G on n vertices as the graph obtained
from G by recursively joining pairs of nonadjacent vertices with degree sum n until no such
pair remains. They showed that cln�G� is well-de®ned, and that G is hamiltonian if and only
if cln�G� is hamiltonian. Moreover, they showed that cln�G� can be obtained by a polyno-
mial algorithm, and that a Hamilton cycle in cln�G� can be transformed into a Hamilton
cycle of G by a polynomial algorithm. As a consequence, for any graph G with cln�G� � Kn

(and nV 3), a Hamilton cycle can be found in polynomial time, whereas this problem is
NP-hard for general graphs. All classic su½cient degree conditions for hamiltonicity imply
a complete n-closure, so the closure result yields a common generalization as well as an easy
proof for these conditions. In their ®rst paper on closures, Bondy and ChvaÂtal gave similar
closure results based on degree sum conditions for nonadjacent vertices for other graph
properties. Inspired by their ®rst results, many authors developed other closure concepts
for a variety of graph properties, or used closure techniques as a tool for obtaining deeper
su½ciency results with respect to these properties. Our aim is to survey this progress on
closures made in the past (more than) twenty years.

1. Introduction

We use [10] for terminology and notation not de®ned here and consider simple
graphs only.

In the sequel let G � �V ;E� be a 2-connected graph on n vertices with vertex
set V and edge set E. Let NG�x� denote the set of neighbors of the vertex x A V ,
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and let dG�x� � jNG�x�j denote the degree of x. Let NG�x� � NG�x�U fxg; if no
ambiguity can arise, we omit the subscripts.

More than 20 years ago, the now well-known paper `A method in graph
theory' by Bondy and ChvaÂtal [9] was published. The closure concept introduced
in this paper opened a new horizon for the research on hamiltonian and related
properties of graphs. Closure concepts now play an important role in results on
the existence of cycles, paths, and other subgraphs in graphs. They generalize the
classic degree conditions, and yield polynomial algorithms for problems that are
NP-hard in general. But they also have proved to be a useful tool in proving
deeper results. We focus on the hamiltonian problem ®rst, and mention the main
results in [9]. Some of the proofs will be outlined in the next section.

A graph G is hamiltonian if it contains a Hamilton cycle, i.e. a cycle containing
all the vertices of G. A Hamilton path of G is a path containing all the vertices of
G. As remarked in [25], the following method was found in an attempt to ®nd a
constructive proof for a su½cient condition for hamiltonicity based on degree
sequences. It exploits the following result due to Ore [60].

Theorem 1.1 [60]. Let u and v be distinct nonadjacent vertices of a graph G such that

d�u� � d�v�V n. Then G is hamiltonian if and only if G � uv is hamiltonian.

Bondy and ChvaÂtal de®ned the n-closure cln�G� as the graph obtained from G

by recursively joining pairs of nonadjacent vertices the degree sum of which is at
least n until no such pair remains. They showed that cln�G� is well-de®ned, i.e. is
uniquely determined by G, and that G is hamiltonian if and only if cln�G� is
hamiltonian.

Adding edges to a graph makes it intuitively more likely that the new graph
contains a Hamilton cycle. For the n-closure of a graph this is not the case: the n-
closure has a Hamilton cycle if and only if the original graph has one. But it could
be more likely that we can ®nd a Hamilton cycle in the n-closure more easily. Note
that, e.g., in a complete graph on at least three vertices ®nding a Hamilton cycle is
a trivial exercise.

As a consequence of Theorem 1.1, if G is a graph on at least three vertices and
cln�G� is a complete graph, then G is hamiltonian. The authors showed in [9] that
cln�G� can be constructed by a polynomial algorithm. Moreover, they showed that
if cln�G� is complete, then any Hamilton cycle in Kn can be transformed into a
Hamilton cycle in G in polynomial time. These two results together imply that
®nding a Hamilton cycle in a graph G for which cln�G� � Kn is a polynomial
problem, whereas this problem is NP-hard in general.

It was noted in [9] that many of the classic su½cient degree conditions for
hamiltonicity guarantee that cln�G��Kn, yielding easier proofs of the correspond-
ing results. But apart from generalizing degree conditions and yielding polynomial
algorithms, closure results also have proved to be useful as a tool in proving
deeper su½ciency results, because they give more information on the structure of
the (closure of the) graphs under consideration. We postpone the details to the
next section.

A drawback of the above closure method is that cln�G� can only be complete if
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G is very dense, i.e. jEjV �n� 2�2
8

$ %
(see [26]). Many of the later closure concepts

have the same disadvantage, but some of them can also be applied to graphs with
a number of edges which is a linear function of n. For the latter concepts we often
lose the nice property of uniqueness of the associated closure.

For many other graph properties P, Bondy and ChvaÂtal [9] have found su½-
cient conditions of the type d�u� � d�v�V k (for the smallest possible value of k)
such that if G � uv has property P, then G itself has property P. Such properties
are called k-stable, and the k-closure is de®ned by recursively joining pairs of
nonadjacent vertices with degree sum at least k until no such pair remains. More
details can be found in the next section.

Inspired by the above results several other closure concepts have been devel-
oped. Most of these concepts are based on conditions comparing the degree sum
of a pair of nonadjacent vertices with some global parameter of the graph, e.g., (a
function of ) the number of vertices of the graph or some subgraph. These results
will be discussed in Section 2. Some of the more recent closure concepts try to take
into account the local structure of the graph close to the nonadjacent pair under
consideration. These results have been gathered in Sections 3 and 4, where the
latter one is particularly devoted to closure concepts in claw-free graphs.

2. Degree Conditions

2.1. k-Closure and k-Stability

In [9], Bondy and ChvaÂtal introduced the closure of a graph and the stability of a
property. The k-closure clk�G� of a graph G is obtained from G by recursively
joining pairs of nonadjacent vertices whose degree sum is at least k, until no such
pair remains.

They showed that clk�G� is unique, i.e. it is independent of the order of addition
of the edges. It is clear that any graph G of order n satis®es

G � cl2nÿ3�G�J cl2nÿ4�G�J � � �J cl1�G�J cl0�G� � Kn;

where H JG denotes that H is a spanning subgraph of G.
A property P de®ned on all graphs of order n is said to be k-stable if for any

graph of order n that does not satisfy P, the fact that uv is not an edge of G and
that G � uv satis®es P implies dG�u� � dG�v� < k. Vice versa, if uv B E�G�, dG�u� �
dG�v�V k and G � uv has property P, then G itself has property P. Every property
is �2nÿ 3�-stable and every k-stable property is �k � 1�-stable. We denote by s�P�
the smallest integer k such that P is k-stable and call it the stability of P. This
number usually depends on n and is at most 2nÿ 3.

The most well-known application of this closure method is the property
``hamiltonicity'' (cf. Theorem 1.1 in the introduction). The basic idea behind it can
be described as follows. Suppose that a Hamilton cycle C in G � uv contains the
edge uv and that the vertices of C are labeled u � v1; v2; . . . ; vn � v according to
their cyclic ordering around C. Since dG�u� � dG�v�V n, there exists an integer i
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with 2U iU nÿ2 such that uvi�1; vvi AE�G�. Now C 0 � v1vi�1vi�2 . . . vnviviÿ1 . . . v1

is a Hamilton cycle in G. The transformation from C in G � uv to C 0 in G using
the edges uvi�1 and vvi is referred to as a standard transformation, sometimes called
crossing.

Bondy and ChvaÂtal showed in [9] that clk�G� can be constructed in polynomial
time O�n4�. In [76], Szwarc®ter presented an algorithm that computes clk�G� in
time O�n3�. Another algorithm that computes clk�G� in time O�n3� is due to
Khuller [50]. Parallel algorithms for the computation of clk�G� can be found in
[71]. The computational (parallel) complexity for the computation of clk�G� has
been resolved by Monti [57].

Moreover, Bondy and ChvaÂtal showed that if cln�G� is complete, then any
Hamilton cycle in Kn can be transformed into a Hamilton cycle in G in polynomial
time O�n3�.

It was shown in [26] that clk�G� can only be complete if jE�G�jV
�k � 2�2

8

$ %
� f �k�. Moreover, for all n and k with 0U k U 2nÿ 3 they con-

structed a graph G with f �k� edges and a complete k-closure.

2.2. Closure Extensions for Hamiltonicity

Several extensions of the closure concept for hamiltonicity have been established.
Preserving uniqueness, the following two concepts are of major importance.

2.2.1. The 0-Dual Closure

In [2], Ainouche and Christo®des introduced the concept of the 0-dual closure of a
graph.

Theorem 2.1 [2]. Let u and v be two nonadjacent vertices of a 2-connected graph

G, let T :� fw A V�G�nfu; vgju; v B N�w�g, t :� jT j, luv :� jN�u�VN�v�j, and let

d T
1 U d T

2 U � � � U d T
t be the degree sequence of the vertices of T (in G). If

d T
i V t� 2 for all i with max�1; luv ÿ 1�U i U t; �1�

then G is hamiltonian if and only if G � uv is hamiltonian.

In [2], the corresponding (unique) closure of G is called the 0-dual closure and
denoted by C �0 �G�. Since Theorem 2.1 is more general than Theorem 1.1, G J
cln�G�JC �0 �G�.

Corollary 2.2 [2]. Let G be a 2-connected graph. If C �0 �G� is complete, then G is

hamiltonian.

In [18], it was observed that (1) can be restated in terms of degree sums of
independent triples.

Proposition 2.3 [18]. Statement (1) is equivalent to

d�u� � d�v� � d�w�V n� luv for at least min�t; t�2ÿluv� vertices w A T : �2�
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A slightly weaker condition than the one of Theorem 2.1 was obtained by Zhu,
Tian and Deng [79].

2.2.2. The Triple Closure

In [18], Broersma and Schiermeyer introduced the concept of the triple closure of a
graph.

First we introduce some additional notation. For a vertex w A T , we let h�w� �
jN�w�nT j, and we let h1 V h2 V � � �V ht denote the ordered sequence correspond-
ing to the set fh�w� jw A Tg. We say that G satis®es the 1-2-3-condition if T �h
or hi V 4ÿ i for all i with 1U i U t (Note that tV 1 implies h1 V 3, tV 2 implies
h2 V 2; and tV 3 implies h3 V 1).

Theorem 2.4 [18]. Let u and v be two nonadjacent vertices of a 2-connected graph G
of order n. If luv V 3 and

jN�u�UN�v�UN�w�jV nÿ luv for at least t� 2ÿ luv vertices w A T ; �3�

or if luv U 2 and G satis®es the 1-2-3-condition and

jN�u�UN�v�UN�w�j � nÿ 3 for all vertices w A T ; �4�

then G is hamiltonian if and only if G � uv is hamiltonian.

Successively joining pairs of nonadjacent vertices u and v satisfying the con-
ditions of Theorem 2.4 as long as this is possible (in the new graphs) a unique
graph is obtained from G. In [18] this graph is called the triple closure of G and
denoted by TC�G�.

Moreover, in [18] it is shown that G J cln�G�JTC�G� for any graph G.
Let p; q; r be three integers such that p; q; rV 3 and p� q� r � n. Let Gpqr

denote the graph on n vertices obtained from three disjoint complete graphs H1 �
Kp, H2�Kq and H3�Kr by adding the edges of two triangles between two disjoint
triples of vertices, each containing one vertex of each of H1;H2 and H3. Moreover,
let G�pqr denote the graph obtained from Gpqr by adding an edge joining a vertex of
H1 and one of H2, both not incident with edges of the added triangles.

It is easy to check that Gpqr is nonhamiltonian, and that the addition of
any new edge to Gpqr yields a hamiltonian graph. As noted in [18], graphs G�pqr

have a complete triple closure, i.e. TC�G�pqr� � Kp�q�r, while, if p; qV 4, cln�G� �
C �0 �G� � G.

The graphs Gpqr show that we cannot omit the 1-2-3-condition in Theorem 2.4.

2.2.3. Further Closure Concepts

In [35], Faudree et al. de®ned the �nÿ 2�-neighborhood closure of a 2-connected
graph G, denoted by Nnÿ2�G�, as the (unique) graph obtained from G by succes-
sively joining pairs of nonadjacent vertices u and v satisfying jN�u�UN�v�jV nÿ2.
Since for such pairs Tuv �h, it is clear that Nnÿ2�G�JC �0 �G� and Nnÿ2�G�J
TC�G� for any graph G.
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In [1], Ainouche and Christo®des consider the cardinality of a maximum
independent set containing two nonadjacent vertices u; v, which is denoted
by auv.

Theorem 2.5 [1]. Let u; v be two nonadjacent vertices of a 2-connected graph G such

that

auv U luv:

Then G is hamiltonian.

Theorem 2.5 also generalizes Theorem 1.1. However, testing whether a given
pair of nonadjacent vertices u; v satis®es the condition may take exponential time.

Theorem 2.5 has been successfully applied in [27] for establishing a su½cient
condition for hamiltonian graphs.

2.3. Closures of Graph Classes

In this section the closures for several classes of hamiltonian graphs will be deter-
mined. Let

sk :� min
Xk

i�1

d�vi�jfv1; v2; . . . ; vkg is an independent set of vertices in G

( )

if a�G�V k, and sk �y otherwise �k V 2�.
We ®rst state a number of known su½cient degree conditions for hamiltonicity.

Theorem 2.6 (Dirac, 1952) [28]. Let G be a graph of order nV 3 with s1�G� �
d�G�V n=2. Then G is hamiltonian.

Theorem 2.7 (Ore, 1960) [60]. Let G be a graph of order nV 3 with s2�G�V n.
Then G is hamiltonian.

Let d1 U d2 U � � � U dn denote the degree sequence of a graph G on n vertices.

Theorem 2.8 (PoÂsa, 1962) [62]. If dk > k for 1U k U �nÿ 1�=2 and d�n�1�=2 V
�n� 1�=2, if n is odd, then G is hamiltonian.

Theorem 2.9 (Bondy, 1969) [8]. If dj � dk V n for all pairs j; k with j < k, dj U j,
dk U k ÿ 1, then G is hamiltonian.

Theorem 2.10 (ChvaÂtal, 1972) [24]. If dnÿk V nÿ k for all k with dk U k < n=2,
then G is hamiltonian.

Theorem 2.11 (Las Vergnas, 1972) [53]. If there exists a labeling v1; v2; . . . ; vn of the

vertices such that j < k, k V nÿ j, vjvk B E�G�, d�vj�U j, and d�vkÿ1�U k ÿ 1
implies d�vj� � d�vk�V n, then G is hamiltonian.
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Each of the above theorems is more general than its preceding one. Moreover,
all hamiltonian graphs detected by these six theorems have a complete n-closure
cln�G� (cf. [54]).

The following two theorems extend Theorem 2.10.

Theorem 2.12 (Zhu and Tian, 1983) [78]. Let G be a graph of order nV 3 and de-

note by S�m� and S��m� the sets of all vertices of degree m or Vm, respectively. If

each i with di U i < n=2 satis®es one of the following three conditions

(i) dnÿi V nÿ i,
(ii) dnÿi � nÿ i ÿ 1, dnÿi�1 V nÿ i and there exists an integer r, 1U rU i,

such that di�r < nÿ i ÿ r and
Pr

j�1�r� 1ÿ j��jS�nÿ j�j � jS�nÿ i ÿ j�j�VPr
j�1 di�j � 1,

(iii) dnÿi � dnÿi�1 � nÿ i ÿ 1, and there exists an integer r, 1U rU i, such
that di�r < nÿ i ÿ r, di�j V i � j �1U jUr� and

Pr
j�1�r� 1ÿ j��jS�nÿ j�j �

jS�nÿ i ÿ j�j�V Pr
j�1 di�j � r�i ÿ jS��nÿ i�j� � 1,

then cln�G� is complete (and hence G is hamiltonian).

For two disjoint graphs G and H, let G �H denote the union of G and H, and
let G4H denote the join of G and H obtained from G �H by joining all vertices
of G to all vertices of H.

Theorem 2.13 (Dirac, 1973) [29]. Let G be a graph of order nV 3 with the following

properties:

(i) d1 V 2,
(ii) for each integer with 2U iU n=2ÿ 1, di U i implies dnÿi�1 V nÿ i,
(iii) d�n�7�=2 V �n� 1�=2,
(iv) G B G, where G denotes the class of graphs with nV 5 such that either

G JKj4�Knÿ2j � jK1�; with 2U j U n=2ÿ 1;

or n is odd and

G JK�nÿ1�=24��n� 1�=2�K1;

or

G JK�nÿ3�=24�2K2 � ��nÿ 5�=2�K1�;
or

G JK�nÿ5�=24�2K3 � ��nÿ 7�=2�K1� for nV 7:

Then G is hamiltonian.

For these graphs Broersma [16] has determined their n-closures.

Theorem 2.14 [16]. Let G be a graph of order nV 3 satisfying the hypothesis of
Theorem 2.13. Then either cln�G� is complete or cln�G� A fC5gUG1 UG2, where

Closure Concepts: A Survey 23



G1 � fKrÿ14�i1P1�i2P2� j rV 3; n�2r�1; i1; i2 V 0; i1�2i2�r�2; i1�i2Urÿ1g;

G2 �
(

Krÿ24
Xr�3

k�1

ikPk �
Xr�3

k�3

jkCk

 !����� rV 3; n � 2r� 1; ik V 0 for

1U k U r� 3; j V 0 for 3U k U r� 3;
Xr�3

k�1

kik �
Xr�3

k�3

k jk � r� 3;

Xr�3

k�1

ik �
Xr�3

k�3

jk U rÿ 2; i1 �
Xr�3

k�2

2ik U rÿ 2

)
:

Theorem 2.7 was extended as follows by several mathematicians. The next two
results are due to Hayes and Schmeichel [44] and Schiermeyer [73], respectively.

A graph G is 1-tough if the number of components of G ÿ S is at most jSj for
every cut set S HV�G�.

Theorem 2.15 [44]. Let G be a 1-tough graph of order nV 3 with s2�G�V nÿ 2.
Then G is hamiltonian.

Theorem 2.16 [73]. Let G be a graph of order nV 3 satisfying the hypothesis of
Theorem 2.15. Then C �0 �G� is complete.

In [74], SkupienÂ has determined the n-closures of all nonhamiltonian graphs G

satisfying s2�G�V nÿ 3. Jung [49] proved that all 1-tough graphs with s2 V nÿ 4
and nV 11 are hamiltonian.

Faudree et al. [36] proved the following su½cient condition for hamiltonian
graphs based on neighborhood unions.

Theorem 2.17 [36]. Let G be a 2-connected graph of order nV 3. If jN�u�UN�v�jV
�2nÿ 1�=3 for all pairs of nonadjacent vertices u; v A V�G�, then G is hamiltonian.

Computing the 0-dual closure Schiermeyer [73] obtained the following result
with a slight improvement.

Theorem 2.18 [73]. Let G be a 2-connected graph of order nV 3. If jN�u�UN�v�jV
�2nÿ 2�=3 for all pairs of nonadjacent vertices u; v A V�G�, then C �0 �G� is complete.

The following result using both degree sums and connectivity is due to Bauer
et al. [4].

Theorem 2.19 [4]. Let G be a 2-connected graph of order n with s3 V n� k. Then G

is hamiltonian.

Schiermeyer [73] established the following more general result.

Theorem 2.20 [73]. Let G be a graph of order nV 3 satisfying the hypothesis of

Theorem 2.19. Then C �0 is complete.
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2.4. The Complete Closure

Closure Theory (so far) is based on the fact that if the property P is k-stable and
if clk�G� satis®es P, then G itself satis®es P. But it is not always easier to check a
property P in clk�G� than in G, and since the complete graph Kn has a lot of in-
teresting properties, this theory is often used in a weaker form, by proving that
clk�G� is complete. This led Faudree et al. [31] to introduce the complete closure of
a graph and the complete stability of a property of graphs. In the sequel we give a
sketch of a proof for the result on the property ``pancyclicity''.

The complete closure number cc�G� of a graph G of order n is the largest integer
k U 2nÿ3 such that clk�G��Kn. For example, cc�Kn��2nÿ3, cc�Knÿe��2nÿ4,
cc�Kn� � 0, and cc�G� � 2d if G is d-regular.

The complete stability cs�P� of a property P de®ned on all graphs of order n

and satis®ed by Kn is the smallest integer k such that any graph G satis®es P if
clk�G� is complete. This number usually depends on n and satis®es cs�P�U s�P�.

For the properties that are related to the existence of cycles, paths, or cliques
in G, Faudree et al. (cf. [31]) generally obtained better (that is smaller) values for
cs�P� than for s�P�.

2.5. Graph Properties

In this section we shortly list the stability and complete stability for several graph
properties. We will also give limit examples, i.e. examples that show the sharpness
of the results (if known) and state some conjectures and open problems.

2.5.1. ``G Contains a Cycle Ck''

Theorem 2.21 (Bondy and ChvaÂtal) [9]. The property P: ``G contains a cycle Ck''
satis®es s�P� � 2nÿk for 5U k U n if k is odd and s�P� � 2nÿkÿ1 for 4U k U n

if k is even.

For k � n we obtain Theorem 1.1.
Moreover, it was observed by several mathematicians (cf., e.g., [15]) that the

property P: ``G has circumference k'' satis®es s�P� � n also for k < n. This was
improved by Zhu, Tian and Deng [79] as follows.

Theorem 2.22 [79]. Let p � 2nÿ k ÿ d�u� ÿ d�v� and T 0 � fw A T jd�w�V n� tÿ
k �maxf2; pgg with t 0 � jT 0j. If d�u� � d�v�V 2nÿ k ÿ t 0, then G contains a cycle

Ck if G � uv contains a cycle Ck.

Theorem 2.23 (Faudree et al.) [31]. For every integer r between 1 and bn=2c ÿ 1, the

property P: ``G contains a cycle C2r�1'' satis®es cs�P� � n� 1 if n is even and nU
cs�P�U n� 1 if n is odd.

Limit example for n even: K�n=2�; �n=2�.

Theorem 2.24 [69]. When n is odd the property P: ``G contains a cycle Ck'' satis®es

cs�P�U n for each integer k between 3 and �n� 13�=5.
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This improves the previous bound of �n� 19�=13 given in [32].

2.5.2. ``G is k-Hamiltonian or k-Edge-Hamiltonian''

A graph G is called k-hamiltonian or k-edge-hamiltonian if the deletion of at
most k vertices or pairwise disjoint edges from G results in a hamiltonian graph,
respectively.

Theorem 2.25 (Bondy and ChvaÂtal) [9]. The property P: ``G is k-hamiltonian or

k-edge-hamiltonian'' satis®es s�P� � n� k.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.26 [79]. Let k; n be positive integers with k U nÿ 3. Let p � n� kÿ
d�u� ÿ d�v� and T 0 �fw AT j d�w�Vt�k�maxf2; pgg. If d�u� � d�v�Vn� k ÿ t 0,
then G is k-hamiltonian or k-edge-hamiltonian if G � uv is k-hamiltonian or k-edge-
hamiltonian, respectively.

Theorem 2.27 (Faudree et al.) [31]. The property P: ``G is k-hamiltonian or k-edge-

hamiltonian'' satis®es cs�P� � n� k.

Limit example: Kk�1 � �Knÿkÿ2 UK1�.

2.5.3. ``G Contains Two Edge-Disjoint Hamilton Cycles''

Theorem 2.28 (Faudree et al.) [31]. The property P: ``G contains two edge-disjoint

Hamilton cycles'' satis®es n� 2U cs�P�U n� 4.

2.5.4. ``G Contains a Cycle with Vertex v''

In [63] it was observed that the proof of Theorem 2.21 remains valid if we
prescribe an arbitrary vertex v to be contained in the k-cycle. They proved the
next two results.

Theorem 2.29 [63]. The property P: ``G contains a cycle Ck with vertex v'' satis®es

s�P� � 2nÿ k for 5U k U n and s�P� � 2nÿ k ÿ 1 for 4U k < n if k is even.

Theorem 2.30 [63]. Let c > 0 and cnV 6
1

c

� �
ÿ 2. If cl�1�c�n�G� is complete, then

every vertex is contained in a cycle Ck for 6
1

c

� �
ÿ 1U k U n.

2.5.5. ``G Contains a Cycle with Edge e''

In [63] it was observed that the proof of Theorem 2.21 remains valid also if we
prescribe an arbitrary edge e to be contained in the k-cycle.

Theorem 2.31 [63]. The property P: ``G contains a cycle Ck with edge e'' is

�2nÿ k � 1�-stable for 5U k U n.
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2.5.6. ``Pancyclicity''

From Theorem 2.21 we conclude that the property P: ``G is pancyclic'' is �2nÿ 3�-
stable. Recently, Saito and Schiermeyer [67] have shown that 5

6 nÿ 1U s�P�U
3
2 nÿ 2.

Theorem 2.32 (Faudree et al.) [31]. The property P: ``G is pancyclic'' satis®es

cs�P� � n� 1 if n is even and nU cs�P�U n� 1 if n is odd.

A sketch of a proof for this result is as follows.
Suppose that G is not complete. By Theorem 2.25 G ÿ v has a Hamilton cycle

C for every vertex v A V�G�. Since cln�1�G� is complete, G has maximum degree
D�G�V �n� 1�=2. Let u A V�G� be a vertex with d�u� � �n� 1�=2. Suppose there
is no cycle of length k for some 3U k U nÿ 1, then u has no two neighbors on C

at distance k ÿ 1. A counting argument now implies that d�u�U �nÿ1�=2, a con-
tradiction.

Conjecture 2.33 (Schelten and Schiermeyer) [68]. The property P: ``G is pancyclic''
satis®es cs�P� � n if n is odd.

2.5.7. ``Vertex-Pancyclicity''

From Theorem 2.29 we conclude that ``vertex-pancyclicity'' is �2nÿ 3�-stable.
However, it is still open whether this is best possible.

Theorem 2.34 (Randerath et al.) [63]. The property P ``G is vertex-pancyclic''

satis®es cs�P� � 4nÿ 3

3

� �
.

2.5.8. ``Edge-Pancyclicity''

From Theorem 2.31 we conclude that ``edge-pancyclicity'' is �2nÿ 3�-stable.
However, it is still open whether this is best possible.

Theorem 2.35 (Randerath et al.) [63]. The property P ``G is edge-pancyclic'' satis®es

cs�P� � 3nÿ 3

2

� �
.

Corollary 2.36 [63]. If clk�G� is complete for some k V
3nÿ 3

2

� �
, then every pair of

vertices u; v A V�G� is connected by a path of length p for 2U pU nÿ 1, i.e. G is

panconnected.

2.5.9. ``G is Cycle Extendable''

A cycle C in a graph G is extendable (in G) if there exists a cycle C 0 in G such
that V�C�HV�C 0� and jV�C 0�j � jV�C�j � 1. A graph is cycle extendable if G

contains at least one cycle and every nonhamiltonian cycle in G is extendable.
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Theorem 2.37 (Hendry) [45]. The property P: ``G is cycle extendable'' satis®es

s�P� � 2nÿ 4.

Theorem 2.38 (Randerath et al.) [63]. The property P: ``G is cycle extendable''
satis®es cs�P� � 3

2 nÿ 2.

2.5.10. ``G is Fully Cycle Extendable''

A graph G is fully cycle extendable if G is cycle extendable and every vertex of G

lies on a triangle of G. From Theorem 2.34 we obtain the following corollary.

Corollary 2.39 [63]. The property P: ``G is fully cycle extendable'' satis®es cs�P� �
3
2 nÿ 2.

2.5.11. ``G Contains a Path Pk''

Theorem 2.40 (Bondy and ChvaÂtal) [9]. The property P: ``G contains a path Pk''
satis®es s�P� � nÿ 1 for 4U k U n.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.41 [79]. Let p � nÿ 1ÿ d�u� ÿ d�v� and T 0 � fw A T jd�w�V t�
�nÿ k ÿ 1� �maxf2; pgg. If d�u� � d�v�V nÿ 1ÿ t 0, then G contains a path Pk

if G � uv contains a path Pk.

Theorem 2.42 (Faudree et al.) [31]. The property P: ``G contains a P4'' satis®es��������������
8n� 9
p ÿ 3U cs�P�U ����������������

8n� 26
p ÿ 3.

2.5.12. ``G is k-Hamilton-Connected''

A graph G is called k-Hamilton-connected if the deletion of at most k vertices from
G results in a Hamilton-connected graph (i.e. every pair of vertices in the resulting
graph is connected by a Hamilton path).

Theorem 2.43 (Bondy and ChvaÂtal) [9]. The property P: ``G is k-Hamilton-

connected '' satis®es s�P� � n� k � 1.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.44 [79]. Let k; n be positive integers with k U nÿ 4 and T 0 � fw A T j
d�w�V nÿ 3g. If d�u� � d�v�V n� k � 1ÿ t 0, then G is k-Hamilton-connected if

G � uv is k-Hamilton-connected.

Theorem 2.45 (Faudree et al.) [31]. The property P: ``G is k-Hamilton-connected ''
satis®es cs�P� � n� k � 1.

Limit example: Kk�2 � �Knÿkÿ3 UK1�.
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2.5.13. ``G is k-leaf-connected''

A graph G is k-leaf-connected if k < n and given any subset S of V�G� with jSj�k,
G has a spanning tree F such that the set S is the set of endvertices (leafs) of F.
Thus a graph is 2-leaf-connected if and only if it is Hamilton-connected. This
generalization is due to Murty.

Theorem 2.46 (Gurgel and Wakabayashi) [39]. The property P: ``G is k-leaf-

connected'' satis®es s�P� � n� k ÿ 1.

Limit example: Kk � �Kb�nÿk�=2c UKb�nÿk�1�=2c�.

2.5.14. ``G Contains a K2;k �2U k U nÿ 2�''

Theorem 2.47 (Bondy and ChvaÂtal) [9]. The property P: ``G contains a
K2;k �2U k U nÿ 2�'' satis®es s�P� � n� k ÿ 2.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.48 [79]. If d�u� � d�v�V n� k ÿ 2ÿ t, then G contains K2;k if G � uv
contains K2;k.

This was further improved by Schiermeyer [72].

Theorem 2.49 [72]. Let m � maxfluv; fluw; lvwjw A Tgg. If mV k, then G contains

K2;k if G � uv contains K2;k.

Theorem 2.50 (Faudree et al.) [31]. The property P: ``G contains a K2;k'' satis®es��������������
8n� 9
p ÿ 4U cs�P�U ��������������������

8�k ÿ 1�np
.

2.5.15. ``G Contains a kK2 �2k U n�''

Theorem 2.51 (Bondy and ChvaÂtal) [9]. The property P: ``G contains a kK2 �2kUn�''
satis®es s�P� � 2k ÿ 1.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.52 [79]. Let R 0 � fw A T jd�w�V 2k ÿ 1g. If d�u� � d�v�V 2k ÿ 1ÿ
jR 0j, then G contains kK2 if G � uv contains kK2.

This was further improved by Schiermeyer [72].

Theorem 2.53 [72]. If k ÿ luv U
nÿ 1

2
and d�u� � d�v� � d�w�V 2k ÿ 1� luvw for

at least 2k � t� 1ÿ nÿ luv vertices w A T , where luvw :� jN�u�VN�v�VN�w�j,
then G contains kK2 if G � uv contains kK2.

Theorem 2.54 (Faudree et al.) [31]. The property P: ``G contains a kK2'' satis®es

cs�P� � 2k ÿ 1.

Closure Concepts: A Survey 29



Limit example: Kkÿ1 � Knÿk�1.

2.5.16. ``G is k-Factor-Critical''

For a nonnegative integer k, a graph G is said to be k-factor-critical if, for any set
S HV�G� with jSj � k, the graph G ÿ S has a perfect matching (or, equivalently,
every induced subgraph of order nÿ k of G has a perfect matching).

The next two theorems are due to Plummer and Saito [61].

Theorem 2.55 [61]. The property P: ``G is k-factor-critical'' satis®es s�P�Un�kÿ1.

Theorem 2.56 [61]. Let G be a p-connected graph. If jN�u�UN�v�jV nÿ p� k ÿ 1,
then G is k-factor critical if G � uv is k-factor-critical.

2.5.17. ``G is k-Matching-Extendable''

For an integer k, 0U k U jV�G�j=2, a graph G of even order is k-matching-

extendable if G has a matching of size k and every matching of size k can be
extended to (i.e. is a subgraph of ) a perfect matching of G. Note that 0-matching-
extendable is equivalent to having a perfect matching and, clearly, every 2p-factor-
critical graph is p-matching-extendable.

The next two theorems are due to Plummer and Saito [61].

Theorem 2.57 [61]. The property P: ``G is k-matching-extendable'' satis®es s�P�U
n� 2k ÿ 1.

Theorem 2.58 [61]. Let G be a p-connected graph. If jN�u�UN�v�jVnÿ p�2kÿ1,
then G is k-matching-extendable if G � uv is k-matching-extendable.

2.5.18. ``G Contains a k-Factor �2U k U n�''

Theorem 2.59 (Bondy and ChvaÂtal) [9]. The property P: ``G contains a k-factor

(kn even)'' satis®es s�P� � n� 2k ÿ 4.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.60 [79]. Let n; k be positive integers with 2U k < n. Let T 0 � fw A T j
d�w�Vt�3kÿ4g. If d�u� � d�v�V n� 2k ÿ 4ÿ t 0, then G has a k-factor if G � uv

has a k-factor.

Theorem 2.61 (Faudree et al.) [31]. The property P: ``G contains a k-factor

(2U k U nÿ 1, kn even)'' satis®es n� k ÿ 2U cs�P�U n� 2k ÿ 4.

This was improved by Niessen [58].

Theorem 2.62 [58]. The property P: ``G contains a k-factor (1U k U nÿ 1, kn

even)'' satis®es cs�P� � n� k ÿ 2 for 1U k U 3 and n� k ÿ 2U cs�P�U n� k ÿ 1
for k V 4.
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Niessen [58] conjectures that cs�P� � n� k ÿ 2 also holds for k V 4.

2.5.19. ``G is k-Connected or k-Edge-Connected''

Theorem 2.63 (Bondy and ChvaÂtal) [9]. The property P: ``G is k-connected or

k-edge-connected'' satis®es s�P� � n� k ÿ 2.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.64 [79]. If k U nÿ 2 and d�u� � d�v�V n� k ÿ 2ÿ t, then G is

k-connected or k-edge-connected if G � uv is k-connected or k-edge-connected,
respectively.

This was further improved by Schiermeyer [72].

Theorem 2.65 [72]. Let k U nÿ 2. If luv � tV k or if luv < k and luv ÿ luvw �
minfluw; lvwgV k for at least k ÿ luv vertices w A T , then G is k-connected or

k-edge-connected if G � uv is k-connected or k-edge-connected, respectively.

Theorem 2.66 (Faudree et al.) [31]. The property P: ``G is k-connected or k-edge-

connected '' satis®es cs�P� � n� k ÿ 2.

Limit example: Kkÿ1 � �Knÿk UK1�.

2.5.20. ``a�G�U k''

Theorem 2.67 (Bondy and ChvaÂtal) [9]. The property P: ``a�G�U k'' satis®es s�P� �
2nÿ 2k ÿ 1.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.68 [79]. Let R 0 � fw A T jd�w�V nÿ kg. If d�u� � d�v�V 2nÿ 2k ÿ
1ÿ jR 0j, then a�G�U k if a�G � uv�U k.

This was further improved by Schiermeyer [72].

Theorem 2.69 [72]. If jN�u�UN�v�UN�w�jV nÿk for at least nÿkÿjN�u�UN�v�j
vertices w A T , then a�G�U k if a�G � uv�U k.

Theorem 2.70 (Faudree et al.) [31]. The property P: ``a�G�U k'' satis®es cs�P� �
2nÿ 2k ÿ 1.

Limit example: Knÿkÿ1 � Kk�1.

2.5.21. ``m�G�U k''

The smallest number of pairwise disjoint paths covering all the vertices of a graph
G is denoted by m�G�.
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Theorem 2.71 (Bondy and ChvaÂtal) [9]. The property P: ``m�G�U k'' satis®es s�P� �
nÿ k.

This was improved by Zhu, Tian and Deng [79].

Theorem 2.72 [79]. Let p � nÿ k ÿ d�u� ÿ d�v� and T 0 � fw A T j d�w�V
tÿ k �maxf2; pgg. If d�u� � d�v�V nÿ k ÿ t 0, then m�G�U k if m�G � uv�U k.

This was further improved by Schiermeyer [72].

Theorem 2.73 [72]. If d�u��d�v��d�w�Vnÿk�luv for at least minft; t�2ÿluvÿkg
vertices w A T , then m�G�U k if m�G � uv�U k.

Theorem 2.74 (Faudree et al.) [31]. The property P: ``m�G�U k'' satis®es cs�P� �
nÿ k.

Limit example: Knÿk UKk.

2.5.22. ``G Contains a Clique Kt''

The stability of this property was not known so far. However, the graph 2K1 �
�Ktÿ2 UKnÿt� shows that s�P� � 2nÿ 3.

Theorem 2.75. The property P: ``G contains a clique Kt'' satis®es s�P� � 2nÿ 3.

Theorem 2.76 (Faudree et al.) [31]. The property P: ``G contains a clique Kt'' sat-

is®es cs�P� � 2b��tÿ 2�=�tÿ 1��nc � 1.

2.5.23. ``G Contains Every Tree on k Vertices''

Theorem 2.77 (Faudree et al.) [31]. The property P: ``G contains every tree on k

vertices'' satis®es
������������������k ÿ 2�np

=
���
2
p

U cs�P�U 2
��������������������
2�k ÿ 2�np

.

2.6. Miscellaneous

Amar et al. [3] have studied closure properties for balanced bipartite graphs, i.e.
bipartite graphs whose partite sets have equal size. They introduced the k-biclosure
of a balanced bipartite graph with color classes A and B as the graph obtained
from G by recursively joining pairs of nonadjacent vertices respectively taken in A

and B whose degree sum is at least k, until no such pair remains. A property P

de®ned on all balanced bipartite graphs of order 2n is k-bistable if whenever
G � ab has property P and dG�a� � dG�b�V k, then G itself has property P. For
several properties P in balanced bipartite graphs they have determined the bist-
ability of P.

MoÈhring [56] has introduced a closure concept for asteroidal triple-free graphs.
Brandt [11], [13] has invented a closure for triangle-free graphs turning them

into maximal triangle-free graphs. If the minimum degree of a graph is at least
n=3, then its closure is unique and the independence number as well as the length
of a longest cycle are stable.
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Very recently, Stacho [75] has derived a new closure theorems for some graph
properties related to cycles, which generalize the corresponding results of Bondy
and ChvaÂtal [9].

In several proofs for a su½cient condition for hamiltonian graphs a closure
operation has been applied, e.g., in [4] and in [27].

In [41], Hanson de®nes a closure operation for the class of domination critical
graphs.

3. Structural Conditions

In the previous section we have seen a large number of closure results based on
degree conditions and neighborhood conditions involving bounds related to the
number of vertices of the graph or of certain subsets of the vertex set of the graph.
These results all involve what we call global parameters of the graph, e.g., the
number of vertices of the graph or the cardinality of a maximum independent set
containing a special pair of vertices.

In this section we focus on closure results based on more local conditions
concerning the extended neighborhood structure and certain subgraphs. One
advantage of such conditions compared to the global ones is that the associated
closure results can also be applied to graphs that are not necessarily very dense. A
disadvantage is that we often lose the nice property of uniqueness of the closure.
The special cases of these structural conditions for claw-free graphs are postponed
to the next section.

3.1. Local Closures

In an attempt to ®nd closure results which are also applicable to large classes
of graphs with few edges (linear to the number of vertices) and large diameter,
Hasratian and Khachatrian [42], [43] introduced a number of closure concepts
based on conditions concerning the extended neighborhood structure. Recall that,
for a positive integer k and a vertex u of G, N k�u� and M k�u� denote the sets
of all vertices v A V�G� with distance d�u; v� � k and d�u; v�U k from u in G, re-
spectively. The subgraph of G induced by M k�u� is denoted by Gk�u�.

The main part of [42] deals with su½cient degree conditions for hamiltonicity
involving the above extended neighborhood sets. At the end of [42] the authors
observe the following: if G � uv is hamiltonian, where u and v are two vertices of G

with d�u; v� � 2, then G has a Hamilton path v1v2 . . . vn with u � v1 and v � vn.
Let N�u� � fvi1 ; . . . ; vitg. If G is not hamiltonian, then, using the standard trans-
formation, it is clear that vvij�1 B E for every j with 1U j U t, hence dG2�u��v� <
jM 2�u�j ÿ d�u�. This proves the following local closure result.

Theorem 3.1 [42]. Let u and v be two vertices of G such that d�u; v� � 2
and d�u� � dG2�u��v�V jM 2�u�j. Then G is hamiltonian if and only if G � uv is

hamiltonian.

In [43] the authors use similar observations to prove the following.
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Theorem 3.2 [43]. Let u and v be two vertices of G such that d�u; v� � 2
and d�u� � d�v�V jM 2�u�j � jN 3�u�VN�v�j. Then G is hamiltonian if and only if
G � uv is hamiltonian.

Both results have the following consequence.

Corollary 3.3. Let u and v be two vertices of G such that d�u; v� � 2 and d�u� �
d�v�V jM 3�u�j. Then G is hamiltonian if and only if G � uv is hamiltonian.

Based on these results the authors de®ned several closures. Each of these
closures need not be unique, but they all contain the Bondy-ChvaÂtal n-closure
cln�G� as a spanning subgraph, and G is hamiltonian if and only if the closure of G

is hamiltonian. It is shown that for every nV 6 there exists a graph G with
jEj � 2nÿ 3 such that the closure based on Theorem 3.2 is a complete graph.
Since the transformation used in the proof of Theorem 3.2 is exactly the same as in
the Bondy-ChvaÂtal closure result, all remarks on algorithmic aspects and com-
plexity pertain to this local closure concept.

In [43] the authors give similar results for other graph properties. We omit the
details. In [42] they give su½cient conditions for hamiltonicity based on extended
neighborhood structures. We note here that, in contrast to the situation for the
classic degree conditions, the su½cient conditions do not imply that the associated
closures are complete.

3.2. Subgraph Closures

Broersma [17] gave the ®rst closure result based on a condition involving the
neighborhood structure of a subgraph on four vertices. He called a pair of vertices
of a graph G a K4-pair if they are the two nonadjacent vertices of an induced
subgraph of G isomorphic to K4 minus an edge, and the other pair of vertices its
copair. If G contains a Hamilton path v1v2 . . . vn between two vertices u � v1 and
v � vn of a K4-pair, and if its copair fx; yg satis®es N�x�UN�y�JN�u�UN�v�,
then it is not di½cult to show that G contains a Hamilton cycle: Assume without
loss of generality that x � vi and y � vj for some i and j with 2U i < j U nÿ 1. If
i � j ÿ 1, then a Hamilton cycle is immediate from the same transformation as in
the Bondy-ChvaÂtal n-closure. By similar arguments, vi�1 B N�u� and vjÿ1 B N�v�.
Hence i < j ÿ 2, vi�1 A N�v�, and vjÿ1 A N�u�. But now v1vjÿ1vjÿ2 . . . vi�1vnvnÿ1 . . .
vjviviÿ1 . . . v1 is a Hamilton cycle in G. This proves the following main result in
[17].

Theorem 3.4 [17]. Let fu; vg be a K4-pair of G with copair fx; yg such that

N�x�UN�y�JN�u�UN�v�. Then G is hamiltonian if and only if G � uv is

hamiltonian.

Based on Theorem 3.4, in [17] a graph H is called a K4-closure of G if H can
be obtained from G by recursively joining K4-pairs satisfying the condition of
Theorem 3.4, and if H contains no such pairs. As noted in [17] a graph can have
di¨erent K4-closures, but obtaining a K4-closure of G can be helpful to answer the
question whether G is hamiltonian, for instance, if Kn is a K4-closure of G. We
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note here that the Bondy-ChvaÂtal n-closure cln�G� of G need not be contained in
some K4-closure of G.

Theorem 3.5 [17]. Let G be a graph on nV 3 vertices. If Kn is a K4-closure of G,
then G is hamiltonian.

In [17] examples show that Theorem 3.5 can be useful in checking hamil-
tonicity or obtaining Hamilton cycles (in polynomial time) in cases where coun-
terparts of Theorem 3.5 based on degree conditions or neighborhood conditions
are not useful. Other examples in [17] show that Theorem 3.5 can be used to verify
hamiltonicity of graphs with small maximum degree and large diameter, and also
of graphs with many vertices of degree two.

Motivated by these results, and adopting ideas from [70], Broersma and
Schiermeyer [19] obtained several results on local structure conditions similar to
the above condition on K4-pairs. We list their results here without proofs which
are all similar to the given proof of Theorem 3.4, and we omit the counterparts of
Theorem 3.5.

Theorem 3.6 [19]. Let fx; y; u; vg be a subset of four vertices of V such that uv B E

and x; y A N�u�. If N�x�UN�y�JN�v�U fug, then G is hamiltonian if and only if

G � uv is hamiltonian.

Theorem 3.7 [19]. Let fx; y; u; vg be a subset of four vertices of V such that uv B E,
x A N�u�VN�v�, and y A N�u�. If N�y�JN�v�U fug and N�x�JN�y�U fvg, then

G is hamiltonian if and only if G � uv is hamiltonian.

Theorem 3.8 [19]. Let fx; y; u; vg be a subset of four vertices of V such that uv B E

and x A N�u�. If N�y�JN�v�U fug and N�x�JN�y�U fvg, then G is hamiltonian

if and only if G � uv is hamiltonian.

Theorem 3.9 [19]. Let fx; y; u; vg be a subset of four vertices of V such that uv B E

and xy A E. If N�x�JN�u�U fvg and N�y�JN�v�U fug, then G is hamiltonian if

and only if G � uv is hamiltonian.

Examples given in [19] show that the conditions in Theorems 3.4, 3.6, 3.7, 3.8,
3.9 are sharp in the following sense. For each of the conditions one can ®nd a
nonhamiltonian graph G containing four vertices fu; v; x; yg with uv B E such that
G � uv is hamiltonian and such that precisely one vertex of G violates the con-
ditions whereas the other conditions are satis®ed.

Clearly, for a given subset fu; v; x; yg of V�G� each of the conditions in
Theorems 3.4, 3.6, 3.7, 3.8, 3.9 can be checked in polynomial time. Thus, as in
[9], these results all lead to algorithms which construct a closure based on these
conditions in polynomial time. Moreover, one easily checks from the transforma-
tions used in the proofs, that a Hamilton cycle in a closure based on these con-
ditions can be transformed into a Hamilton cycle of G in polynomial time.

In the previous section we saw that all graphs satisfying one of the classic de-
gree conditions have a complete Bondy-ChvaÂtal n-closure. The situation is di¨-
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erent for the conditions of Theorems 3.4, 3.6, 3.7, 3.8, 3.9. In [19] an example is
given of a graph G in which all K4-pairs satisfy the conditions of Theorem 3.4, but
for which the K4-closure need not be complete. Similar remarks can be made for
the conditions of Theorems 3.6, 3.7, 3.8, 3.9. However, in [19] su½ciency coun-
terparts of most of these results are proved directly. We omit the details.

One motivation for de®ning and studying the notion of K4-pairs and K4-
closures in [17] was that in claw-free graphs, i.e. graphs that do not contain K1;3

as an induced subgraph, K4-pairs trivially satisfy the condition of Theorem 3.4. Of
course adding edges to a claw-free graph might give rise to an induced K1;3. In
fact, it was shown in [17] that adding edges one by one to a claw-free graph sat-
isfying the conditions of Theorem 3.4 can indeed yield an induced K1;3. However,
this can be avoided if one adopts the method established by RyjaÂcÏek [64], which
will be described in the next section. Motivated by the above phenomena
Broersma and Trommel [20] introduced a variation on the K4-closure based on the
following result.

Theorem 3.10 [20]. Let G � �V ;E� be a graph and let fx; y; u; vg be a subset of four

vertices of V such that uv B E and fx; ygJN�u�VN�v�. If N�x�JN�u�UN�v� and

N�y�nN�x� induces a complete graph (or is empty), then for every cycle C 0 of G � uv

there exists a cycle C of G such that V�C 0�JV�C�.
Remark that x and y can be nonadjacent in Theorem 3.10, and the graph G

need not be claw-free. Note, however, that if G is a claw-free graph, then the
conditions of Theorem 3.10 are always satis®ed if x and y are adjacent.

Based on Theorem 3.10, a graph H is called a K �4 -closure of a graph G if H can
be obtained from G by iteratively joining pairs fu; vg satisfying the conditions in
Theorem 3.10 for some fx; ygJN�u�VN�v�, and if H contains no such pairs.
Similar to the situation for the K4-closure, a graph can have di¨erent K �4 -closures.
If G has a unique K�4 -closure, then we denote it by K�4 �G�. Examples in [20] show
that there exists a graph G1 such that K4�G1� � G1 and K �4 �G1� � G1 � uv for two
nonadjacent vertices u and v of G1, as well as a graph G2 such that K �4 �G2� � G2

and K4�G2� � G2 � uv for two nonadjacent vertices u and v of G2.
As an obvious consequence of Theorem 3.10, we obtain the following result.

Corollary 3.11. For any graph G and any K �4 -closure H of G, c�H� � c�G�.
It was shown in [20] that for every claw-free graph G, the claw-free closure of

G (See Section 4) is contained in some K �4 -closure of G.
A similar, but di¨erent closure concept was obtained in [20] by combining the

condition on K4-pairs of Theorem 3.4 with the following condition on subgraphs
isomorphic to K5 minus an edge.

Theorem 3.12 [20]. Let G � �V ;E� be a graph and let fx; y1; y2; u; vg be a subset of

®ve vertices of V such that G�fx; y1; y2; u; vg� � K5 ÿ uv. If

(i) N�x�JN�u�UN�v�,
(ii) N�yi�JN�u�UN�v�UN�y3ÿi� �i � 1; 2�, and
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(iii) N�yi�nN�x� induces a complete graph (or is an empty set) �i � 1; 2�, then for

every cycle C 0 of G � uv there exists a cycle C of G such that V�C 0�JV�C�.
Based on Theorem 3.12, a graph H is called a K5-closure of a graph G if H can

be obtained from G by iteratively joining pairs fu; vg satisfying the condition in
Theorem 3.12 for some fx; y1; y2g such that G�fx; y1; y2; u; vg� � K5 ÿ uv, and if
H contains no such pairs. Clearly, we get the following analogue of Corollary
3.11.

Corollary 3.13. For any graph G and any K5-closure H of G, c�H� � c�G�.
Note that in a claw-free graph G the conditions (1), (2) and (3) of Theorem

3.12 are satis®ed for any fx; y1; y2; u; vgJV�G� with G�fx; y1; y2; u; vg��K5 ÿ uv.
In [20] it is shown how the claw-free closure (See Section 4) of a claw-free graph G

can be obtained from G using a combination of the K4-closure and K5-closure.

4. Claw-Free Graphs

In this section we present a closure concept for the class of claw-free graphs, that
was recently introduced by RyjaÂcÏek [64]. Some of the features of this concept
are slightly di¨erent from those presented in the previous chapters. Namely, the
claw-free closure in its original form typically adds more edges in one step of the
construction. The resulting graph is uniquely determined and it can be shown that
the closure operation turns a claw-free graph into a line graph of a triangle-free
graph, preserving a number of cycle and path properties. This fact makes this
concept a powerful tool for improving many known results on claw-free graphs.
These applications are listed in Subsection 4.2. Since the concept is based on a
condition of a local character, it is applicable also to graphs that are not very
dense.

4.1. De®nition and Basic Properties

A graph G is claw-free if G does not contain an induced subgraph isomorphic to
the complete bipartite graph K1;3 (referred to as a claw). For additional informa-
tion on results on claw-free graphs we refer the reader to the survey paper [33].

For a vertex x of a graph G the subgraph of G induced by the set of neighbors
NG�x� of x is called the neighborhood of x (in G). We say that x is locally connected

if its neighborhood is a connected graph. A locally connected vertex with a non-
complete neighborhood is called eligible and the graph G 0x, obtained from G by
adding to the neighborhood of an eligible vertex x all missing edges, (i.e. such that
NG 0x�x� induces in G 0x a complete graph), is called the local completion of G at x.
The basic observation for the next closure concept is given in the following state-
ment (in which we denote by c�G� the circumference of G).

Proposition 4.1 [64]. Let G be a claw-free graph and let x be an eligible vertex of G.
Let N 0x � fuvju; v A NG�x�; uv B E�G�g and let G 0x be the graph with vertex set
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V�G 0x� � V�G� and with edge set E�G 0x� � E�G�UN 0x. Then

(i) the graph G 0x is claw-free,
(ii) c�G 0x� � c�G�.

It is not di½cult to show that a graph which is obtained from a claw-free graph
G by recursively performing the local completion operation as long as there is at
least one eligible vertex, is uniquely determined and is again claw-free. This graph
is called the (claw-free) closure of G and is denoted by clc�G�.

Since clc�G� is claw-free and has no eligible vertices, clc�G� is the line graph of
a triangle-free graph. We thus have the following theorem.

Theorem 4.2 [64]. Let G be a claw-free graph. Then

(i) clc�G� is well-de®ned (i.e., uniquely determined by G),
(ii) there is a triangle-free graph H such that clc�G� is the line graph of H,
(iii) c�clc�G�� � c�G�,
(iv) G is hamiltonian if and only if clc�G� is hamiltonian.

If G � clc�G�, then we say that the graph G is closed (thus, G is closed if and
only if G is the line graph of a triangle-free graph). As mentioned in [64], clc�G�
can be equivalently characterized as the smallest claw-free and �K4 ÿ e�-free graph
containing the graph G as a spanning subgraph. It is thus natural to ask whether
the closure clc�G� can be obtained by performing some of the closure operations
presented in Section 3 under some additional conditions concerning the strategy of
adding edges (due to the fact that these closures are not unique).

As shown in [17], the graph G, obtained from a cycle C6 with vertices x1; . . . ;
x6 by adding three edges x2x4, x2x6, x4x6, is claw-free and clc�G� is complete,
while its K4-closure is isomorphic to K6 ÿ E�K3�. On the other hand, for the
concepts of a K �4 -closure and a K5-closure (see Section 3), it was shown in [20]
that, for any claw-free graph G, clc�G� can be obtained both as a spanning sub-
graph of some K �4 -closure as well as by an appropriate combination of the K4- and
K5-closure operations. Moreover, as pointed out in Section 3, the K �4 -, K4- and K5-
closures are applicable also for graphs containing claws. The drawback of this
larger generality is the loss of the property of uniqueness (which, together with the
fact that clc�G� is a line graph of a triangle-free graph, makes clc a powerful tool in
applications).

As an example of an immediate application of the closure operation we can
mention here the following result. Zhan [77] and independently Jackson [48]
proved that every 7-connected line graph is hamiltonian. Thus, if there is a 7-
connected nonhamiltonian claw-free graph G, then clc�G� is a 7-connected (since
the connectivity cannot decrease by adding edges) nonhamiltonian line graph,
which is impossible. We thus have the following result.

Theorem 4.3 [64]. Every 7-connected claw-free graph is hamiltonian.

More general results were obtained by Li [55] and Fan [30] (in [55], Theorem
4.3 is extended to 6-connected graphs with at most 33 vertices of degree 6). Further
applications will be shown in Subsections 4.2.1 and 4.2.2.
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In the terminology of Section 2.1, parts (iii), (iv) of Theorem 4.2 can be
equivalently stated to read that the value of c�G� and the property of being
hamiltonian are stable under clc.

The following theorem summarizes known results concerning the stability of
other graph properties with respect to the closure operation. We denote here by
p�G� the length of a longest path in G.

Theorem 4.4 [14], [46], [65]. Let G be a claw-free graph. Then

(i) [14] p�clc�G�� � p�G�,
(ii) [14] G is traceable if and only if clc�G� is traceable,
(iii) [65] G can be covered by k cycles if and only if clc�G� can be covered by k

cycles,
(iv) [65] G has a 2-factor with at most k components if and only if clc�G� has a

2-factor with at most k components,
(v) [46] G can be covered by k paths if and only if clc�G� can be covered by k paths,
(vi) [46] G has a path-factor with k components if and only if clc�G� has a path-

factor with k components.

On the other hand, it was shown in [14] that the properties of (vertex)
pancyclicity and (full) cycle extendability are not stable (even under the additional
assumption of arbitrarily high connectivity).

Theorem 4.5 [14]. Let k V 2 be an arbitrary integer. Then

(i) there is a k-connected claw-free graph G such that G is not pancyclic, but clc�G�
is vertex pancyclic;

(ii) there is a k-connected claw-free graph G such that G is not cycle extendable, but

clc�G� is fully cycle extendable.

Niessen [59] gave examples showing that the property to have a k-factor is not
stable for k � 4; 6 and k V 8.

By Theorem 4.5(i), there are many nonpancyclic claw-free graphs with a pan-
cyclic closure. This fact motivates a natural question: how many cycle lengths
can be missing in a claw-free graph with a pancyclic (or, speci®cally, complete)
closure? In [66], it has been proved that every claw-free graph with a complete
closure has a cycle of length nÿ 1, and the following conjecture was stated.

Conjecture 4.6 [66]. Let G be a claw-free graph of order n whose closure is
complete and let c1 and c2 be ®xed constants. Then for su½ciently large n, the graph

G contains cycles Ci for all i, with 3U i U c1 and nÿ c2 U i U n.

A graph G is said to be homogeneously traceable if each of its vertices is an
endvertex of some Hamilton path in G. Obviously, every homogeneously traceable
graph is 2-connected.

Consider the graph G1 in Figure 1 (where the circular parts represent complete
graphs of appropriate order).
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Then G1 is 2-connected and has no Hamilton path with endvertex x, but it is easy
to check that clc�G1� is homogeneously traceable. On the other hand, by Theorem
4.3, homogeneous traceability is trivially stable in the class of 7-connected
claw-free graphs.

The graph G2 in Figure 1 has no Hamilton path joining the vertices x, y, and
clc�G� is complete (and hence Hamilton-connected). It should be noted that G2 has
connectivity 2, while Hamilton-connectedness implies connectivity at least 3;
however, no such 3-connected example is known.

Brandt [12] introduced the following extension of the claw-free closure. For
any set S HV�G� of vertices of a claw-free graph denote by clc�G;S� the super-
graph of G obtained by successively adding missing edges (one edge at a step) to
those induced �K4 ÿ e�'s, both vertices of degree 3 of which are outside S. It was
shown in [12] that (i) clc�G;S� is uniquely determined by G and by S HV�G�, (ii)
for any a; b A V�G�, the length of a longest �a; b�-path remains unchanged in
clc�G; fa; bg�, (iii) all induced claws in clc�G; fa; bg� are centered in fa; bg. From
these facts Brandt obtained the following result.

Theorem 4.7 [12]. Every 9-connected claw-free graph is Hamilton-connected.

This result motivates the following question.

Problem 4.8.

(i) Determine the smallest positive integer k1 such that, for every k1-connected

claw-free graph G, the graph G is homogeneously traceable if and only if clc�G�
is homogeneously traceable.

(ii) Determine the smallest positive integer k2 such that, for every k2-connected

claw-free graph G, the graph G is Hamilton-connected if and only if clc�G� is

Hamilton-connected.

From Theorems 4.3 and 4.7 and by the previous examples, we know that 3U
k1 U 7 and 3U k2 U 9.

Another approach to the question of stability of homogeneous traceability and
Hamilton-connectedness was used in [7]. A vertex x A V�G� is locally k-connected

�k V 1�, if N�x� induces a k-connected graph. A locally k-connected vertex with a
noncomplete neighborhood is said to be k-eligible. The (claw-free) k-closure of a
claw-free graph G is the graph clck�G�, obtained from G by recursively performing
the local completion operation at k-eligible vertices, as long as there is at least one
k-eligible vertex. The following results were proved in [7].

Fig. 1
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Theorem 4.9 [7]. Let G be a claw-free graph. Then

(i) clck�G� is unique for any k V 1,
(ii) G is homogeneously traceable if and only if clc2�G� is homogeneously traceable,
(iii) G is Hamilton-connected if and only if clc3�G� is Hamilton-connected.

A graph G is �2; k�-factor-critical if, for every set X HV�G� with jX j � k, the
graph G ÿ X has a 2-factor. Ishizuka [47] and Plummer and Saito [61] proved the
following results.

Theorem 4.10 [47], [61]. Let G be a claw-free graph and k V 1 an integer. Then

(i) [61] G is k-factor-critical if and only if clck�G� is k-factor-critical,
(ii) [47] G is �2; k�-factor-critical if and only if clck�1�G� is �2; k�-factor-critical.

Concerning k-matching-extendability, it is shown in [61] that if clc2k�G� is
k-matching-extendable, then so is G, but, surprisingly, the converse does not hold
for k V 0.

4.2. Applications

4.2.1. Forbidden Subgraph Conditions for Hamiltonicity

If H1; . . . ;Hk are graphs, then a graph G is said to be �H1; . . . ;Hk�-free, if G does
not contain an induced subgraph isomorphic to any of the graphs H1; . . . ;Hk. The
graphs H1; . . . ;Hk are referred to as forbidden induced subgraphs. Graphs that will
be used as forbidden induced subgraphs are listed in Figure 2. We will further
denote by C a claw, by T a triangle and by Pk a path on k vertices.

Bedrossian [5] characterized all pairs of connected forbidden subgraphs X ;Y
such that every 2-connected �X ;Y �-free graph is hamiltonian.

Theorem 4.11 [5]. Let X and Y be connected graphs with X, Y 0P3, and let G be

a 2-connected graph that is not a cycle. Then, G being �X ;Y�-free implies G is

hamiltonian if and only if (up to symmetry) X � C and Y � P4;P5;P6;C3;Z1;Z2,
B1;1;B1;2 or N1;1;1.

Fig. 2
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Following [21], we denote by P the class of all graphs that are obtained by
taking two vertex-disjoint triangles with vertex sets fa1; a2; a3g; fb1; b2; b3g and by

joining every pair of vertices fai; big by a path Pki
� aic

1
i c2

i . . . ckiÿ2
i bi for some

ki V 3 or by a triangle with vertex set fai; bi; cig. We denote a graph from P by
Px1;x2;x3

, where xi � ki if ai; bi are joined by a Pki
, and xi � T , if ai; bi are joined by

a triangle (see Figure 3).
Observing that PT ;T ;T and P3;T ;T are the only two 2-connected non-

hamiltonian CZ3-free graphs, Faudree and Gould [34] added the graph Z3 to
the list of Theorem 4.11, under the additional assumption that nV 10.

A class C of graphs such that clc�G� A C for every G A C is called a stable class.
Clearly, the class of �C;A�-free graphs is trivially stable if A is not claw-free or if A

is not closed. The following theorem characterizes all connected closed claw-free
graphs A for which the �C;A�-free class is stable.

Theorem 4.12 [23]. Let A be a closed connected claw-free graph. Then G being
�C;A�-free implies clc�G� is �C;A�-free if and only if

A A fH; TgU fPij i V 3gU fZij iV 1gU fNi; j;kj i; j; k V 1g:
Brousek [21] proved that every 2-connected nonhamiltonian claw-free graph

contains an induced subgraph from the class P. Using this result, Theorem 4.12
and the special structural properties of closed claw-free graphs, it is possible to
prove the following results, extending the ``if '' part of Theorem 4.11. The classes
of graphs that occur in Theorem 4.13 as classes of nonhamiltonian exceptions, are
shown in Figure 4 (where the elliptical parts represent cliques of appropriate
order). It should be noted here that, for the sake of brevity, some of the excep-
tional classes are merged to a larger one here and, in these cases, a bit more can

Fig. 3

Fig. 4
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be said about their structure. Interested readers can ®nd more information in the
respective papers [22], [23].

Theorem 4.13 [22], [23].

(i) [22] If G is a 2-connected �C;P7�-free graph, then either G is hamiltonian or
clc�G� A Fk

1 for some k V 1.
(ii) [22] If G is a 2-connected �C;Z4�-free graph, then either G is hamiltonian, or

G A fP3;T ;T ;P3;3;T ;P3;3;3;P4;T ;Tg, or clc�G� A Fk
1 for some k V 1.

(iii) [22] If G is a 2-connected �C;N1;2;2;N1;1;3�-free graph, then either G is hamil-

tonian, or G FP3;3;3, or clc�G� A F1
1 UF3 UF4.

(iv) [22] If G is a 2-connected �C;N1;1;2�-free graph, then either G is hamiltonian or

G A F1
1 .

(v) [23] If G is a 2-connected �C;H;P8�-free graph, then either G is hamiltonian or

clc�G� A Fk
2 for some k V 1.

(vi) [23] If G is a 2-connected �C;H;Z5�-free graph, then either G is hamiltonian,

or G FP4;3;3, or clc�G� A Fk
2 for some k V 1.

(vii) [23] If G is a 2-connected CHN1;1;4-free graph, then either G is hamiltonian or

clc�G� A F1
2 UF5.

Note that all the nonhamiltonian exceptions in Theorem 4.13 have connectivity
2 and thus, in each of the classes of Theorem 4.13, 3-connectedness implies
hamiltonicity.

4.2.2. Degree Conditions for Hamiltonicity

Using the structural properties of closed claw-free graphs, it is possible to prove
that a nonhamiltonian closed claw-free graph with large degrees can be covered
by relatively few cliques. This fact was observed by Favaron, Flandrin, Li and
RyjaÂcÏek [37] and stated as follows (where we denote by y�G� the clique covering
number of G).

Theorem 4.14 [37]. Let k V 4 be an integer and let G be a 2-connected claw-free

graph with jV�G�j � n such that nV 3k2 ÿ 4k ÿ 7, d�G�V 3k ÿ 4 and

sk�G� > n� k2 ÿ 4k � 7:

Then either y�clc�G��U k ÿ 1 or G is hamiltonian.

Speci®cally, Theorem 4.14 implies that, for any integer k V 4, the closure
of every nonhamiltonian claw-free graph G with nV 3k2 ÿ k ÿ 4 and d�G� >
n� �k ÿ 2�2

k
can be covered by at most k ÿ 1 cliques. This implies that for proving

a minimum degree condition for hamiltonicity of type d�G� > n

k
� c for any given

k V 4, it is enough to list all nonhamiltonian closed claw-free graphs with
y�G�U k ÿ 1.

A characterization of closed nonhamiltonian claw-free graphs with small clique
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covering number can be achieved by using the correspondence between the graphs
and their line graph preimages. Namely, the following was proved for yU 5 in [37]
and independently by Kuipers and Veldman in [52]. The classes F6; . . . ;F10 are
shown in Figure 5 (where the elliptical parts represent again cliques of appropriate
order).

Theorem 4.15 [37], [52]. Let G be a 2-connected closed claw-free graph.

(i) If y�G�U 2, then G is hamiltonian.
(ii) If 3U y�G�U 5, then either G is hamiltonian or G is a spanning subgraph of a

graph from �6 2
i�1 F

i
1 �U �6 10

i�6 Fi�.
Combining Theorem 4.14 (for k � 6) and Theorem 4.15, we now obtain the

following result.

Corollary 4.16 [37]. Let G be a 2-connected claw-free graph with nV 77 vertices

such that d�G�V 14 and s6�G� > n� 19: Then either G is hamiltonian or G is a

spanning subgraph of a graph from �6 2
i�1 F

i
1 �U �6 10

i�6 Fi�.
Similarly as in Theorem 4.13, all the nonhamiltonian exceptional graphs

have connectivity 2 and hence, under the assumptions of Corollary 4.16, 3-
connectedness implies hamiltonicity.

The search for the exception classes was continued in [51] for y�G� � 6; 7 with
the help of a cluster of parallel computers. In this way, the following results were
obtained (for the lists of exceptions see [51]).

k Assumptions Number of exception classes

7 nV 112, d�G�V 17, s7�G� > n� 28 42
8 nV 153, d�G�V 20, s8�G� > n� 39 318

In 3-connected claw-free graphs, Favaron and Fraisse [38] recently proved
(using closure techniques) that every 3-connected claw-free graph with d�G�V
n� 38

10
is hamiltonian.

Kuipers and Veldman [52] further exploited the fact that the basic idea of
®nding the exceptional classes of Figure 5 yields a general method for listing these
classes for any ®xed upper bound on y�G�. This was a starting point for the proof
of the following result. Consider the following two problems.

HAM�c�
Instance: A graph G with d�G�V cn.
Question: Is G hamiltonian?

HAMCL�c�
Instance: A claw-free graph G with d�G�V cn.
Question: Is G hamiltonian?
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HaÈggkvist [40] proved that HAM�12ÿ e� is NP-complete for any ®xed e > 0
(while HAM�12� is trivial by Dirac's theorem). In claw-free graphs, hamiltonicity is
known to be NP-complete [6]. In contrast to these results, the result by Kuipers
and Veldman [52] says that HAMCL�c� is polynomial for any c > 0.

Theorem 4.17 [52]. HAMCL�c� is solvable in polynomial time for any constant

c > 0.
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