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We propose a new method for the performance evaluation of Open Queueing Networks
with a Population Constraint (represented by a set of tokens). The method is based on
the application of Approximate Mean Value Analysis (AMVA) algorithms. We present
procedures for single class networks and for multiple class networks, subject to either a
common constraint (shared tokens) or to class-based constraints (dedicated tokens). In fact,
the new method is a unified framework into which all procedures for the different types of
networks fit. We show how the new method relates to well-known methods and present
some numerical results to indicate its accuracy.

1. Introduction

We consider the performance evaluation of Open Queueing Networks with a
Population Constraint (OQNs-PC). In a single job class OQN-PC the total number
of jobs in service or waiting for service at the set of service stations is never larger
than the maximum number N . The set of service stations constitute the inner system.
Jobs that arrive when the inner system is full are forced to wait outside in an external
queue. Once a job is inside the inner system, it follows its Markovian routing until
it has completed its final operation. Upon the departure of a job, the job in the first
position of the external queue, if any, is allowed to enter the inner system. Due to the
presence of the external queue, the OQN-PC fundamentally differs from a loss system,
in which arriving jobs that find the network full are lost.

The population constraint of the inner system can be represented by a set of
tokens. To be allowed in the inner system a job must first get a token. The job keeps
the token during its stay in the inner system and releases it upon departure.

An obvious generalization of the single class OQN-PC is the multiclass OQN-
PC. For the multiclass OQNs-PC, we distinguish three cases. Either each job class
has a dedicated population constraint represented by a set of class-specific tokens, or
the classes have a common population constraint represented by a set of tokens that
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are shared by the classes, or a combination occurs in which population constraints are
dedicated to disjoint subsets of classes.

The OQN-PC can be used for the performance evaluation of manufacturing sys-
tems. Consider, for example, a Flexible Manufacturing System (FMS) in which jobs
need to be clamped on a pallet while they are processed at the work stations. The
work stations are then modeled by the service stations and the pallets are modeled by
the tokens. FMSs are often modeled by Closed Queueing Networks (CQNs). A CQN
model assumes that all pallets are always occupied and that whenever a part is un-
loaded a new part can always be loaded. Thus, using CQN models one may estimate
the maximum number of parts that can be produced per time unit by the FMS (the
maximum throughput). The OQN-PC model allows one to estimate the mean manu-
facturing lead time of a part, including the time it waits for a pallet, and to estimate
the mean amount of work in process, including the parts waiting for a pallet. If the
tokens are just a representation of the population constraint, the OQN-PC can be used
to model manufacturing systems in which workload control is applied. This workload
control aims at keeping the amount of work in process in the manufacturing system
below a certain level. For pull systems, this control is referred to as the CONWIP
control; see Spearman et al. [18].

The behavior of the single class OQN-PC with exponential servers and a Pois-
son arrival process is described by a Markov process with the states (nE ,~n) =
(nE ,n1, . . . ,nM ), where nE denotes the number of jobs in the external queue,
M denotes the number of service stations and nm the number of jobs at station
m, m = 1, . . . ,M . Furthermore, nE = 0 if

∑M
j=1 nj < N . It can be easily seen

that this Markov process is a Quasi Birth and Death (QBD) process: there can only
be transitions from a state (nE ,n1, . . . ,nM ) to states with the number in the external
queue equal to nE − 1, nE or nE + 1. Unfortunately, the stationary distribution of
the Markov process does not possess a product-form solution. However, the Markov
process can be solved by numerical methods. One may use the matrix-geometric ap-
proach (see [14]) or aggregation–disaggregation techniques (see [17,19]), if the number
of work stations M and the number of tokens N are not too large. For larger val-
ues of M and N , approximate solution procedures have been developed to obtain the
desired performance measures.

A well-known approximate solution procedure for the OQN-PC with general
servers is the aggregation method as already proposed by Avi-Itzhak and Heyman [1]
in 1972. They considered an inner system with a special structure modeling a computer
system. Buzacott and Shanthikumar [7] allowed a more general inner system and
suggested to use this method for the performance evaluation of FMSs. This method
basically considers the aggregated Markov process with states n = nE + nI , where
nI = n1 + · · · + nM 6 N. The aggregated process is a birth and death process. Its
upcrossing rates are all equal to the external arrival rate and for each state n > 1,
the downcrossing rate is estimated by the throughput of the CQN with population
nI = min(n,N ) that is constructed from the OQN-PC by properly redirecting the
external departures. If there are non-exponential servers, approximate Mean Value
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Analysis algorithms can be used to estimate the required throughput. Generalizations
of the aggregation method to networks with multiple job classes and shared tokens are
described in [6]. The direct generalization for the case with dedicated tokens yields
a multidimensional random walk that is difficult to solve. Brandwajn [3], Lazowska
and Zahorjan [12], and Thomasian and Bay [20] propose generalizations that involve
extra approximations to keep the computational effort tractable.

Another approximation method for the single class OQN-PC with general servers
is the method of Dallery [11], which has been proposed in 1990. This method is based
on the idea that the OQN-PC is equivalent to a CQN if the roles of the jobs and the
tokens are interchanged. The equivalent CQN has a population equal to the number of
tokens and consists of the same stations as the OQN-PC plus an extra station modeling
the external queue. The extra station is called a synchronization station, because there
the jobs and the tokens synchronize. This CQN is then analyzed by an extension of
the method of Marie (see [13]) as follows. The synchronization station and all non-
exponential server stations are, in an iterative procedure, replaced by load-dependent
exponential servers. The resulting product-form CQN is solved to obtain the internal
queue lengths. The number of jobs in the external queue is approximated from a birth
and death process with states denoting the number of jobs minus the number of tokens
present at the synchronization station. The upcrossing rates of the birth and death
process are equal to the external arrival rate of the jobs and the downcrossing rates are
equal to the state-dependent arrival rate of the tokens as obtained by Marie’s method.
The method of Dallery and the aggregation method yield identical results if the inner
system of the OQN-PC consists of only exponential servers. In that case, the birth and
death processes as obtained by the two methods are identical. A generalization for the
multiclass OQN-PC with dedicated tokens is described in Perros et al. [15], albeit that
they restrict themselves to networks with a BCMP-type inner system. Another way to
generalize the method of Dallery for multiclass networks is by the method as described
by Baynat and Dallery [2]. Baynat and Dallery propose an extension of the method of
Marie for very general multiclass closed queueing networks. Their method not only
allows general service times, but also some versions of state-dependent routing, fork
and join mechanisms and so-called synchronizations. When applied to the OQN-PC,
an extra approximation is applied compared to the method of Dallery, to deal with the
presence of multiple job classes. This extra approximation concerns the decomposition
of an R-class network into R single-class networks. The decomposition allows a quick
evaluation of networks with many classes, but may be expected to be less accurate
than the method as proposed by Perros et al.

In this paper, we propose a third method. This new method is a unified framework
that can be applied to all types of OQNs-PC. In this method, we adopt the interchanging
of the jobs and the tokens as done by Dallery, but we apply Approximate Mean Value
Analysis (AMVA) algorithms to solve the resulting CQN. For each of the different
types of OQNs-PC, the precise procedure that has to be followed is described below
(see sections 2–4). The contributions of this paper are the following. First of all,
the main contribution is that the new method is applicable for all types of OQNs-PC.
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The second contribution is as follows. For single-class OQNs-PC, the new method
appears to be equivalent to the aggregation method. However, since the new method is
formulated in a different way, it provides a new view of the aggregation method, which
clearly shows the relation between the aggregation method and Norton’s theorem and
which allows a better qualitative comparison between the aggregation method and the
method of Dallery. Third, to our knowledge, our description of the method for the
multiclass OQN-PC with general purpose pallets is the first one in the open literature.
Fourth, for the multiclass OQN-PC with dedicated pallets, the new method allows
the analysis of networks with non-exponential service stations, without introducing an
extra approximation as in the method described by Baynat and Dallery.

The paper is organized as follows. In section 2, we present the single-class model
and the new method for this model. Section 3 and section 4 deal with OQNs-PC with
multiple job classes. In section 3, we generalize the new method to the case with
shared tokens, while in section 4, further generalization to the case with dedicated
tokens is presented. Finally, in section 5, we discuss further possible extensions.

2. The single-class open queueing network with a population constraint

2.1. The queueing network

Consider the OQN-PC with a single job class. A schematic representation of the
single-class OQN-PC, with the token representation of the population constraint, is
given in figure 1. The OQN-PC can be decomposed into two subsystems: the external
queue and the inner system. The external queue regulates the capacity constraint of the
network or availability of the tokens. It consists of a queue for the jobs and a queue
for the tokens. The inner system consists of the M service stations, numbered from 1
to M . Each service station may consist of multiple parallel servers. Furthermore, one
may distinguish two flows of entities: the flow of jobs and the flow of the N tokens.
The jobs arrive at the network according to a Poisson process with rate λ. A job
moves through the network according to a Markovian routing, characterized by the
routing matrix P . At service station m a job receives service according to a general

Figure 1. The open queueing network with a population constraint represented by a set of tokens.
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distribution with known first two moments ESm and ES2
m. At each station, the jobs

are served in a first-come first-served order.
The regulation of the population constraint is as follows. If upon arrival a job

finds a token in the external queue, the job and the token synchronize and together
enter the inner system. Otherwise, the job joins the external queue at the back. Upon
an external departure of a job, the token that was synchronized with that job returns to
the external queue. The first in line job in the external queue (if any) now synchronizes
with the token or (if there is no job in the external queue) the token waits until it is
requested by an arriving job. The synchronization of the jobs and the tokens ensures
that the number of jobs in the inner system is never larger than the number of tokens.
In the sequel, we also refer to the external queue as the synchronization station.

2.2. The solution procedure

We propose to solve the single-class OQN-PC with respect to the mean queue
lengths by a procedure that consists of similar steps as in the method of Dallery
[11]. However, we will show that the results of the new method are the same as
those of the original aggregation method. Thus, we provide an alternative view of the
aggregation method that is more in line with the idea of aggregation in CQNs (see
Chandy et al. [9]).

The procedure is given by the following four steps.

1. Transform the OQN-PC into a CQN (consisting of all service stations and the
synchronization station) in which the tokens are seen as the customers. Identify
the synchronization station by the index M + 1. At the synchronization station the
tokens may have to wait for an external resource (the jobs).

2. Replace the synchronization station by a load-dependent exponential server. For
networks with exponential servers, the service rates of the replacing station are
chosen such that the throughput TH(N ) of the resulting CQN, as measured at the
replacing station, equals the external arrival rate λ of the jobs (see below). For
networks with non-exponential servers, the service rates are chosen in a similar
way that is consistent with the choice for networks with exponential servers.

3. Solve the resulting product-form CQN to find the mean number of tokens (and
hence the mean number of jobs) at the service stations. To this aim, use an AMVA
algorithm.

4. Find the mean number of jobs in the external queue by considering the external
queue in isolation and by solving the birth and death process that describes its
behavior.

Steps 2, 3 and 4 require some description in more detail in order for the procedure
to be well-defined. First, notice that step 1 constitutes an exact transformation. No
approximation is introduced by letting the tokens be the customers.
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In step 2, we modify the CQN in a minimal way such that we are able to
solve the resulting network. We set the load-dependent service rates νM+1(n) of the
synchronization station equal to λ for n > 1: if there are tokens at the synchronization
station then the first in line token has to wait for an exponential time with rate λ
until it synchronizes with a job and leaves the station. We set νM+1(1) such that the
throughput TH(N ) of the resulting CQN with N tokens is equal to the external arrival
rate of the jobs λ. Thus, in that sense, the resulting CQN is consistent with the original
OQN-PC.

We first describe the determination of νM+1(1) for networks with exponential
service stations. Consider the CQN in which the synchronization station has been
replaced by a load-dependent exponential server. This network has a product-form
stationary distribution and therefore Norton’s theorem (see Chandy et al. [10]) can be
applied. In this case, Norton’s theorem states that the behavior of the synchroniza-
tion station is described by a birth and death process with states n = 0, 1, . . . ,N ,
(denoting the number of tokens at the station). The downcrossing rates are equal to
the service rates νM+1(n) and the upcrossing rates are given by the throughput values
THCM+1(N − n) of the complement network of the synchronization station, CM+1.
(The complement network Cm of station m is obtained by immediately redirecting
tokens that arrive at station m according to the probabilities P

mm̃
, m̃ 6= m. Thus, the

complement network of station m consists of all stations except station m. The new
route that redirects the jobs is also called the shortcut.) Therefore, for the marginal
probabilities pM+1(0) and pM+1(1) that there are 0 or 1 token(s) at the synchronization
station, respectively, it must hold that

pM+1(0)
pM+1(1)

=
νM+1(1)

THCM+1(N )
. (1)

Furthermore, the number of jobs that arrive at the synchronziation station per time unit
must be equal to the number of jobs (and tokens) that depart from the synchronization
station per time unit:

λ = pM+1(1)νM+1(1) +
[
1− pM+1(0)− pM+1(1)

]
λ, (2)

which can be rewritten as

νM+1(1) = λ

(
1 +

pM+1(0)
pM+1(1)

)
. (3)

Combining equations (1) and (3) yields

νM+1(1) =
1
q
λ, (4)

where q is given by

q = 1− λ

THCM+1 (N )
. (5)
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In the method of Dallery [11] (for which the first two steps are identical to the
first two steps of our method), the same choice is made for the service rates νM+1(n)
of the load-dependent server. However, in [11], the choice for νM+1(1) has been based
on different arguments, from which it does not follow that precisely this choice leads
to the appropriate throughput.

Notice that for an ergodic network, it holds that λ < THCM+1(N ) and therefore
0 < q < 1. Thus, the replacing station serves at rate λ if there are n > 1 tokens
present, and serves faster if there is only one token present.

For a network with only exponential service stations, the throughput THCM+1(N ),
and hence also the q, can be determined exactly, e.g., by a MVA algorithm. If there
are service stations with non-exponential servers, then we propose to approximate
the throughput THCM+1(N ) by an AMVA algorithm and still to set the service rate
νM+1(1) of the synchronization station according to equations (4) and (5), and set
νM+1(n) = λ for n > 1. In other words, we pretend that for this non-product-form
network Norton’s theorem still holds. So, in this case two extra approximations are
involved.

In step 3, we analyze a CQN, which consists of at least one load-dependent
exponential server, and which may further consist of exponential and non-exponential
servers. We propose to solve such networks with an AMVA algorithm, that at least
yields exact results for product-form networks. The algorithm we use for this purpose
combines the algorithm described by Buzacott and Shanthikumar [8, pp. 399–400] and
certain approximations for the M |G|c queue. These algorithms are recursive in the
spirit of the exact MVA algorithm as described by Reiser and Lavenberg [16]. All
AMVA algorithms used for the procedures described in this paper are given in the
appendices. For the details of the algorithm used here, see appendix A.2.

In step 4, we analyze the synchronization station in isolation in order to find
the mean number of jobs present there. This is done by extracting the state n = 0
of the Markov process from which we have obtained the load-dependent service rate
νM+1(1). Consider this new Markov process with the states (nt,nj), where nt denotes
the number of tokens and nj denotes the number of jobs at the synchronization station.
The arrival rate of the jobs is λ and, according to Norton’s theorem, the arrival rate of
the tokens is THCM+1(N − nt). (In conformance with step 3, we pretend that this is
also true if there are non-exponential servers.) Since there can never be jobs and tokens
at the synchronzation station at the same time (they would have been synchronized),
the only feasible states are (nt, 0) for nt = 0, . . . ,N , and (0,nj), for nj > 0. The
Markov process is thus a birth and death process and can be solved by solving the
local balance equations (6) and (7):

λp(nt, 0) = THCM+1(N − nt + 1)p(nt − 1, 0), for nt = 1, . . . ,N , (6)

λp(0,nj) = THCM+1(N )p(0,nj + 1), for nj > 0. (7)
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From equations (6) and (7) we find the probabilies p(0,nj), for nj > 0, and from them
we find the mean number of jobs in the external queue ELext:

ELext =
∞∑

nj=1

njp(0,nj) = p(0, 0)
ρ

(1− ρ)2 ,

where ρ = λ/THCM+1(N ) and p(0, 0) is given by

p(0, 0) =
N∏
k=1

λ

THCM+1(k)
p(N , 0)

with

p(N , 0) =

[
N∑

nt=0

N−nt∏
k=1

λ

THCM+1(k)
+

N∏
k=1

λ

THCM+1(k)
ρ

1− ρ

]−1

.

Summarizing, for networks with only exponential servers, the approximations
made in the procedure described above concern the replacement of the synchronziation
station by a load-dependent exponential server and the analysis of the synchronization
station in isolation. For networks with non-exponential servers the extra approxima-
tions are that we pretend that Norton’s theorem still holds and that we approximate the
throughputs of both the complement network for all n 6 N , and the resulting network
using an AMVA algorithm.

2.3. Relations with other methods

As mentioned in section 1, there are two known methods to approximately evalu-
ate the performance of the OQN-PC: the aggregation method and the method of Dallery.
In this section, we show how these two methods and the new method, described here,
relate.

Consider first the aggregation method, conform the description given by Buzacott
and Shanthikumar [7]. This method proceeds as follows. First, a CQN is constructed
from the inner system by redirecting departing jobs to a station in the inner system
according to the routing probabilities Pm0 · P0m̃ (where Pm0 denotes the probability
that a part leaves the system after its visit to station m and P0m̃ is the probability that
the first operation of a part is at station m̃, respectively). Second, for the populations
n = 1, . . . ,N , the throughput THaggr(n) of this CQN is computed. Third, the OQN-
PC is replaced by an M |M (n)|1 queue, with load-dependent service rates µ(n) =
THaggr(min(n,N )). Finally, the birth and death process describing the behavior of this
queue is solved to obtain the marginal probabilities paggr(n), and from them the mean
total number of jobs at the OQN-PC is computed.

It is easily verified that the CQN constructed by the aggregation method is iden-
tical to the complement network of the synchronization station in the new method. It
then also follows that the birth and death process solved in the aggregation method is
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the same as the birth and death process describing the behavior of the synchronization
station in isolation in the new method. In other words, the aggregation method and the
new method yield the same value for the mean number of jobs in the external queue
and for the mean total queue length. The new method additionally gives the mean
queue length at each service station.

Consider next the method of Dallery. Here, the non-exponential servers are as-
sumed to have service times with a Coxian-2 distribution. The method first transforms
the OQN-PC into a CQN in the same way as described in subsection 2.2 (we adopted
this transformation from Dallery). It then replaces the synchronization station and all
non-exponontial servers by load-dependent exponential servers, conform the method
of Marie [13]. This is implemented by the following iterative procedure that stops
upon the convergence of the load-dependent service rates. First, the load-dependent
service rates are set equal to an initial value. Next, a number of iterations is performed,
where each iteration consists of two steps. In the first step of iteration i the resulting
product-form CQN is analyzed to obtain the state-dependent arrival rates:

λ[i]
m (n) = TH[i]

Cm
(N − n), (8)

where λ[i]
m (n) denotes the state-dependent arrival rate at station m in the network of

iteration i if there are n tokens at station m, and TH[i]
Cm

(N−n) denotes the throughput
of the complement network of station m in the network of iteration i, with population
N − n. In the second step the queues are analyzed in isolation to obtain the new
values of the load-dependent service rates, µ[i+1]

m (n). The non-exponential servers are
analyzed as λ(n)|C2|1|N queues. The synchronization station is analyzed conform the
birth and death process as given in subsection 2.2, with the throughput of the original
complement of the synchronization station THCM+1(N − n) replaced by the current
values of λ[i]

M+1(n). These analyses yield the marginal probabilities pm(n) that there
are n tokens at station m. Finally, the new values of the load-dependent service rates
are found from the following equation:

µ[i+1]
m (n) = λ[i]

m (n− 1)
pm(n− 1)
pm(n)

. (9)

After convergence of the service rates, the mean number of tokens at the service
stations and the mean number of jobs at the synchronization station are computed
using the values of the marginal probabilities found in the last iteration.

In principle, the method of Dallery does not require that the service time have
a Cox-2 distribution. For the analysis in isolation of a queue to be performed us-
ing Markov process properties, it is required, however, that the service times have a
phase-type distribution. Therefore, networks with deterministic service times or close
to deterministic service times cannot be easily solved, unless a different analysis in
isolation can be provided. In our method the deterministic service times are taken care
of automatically in the AMVA algorithm.

For OQNs-PC with only exponential servers, the method of Dallery only needs to
find the replacing load-dependent service rates for the synchronization station. Since
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the complement does not change, the state-dependent arrival rates at the synchroniza-
tion station do not change and no iterations are required. This means that the analysis
of the synchronization station in isolation from which the eventual results are obtained
concerns the same birth and death process as that of our AMVA-based method and the
aggregation method. Thus, in that case, the three methods are equivalent.

If there are non-exponential servers, then it will in general no longer hold that
the eventual state-dependent arrival rates at the synchronization station as obtained by
the method of Dallery equal the throughput values of the original complement of the
synchronization station. In particular, the state-dependent service rates will account
for the service rates at the other stations and thus also for the external arrival rate. In
that case, the method of Dallery yields results that differ from the results generated by
the aggregation method or the new method.

3. The multiclass OQN-PC: shared tokens

In this section, we consider the OQN-PC with multiple job classes that have a
common population constraint. The common population constraint is represented by
one pool of tokens which is shared by the different classes. This queueing network
models an FMS which manufactures multiple part types and which uses general purpose
pallets for the different part types.

The model for this case is described as follows. Denote by R the number of
classes (numbered from 1 to R) and, as before, denote by M the number of machines
(numbered from 1 to M ) and by N the number of tokens. As in the single-class
network, there is one synchronization station, where each job synchronizes with a
token. The synchronization station is identified by the index M + 1. Class r jobs
arrive at the system according to a Poisson process with rate λ(r), r = 1, . . . ,R.
Class r jobs have a Markovian routing that is characterized by the routing matrix
P (r), r = 1, . . . ,R. The service time at station m for class r (if class r visits station m)
has a general distribution with known first two moments ES(r)

m and E(S(r)
m )2. At each

station the jobs are served in a first-come first-served order.
Denote by n(r)

I the number of class r jobs in the inner system. The shared tokens
now arrange that the total number of jobs in the inner system is smaller than or equal
to the total number of tokens:

R∑
r=1

n(r)
I 6 N.

This is also referred to as the common population constraint for the different classes.

3.1. The procedure

We want to generalize the procedure as described in subsection 2.2. The major
modification concerns step 1 of that procedure. In step 1, the OQN-PC with multiple
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job classes and shared tokens is now transformed into a single chain CQN with multiple
classes in which tokens change class at the synchronization station. We describe this
transformation in more detail before we present the procedure for this case.

Denote by λ =
∑R

r=1 λ
(r) the total external arrival rate of the jobs, by λ(r)

m the
arrival rate of class r jobs at station m and by λm =

∑R
r=1 λ

(r)
m the total arrival

rate of jobs at station m, all in the OQN-PC. For each class r, the rates λ(r)
m follow

directly from the routing matrix P (r). Observe that with probability λ(r)/λ an arriving
job is of class r and, with the same probability, the first job at the synchronization
station is of class r. Therefore, in the resulting single chain CQN, a token leaves the
synchronization station as a class r token with probability λ(r)/λ. This, together with
the original routing matrices P (r), identifies the routing matrix P̃ of the single chain
tokens. Element P̃ rsmn of P̃ denotes the probability that a token of class r upon a
service completion at station m moves to station n and there becomes a class s token;
notice that the dimension of P̃ is R(M + 1), while the dimension of P (r) is M + 1.
We find

P̃ rrmn = P (r)
mn, m,n = 1, . . . ,M ,

P̃ rsmn = 0, m,n = 1, . . . ,M , r 6= s,

P̃ rrmM+1 = P (r)
m0, m = 1, . . . ,M ,

P̃ rsM+1m =
λ(s)

λ
P (s)

0m, m = 1, . . . ,M ,

P̃ rsM+1,M+1 = 0.

From the routing matrix P̃ the visit ratios Ṽ (r)
m in the CQN can be computed up to

a normalization constant. The visit ratios can also be easily found from the visit ratios
for the original OQN-PC. Denote by V (r)

m the visit ratio of class r jobs to station m in
the OQN-PC. Then from the routing matrix P (r) we find that

V (r)
m =

λ(r)
m

λ(r) , m = 1, . . . ,M + 1.

If we now choose to normalize the visit ratios for the CQN such that

ṼM+1 =
R∑
r=1

Ṽ (r)
M+1 = 1,

we find that

Ṽ (r)
M+1 =

λ(r)

λ
, r = 1, . . . ,R, and

Ṽ (r)
m = V (r)

m · Ṽ
(r)
M+1 =

λ(r)
m

λ(r)

λ(r)

λ
=
λ(r)
m

λ
, r = 1, . . . ,R, m = 1, . . . ,M.
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Define the visit ratio Ṽm of an arbitrary token to station m as the mean number of
visits to station m between two visits to station M + 1. It holds that

Ṽm =
R∑
r=1

Ṽ (r)
m =

R∑
r=1

λ(r)
m

λ
=
λm
λ

, m = 1, . . . ,M + 1.

Given the visit ratios of an arbitrary token, we can formulate an AMVA algorithm
for a single chain CQN with different classes. This algorithm performs the same
number of iterations as the AMVA algorithm for single-class networks. The algorithm
for this case, however, requires more variables and more iteration steps per iteration.
For example, there is a variable for the lead time of a class r job at each station m
given that there is a total number of n tokens in the network. The resulting AMVA
algorithm is given in appendix A.3.

The resulting procedure for this case is given by the following five steps:

1. Transform the OQN-PC into a single chain multiple class CQN (that includes the
synchronization station).

2. Replace the synchronization station by a load-dependent exponential server. The
service rates only depend on the total number of tokens present. The service rates
of the replacing station are chosen such that the throughput TH(N ) of the CQN is
equal to the total external arrival rate λ of the jobs.

3. Approximately solve the resulting CQN to find the mean number of jobs per class
at the service stations. To this aim, use an AMVA algorithm for CQNs with a single
chain (the aggregate class) and multiple classes (see appendix A.3). This yields the
mean number of jobs per class at each service station.

4. Compute the mean total number of jobs in the external queue (ELext) by considering
the external queue in isolation and solving the birth and death process that describes
its behavior.

5. Compute the mean number of class r jobs in the external queue:

EL(r)
ext =

λ(r)

λ
ELext.

In step 2, we set the load-dependent service rate νM+1(n) equal to λ, for n > 1,
and νM+1(1) in a similar way to equations (4) and (5):

νM+1(1) =
1
q
λ, (10)

where q is given by

q = 1− λ

THCM+1(N )
, (11)

and THCM+1 (N ) denotes the total throughput of the complement network of station
M + 1 with N tokens.
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Remark. For OQNs-PC with multiple classes and shared tokens and only exponential
servers with the same service rate for different classes, the procedure can be somewhat
simplified. In that case, the same results are obtained by solving a single chain CQN
without accounting for the different classes in the equations of the MVA algorithm.
The internal queue lengths per class are then obtained by computing them in the end
according to

EL(r)
m =

λ(r)
m

λm
ELm.

3.2. Relation with other methods

The same transformation as presented here (which transforms a network with
multiple classes into a single chain network with multiple classes) can be applied for
both the aggregation method and the method of Dallery. In [6], we did this for the
aggregation method. The generalization for the method of Dallery is reported in [4].
These generalizations of the three methods relate to each other in the same way as the
methods for the single-class networks.

Although the generalization suggested here is a logical one, it is by no means the
only one to generalize the methods for this situation. In [6], we have presented two
other ways to generalize the aggregation method for networks with multiple classes
and shared tokens.

4. The multiclass OQN-PC: dedicated tokens

In this section, we consider the OQN-PC with multiple job classes with dedicated
population constraints represented by a set of dedicated tokens per class. This models
an FMS which manufactures multiple part types for which the pallets are dedicated to
the part type, for example due to technical conditions.

The model for this case is depicted in figure 2. Denote again by M the number
of machines (which are numbered from 1 to M ) and by R the number of job classes
(which are numbered from 1 to R). For class r there are N (r) dedicated tokens
available. Denote by ~N = (N (1), . . . ,N (R)) the token population. There are now R
synchronization stations; one for each class. The synchronization station for class r
is identified by the index M + r. Class r jobs arrive at their synchronization station
according to a Poisson process with rate λ(r). There they synchronize with a token of
their class. Class r jobs have a Markovian routing that is characterized by the routing
matrix P (r). Upon the external departure of a class r job, the class r token moves to
synchronization station M + r. The service time at station m for class r (if class r
visits station m) has a general distribution with known first two moments ES(r)

m and
E(S(r)

m )2. At each station the jobs are served in a first-come first-served order.
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Figure 2. The multiclass OQN-PC with dedicated tokens.

Denote by n(r)
I the number of class r jobs in the inner system. The dedicated

tokens now arrange that the number of class r jobs in the inner system is smaller than
or equal to the number of class r tokens:

n(r)
I 6 N (r), r = 1, . . . ,R. (12)

Equation (12) represents the population constraint for each class r = 1, . . . ,R.

4.1. The procedure

For this model, two observations should be made. First, notice that each of
the synchronization stations is visited by just one job class; station M + r is visited
by class r only. This allows us to replace the synchronization stations by single-
class load-dependent exponential servers, where the load is given by the number of
class r jobs, and thus to generalize the analysis in isolation for synchronization stations
in a straightforward way. Second, in a network with R > 1 classes, the complement
network of a synchronization station contains R−1 > 0 other synchronization stations.
In this case, we want to set the load-dependent service rates of station M+r according
to a straightforward generalization of equations (4) and (5). We define νM+r(n) = λ(r),
for n > 1, and

νM+r(1) =
1
q(r) λ

(r), (13)

where q(r) is given by

q(r) = 1− λ(r)

TH(r)
CM+r

( ~N )
, (14)

and TH(r)
CM+r

( ~N ) denotes the throughput of class r in the complement network of

station M + r, as measured at the shortcut. The throughput TH(r)
CM+r

( ~N ) depends
on the load-dependent service rates νM+s(n), s 6= r. Thus the service rates of the
different synchronization stations depend on each other and an iterative procedure



R. Buitenhek et al. / AMVA-based solution procedures 29

is required to find them. Since the procedure uses an AMVA algorithm it yields
approximations for the throughput values. Observe however that we can still guarantee
that λ(r) = THM+r( ~N ) (a similar analysis as given for single-class networks can be
done here).

The procedure for this case is given by the following four steps:

1. Transform the OQN-PC into a multiclass CQN (including the R synchronization
stations).

2. Replace the synchronziation stations by load-dependent exponential servers:

(a) Set the load-dependent service rates for stations M+1 to M+R to some initial
value. For example, set vM+r(1) = λ(r); this corresponds to rejecting jobs that
upon their arrival do not find a token of their class in the external queue.

(b) For r = 1, . . . ,R, solve the complement CQN of station M + r, CM+r, by an
AMVA algorithm. This yields the class r throughput of the complement CQN
of station M + r, with population ~N , TH(r)

CM+r
( ~N ).

(c) Reset the load-dependent service rates according to equations (13) and (14).

(d) Repeat step 2(b) and step 2(c) until convergence of the service rates.

3. Solve the resulting CQN with an AMVA algorithm.

4. Compute the number of jobs in each synchronization station by solving the birth
and death process that describes its behavior.

Observe that the procedure for this case is again very similar to the procedure
for the single-class case. The extra difficulty arises mainly in step 2. To replace the
synchronization station by load-dependent exponential servers we need to perform an
iterative (sub)procedure. This of course greatly affects the efficiency of the procedure.

The AMVA algorithm to be applied in step 3 is formulated in appendix A.4. The
algorithm needed in step 2(b) is similar to the algorithm in appendix A.4. Only some
minor modifications are required.

The computation performed in step 4 is basically identical to that of the last step in
the procedure for the single-class case. This is due to the fact that each synchronziation
station is only visited by one class.

4.2. Relation with other methods

The method described in this section follows the lines of the generalization of
the method of Dallery by Perros et al. [15]. Perros et al. demand that the inner system
is of the BCMP-type. Therefore, after the synchronization stations have been replaced
by load-dependent exponential servers, the network has a product-form solution. This
allows them to use any exact method to compute the state-dependent arrival rates at the
stations. If there are only exponential servers with the same rate for different classes



30 R. Buitenhek et al. / AMVA-based solution procedures

(we assumed first-come first-served service discipline at all stations), then the method
of Perros et al. is in fact equivalent to the new method.

If there are exponential servers with different service rates for different classes,
then a further straightforward generalization of the method of Dallery requires the
analysis in isolation of a complex queue. The behavior of such an exponential server
with different rates for different classes is described by a multidimensional random
walk, which cannot be solved efficiently. Therefore, Baynat and Dallery [2] propose
to introduce an extra approximation to avoid these computational complexities. They
decompose a network with R classes into R single-class networks, each of which is
associated to one class. When analyzing a station visited by multiple classes in isola-
tion, the other classes are accounted for when estimating the load-dependent service
rates.

Our new method generalizes the method of Perros et al. by not modifying the
general servers and applying an AMVA algorithm to the complement networks of
the synchronization stations. Our AMVA algorithm can easily deal with single-class
load-dependent servers and multiclass general servers.

To compare the methods extensive numerical experiments are required. We give
a preliminary comparison based on logic. The methods can be compared with respect
to three criteria: accuracy, generality, and complexity. The accuracy of a method
indicates how accurate the results of the method are. The generality indicates how
general the networks to which the method can be applied may be. The complexity
indicates which size of problems the method can deal with. In table 1, we summarize
the comparison of the method of Perros, Dallery and Pujolle (PDP), the method of
Baynat and Dallery (BD) and the new method (MVA) for this case.

The MVA-based method can deal with general networks (the MVA can even be
extended in order to deal with more complicated servers or subsystems). In general,
the approximations may be expected to be more accurate than those of the method
of Baynat and Dallery (because they apply an extra approximate decomposition step),
but the size of the problem which it is able to solve is smaller.

Other generalizations of the aggregation method have also been proposed, see, for
example, [12,20]. However, these have no direct relation with the method presented
here.

Table 1
Three methods for the multiclass OQN-PC

with dedicated tokens compared.

Accuracy Generality Complexity

PDP + − −

BD − + +

MVA + + −
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5. Further extensions and numerical experiments

The procedures proposed in this paper can be extended to deal with multiclass
networks in which tokens are dedicated to subsets of the classes (where the subsets
form a partition of the set of classes). In that case the classes in a subset share one
pool of tokens. Such a network can be “reduced” to a multichain network in which
jobs may change classes and with dedicated pallets per chain. The reduction proceeds
along the lines as described in section 3 for shared tokens.

It is desirable to compare the different methods for the different cases by extensive
numerical experiments. As an illustration of the (potential) accuracy of our new method
we present the results of some numerical experiments (for more numerical experiments,
see [5]). We present results for the case with single classes as a base line and we present
results for the multiclass case with dedicated tokens, because that case constitutes the
most important extension of the single-class case. Results for the multiclass case with
shared tokens may be expected to be of better accuracy than results for the case with
dedicated tokens.

Our experiments are for networks with two single-server stations both with visit
ratio equal to one. These visit ratios are realized by two types of networks: the
pure flow shop and the pure job shop. Because our method is insensitive to routing
probabilities and only depends on the routing through the visit ratios, the results of the
approximation for these two types of networks are identical. The routing of the two
shop types is characterized by the matrices PF and PJ ,

PF =

0 1 0
0 0 1
1 0 0

 and PJ =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 ,

in which the first row and column are numbered 0 and represent the external arrivals and
departures and the second row (and column) and the third row (and column) represent
station 1 and station 2, respectively. For all instances, we present the mean number of
jobs in the external queue ELext, the mean number of jobs in the inner system ELint

and the mean number of jobs in the system ELtot, as obtained by the new method
and as obtained by simulation for the two shop types. In the single-class instances,
the service times at both stations have an exponential distribution with rate µ = 1 and
the jobs arrive according to a Poisson arrival process with rate λ = 0.6. The number
of tokens varies from 2 (the mimimum required to keep the system ergodic) to 10.
The results for these instances are given in table 2. We present two sets of instances
for the multiclass case with dedicated tokens. The first set concerns symmetrical
instances. The second concerns asymmetrical instances. For both sets there are two
classes. The classes in the symmetrical instances have equal arrival rates λ = 0.3,
equal service times at the different stations which have an exponential distribution
with rate µ = 1, and an equal number of tokens, which varies over the instances. The
results for the symmetrical instances are given in table 3. The asymmetrical instances
are characterized by again equal arrival rates for the two classes (λ = 0.3), and an
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Table 2
The mean queue lengths for the single-class case as obtained by simulation for both

shop types and by the solution procedure of subsection 2.2.

N Flow shop Job shop New method

Lext Lint Ltot Lext Lint Ltot Lext Lint Ltot

2 5.807 1.748 7.555 7.701 1.753 9.454 7.477 1.754 9.231
3 1.785 2.127 3.912 2.371 2.144 4.514 2.274 2.147 4.421
4 0.942 2.401 3.343 1.227 2.421 3.649 1.154 2.422 3.577
5 0.549 2.592 3.142 0.706 2.609 3.315 0.663 2.613 3.276
8 0.143 2.889 3.032 0.170 2.892 3.062 0.154 2.889 3.043

10 0.057 2.955 3.013 0.067 2.956 3.023 0.061 2.953 3.014
∞ 0 3 3 0 3 3 0 3 3

Table 3
The mean queue lengths for the multiclass symmetrical case as obtained by simulation

for both shop types and by the solution procedure of subsection 4.1.

(N (1),N (2)) Flow shop Job shop New method

L(r)
ext L(r)

int L(r)
tot L(r)

ext L(r)
int L(r)

tot L(r)
ext L(r)

int L(r)
tot

(1,1) 3.682 0.847 4.529 5.101 0.847 5.948 4.241 0.835 5.076
(2,2) 0.642 1.135 1.777 0.855 1.146 2.001 0.697 1.123 1.820
(3,3) 0.257 1.308 1.565 0.340 1.316 1.656 0.274 1.297 1.571
(4,4) 0.120 1.403 1.523 0.150 1.409 1.559 0.122 1.394 1.516
∞ 0 1.5 1.5 0 1.5 1.5 0 1.5 1.5

equal number of tokens for the two classes (N (1) = N (2) = 2). The classes in the
asymmetrical instances differ through their service times. The service times are chosen
such that the utilization of the stations ρ = λ(ES(1)

m + ES(2)
m ) = 0.6, m = 1, 2. The

results for the asymmetrical instances are given in table 4.
The results obtained from simulation concern the mean values of the 95%-

confidence intervals which where obtained by simulating until the half-width of the
interval is smaller than 1% of its mean.

The most important observations made from the results are:

1. In general, the approximations are good for the single-class case, especially for the
job shop.

2. For the multiclass case, the results are better if the inner system is closer to a
product-form type network. In particular, if the ratio between the mean service
time of class 1 and the mean service time of class 2 at one station is close to one,
then the approximation is reasonably accurate.

3. The approximation is more accurate for the single-class case than for the multiclass
case.

4. The accuracy of the approximation decreases when the utilization of the tokens
increases. In our experiments this is recognized by comparing two instances with
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Table 4
The mean queue lengths for the multiclass asymmetrical case as obtained by simulation for

both shop types and by the solution procedure of subsection 4.1.

ES(r) r Flow shop Job shop New method

L(r)
ext L(r)

int L(r)
tot L(r)

ext L(r)
int L(r)

tot L(r)
ext L(r)

int L(r)
tot

(0.5,0.5) 1 0.806 1.111 1.917 0.795 1.055 1.850 0.420 1.015 1.435
(1.5,1.5) 2 1.405 1.385 2.790 1.956 1.404 3.360 1.682 1.374 3.056

(0.75,0.75) 1 0.606 1.088 1.695 0.731 1.074 1.805 0.515 1.051 1.566
(1.25,1.25) 2 0.838 1.236 2.074 1.198 1.258 2.455 1.033 1.231 2.264

(0.9,0.9) 1 0.593 1.112 1.705 0.793 1.112 1.905 0.611 1.089 1.700
(1.1,1.1) 2 0.698 1.175 1.873 0.966 1.186 2.152 0.807 1.161 1.968

(0.5,1.5) 1 0.912 1.236 2.148 1.104 1.211 2.315 0.847 1.198 2.045
(1.5,0.5) 2 0.838 1.190 2.028 1.125 1.212 2.337 0.847 1.198 2.045

(0.75,1.25) 1 0.711 1.170 1.881 0.914 1.162 2.075 0.732 1.142 1.874
(1.25,0.75) 2 0.676 1.146 1.823 0.928 1.162 2.089 0.732 1.142 1.874

(0.9,1.1) 1 0.656 1.136 1.799 0.847 1.144 1.990 0.702 1.126 1.828
(1.1,0.9) 2 0.653 1.139 1.792 0.859 1.145 2.004 0.702 1.126 1.828

equal arrival rates and different numbers of tokens. Another way would be to
compare two instances with equal numbers of tokens and different arrival rates.

Appendix A: MVA algorithms

In this appendix we present four algorithms: (i) an exact MVA algorithm for
single-class networks with exponential, load-dependent servers; (ii) an AMVA algo-
rithm that can be used in the solution procedure for single-class OQNs-PC; (iii) a
single chain multiclass AMVA algorithm that can be used in the solution procedure
for multiclass OQNs-PC with shared tokens; (iv) a multiclass AMVA algorithm that
can be used in the solution procedure for multiclass OQNs-PC with dedicated to-
kens.

The first algorithm is copied from the textbook of Buzacott and Shanthikumar [8].
The second AMVA algorithm is an algorithm for a network consisting of one expo-
nential, load-dependent service station and M service stations with possibly multiple
servers and generally distributed service times. It is based on an algorithm formu-
lated in [8] for a network with only the latter type of service stations. Our algorithm
is adapted for the presence of the exponential, load-dependent service station. Fur-
ther, we use a modified expression for the lead times at the general service stations;
for the details on this modification, see appendix A.2. Both the third and the fourth
algorithm may be seen as a generalization of the second algorithm. The difference
between them and corresponding algorithms in [8] is similar as for the second algo-
rithm.
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We like to stress that the AMVA algorithms presented here are by no means the
only possible algorithms that one may use. They just serve as an illustration of what
is possible.

A.1. Single-class exact MVA

An algorithm for single-class product-form CQNs with M + 1 load-dependent
exponential service stations (with rates µm(k), k > 0, for station m) is given on pages
373–374 in [8] and reads as follows:

1. Set pm(0|0) = 1, m = 1, . . . ,M + 1.

2. For n = 1, . . . ,N , compute:

(a) for m = 1, . . . ,M + 1,

ETm(n) =
n−1∑
k=0

k + 1
µm(k + 1)

pm(k|n− 1); (15)

(b) TH(n) =
n∑M+1

m=1 νm ETm(n)
; (16)

(c) for m = 1, . . . ,M + 1,

pm(k|n) =
νmTH(n)
µm(k)

pm(k − 1|n− 1), k = 1, . . . ,n, (17)

pm(0|n) = 1−
n∑
k=1

pm(k|n). (18)

A.2. Single-class AMVA

AMVA algorithms for the general single-class CQN are given on pages 378–380
of [8]. We suggest a slightly different algorithm for a CQN with M+1 stations, which
are as follows. Station M + 1 is a load-dependent exponential server with rates

µ(1) =
λ

q
and q = 1− λ

THCM+1(N )
,

µ(n) = λ, for n > 1.

Further, station m = 1, . . . ,M is a general service station with cm parallel servers and
with service times Sm, with known first two moments ESm and ES2

m.
We first rewrite equation (15) for the lead time at station M + 1:

ETM+1(n) =
n−1∑
k=1

k + 1
λ

pM+1(k|n− 1) + pM+1(0|n− 1)q
1
λ

=
[
ELM+1(n− 1) +QM+1(n− 1) + pM+1(0|n− 1)q

] 1
λ

, (19)
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where

ELM+1(n) =
n∑
k=1

kpM+1(k|n) and QM+1(n) =
n∑
k=1

pM+1(k|n).

For the other stations we define the mean number of jobs in the queue (excluding
jobs in service) EL̃m(n) and the probability that all servers are busy Qm(n) as follows
(both in a CQN with n tokens):

EL̃m(n) =
n∑

k=cm

(k − cm)pm(k|n),

Qm(n) =
n∑

k=cm

pm(k|n).

Furthermore, we denote by ESrem,m the mean time until the first departure at station m.
The lead time ETm(n) of a job in a network with n jobs consists of the waiting time
until the first departure if all servers are busy (Qm(n−1) ESrem,m), and of the waiting
time for the jobs in the queue (EL̃m(n−1) ESm/cm) and of its own service time ESm.
Thus, we find

ETm(n) = Qm(n− 1)ESrem,m +EL̃m(n− 1)
ESm
cm

+ESm. (20)

We approximate ESrem,m conform the time until the first departure for an M |G|cm
queue, see Tijms [21, p. 346]. In fact, with this choice we deviate from [8]. Further,
in our expression (20) for the lead time, we maintain the variable Qm(n− 1) for the
probability that all servers are busy, while in [8] for this probability an additional
approximation is introduced.

Equation (20) can be shown to be exact for networks with only exponential
servers. One could give a similar interpretation to equation (19), where ELM+1(n−
1)/λ may be seen as the job’s total waiting time, and [QM+1(n−1)+pM+1(0|n−1)q]/λ
is the job’s service time. However, this interpretation is mathematically incorrect.

We now obtain the following AMVA algorithm:

1. Initialize. Set pm(0|0) = 1, Qm(0) = 0, EL̃m(0) = 0, m = 1, . . . ,M and
pM+1(0|0) = 1, QM+1(0) = 0, ELM+1(0) = 0.

2. Preprocessing. For m = 1, . . . ,M ,

ESrem,m =
cm − 1
cm + 1

ESm
cm

+
2

cm + 1
1
cm

ES2
m

2ESm
.

(a) for m = 1, . . . ,M ,

ETm(n) = Qm(n− 1) ESrem,m +EL̃m(n− 1)
ESm
cm

+ESm
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and

ETM+1(n) =
[
ELM+1(n− 1) +QM+1(n− 1) + pM+1(0|n− 1)q

] 1
λ

;

(b) TH(n) = n/
M+1∑
m=1

νmETm(n);

(c) for m = 1, . . . ,M , and for l = 1, . . . , min(cm − 1,n),

pm(l|n) =
ESm
l

νmTH(n)pm(l − 1|n− 1);

(d) for m = 1, . . . ,M , if n < cm, Qm(n) = 0, otherwise,

Qm(n) =
ESm
cm

νmTH(n)
[
Qm(n− 1) + pm(cm − 1|n− 1)

]
and

QM+1(n) =
TH(n)
λ

[
QM+1(n− 1) + pM+1(0|n− 1)q

]
;

(e) for m = 1, . . . ,M

pm(0|n) = 1−
min(cm−1,n)∑

l=1

pm(l|n)−Qm(n)

and

pM+1(0|n) = 1−QM+1(n);

(f) for m = 1, . . . ,M , if n < cm, EL̃m(n) = 0, otherwise,

EL̃m(n) =
ESm
cm

νmTH(n)
[
EL̃m(n− 1) +Qm(n− 1)

]
;

(g) ELM+1(n) = THM+1(n) ETM+1(n).

A.3. Single chain multiclass AMVA

The notation used for this AMVA algorithm is similar to that of the previous
algorithm. The extensions of the notation concern the superscripts (r) identifying
the class. It is assumed that the visit ratios required for this AMVA algorithm are
already computed in step 1 of the overall procedure. Furthermore, the variable q is
defined as before (equations (10) and (11)). Note that for this, we need to analyze the
complement of the synchronization station and therefore we need the routing matrix
P̂ of this complement network:

P̂ rsmn = P (r)
mn · 1{r=s} + P (r)

m0
λ(s)

λ
P (s)

0n ,
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where the P (r) (r = 1, . . . ,R) are the routing matrices of the original OQN-PC.

1. Initialize. Set pm(0|0) = 1, Qm(0) = 0, EL̃m(0) = 0, m = 1, . . . ,M and
pM+1(0|0) = 1, QM+1(0) = 0, ELM+1(0) = 0.

2. For n = 1, . . . ,N , compute:

(a) for r = 1, . . . ,R, and m = 1, . . . ,M ,

ET (r)
m (n) = Qm(n− 1)ESrem,m(n) +EL̃m(n− 1)

ESm(n− 1)
cm

+ES(r)
m ,

where

ESrem,m(n) =
cm − 1
cm + 1

ESm(n− 1)
cm

+
2

cm + 1
1
cm

ES2
m(n− 1)

2ESm(n− 1)

and

ETM+1(n) =
[
ELM+1(n− 1) +QM+1(n− 1) + pM+1(0|n− 1)q

] 1
λ

;

(b) TH(n) =n
/( R∑

r=1

M∑
m=1

ν(r)
m ET (r)

m (n) +ETM+1(n)

)
,

TH(r)
m (n) = ν(r)

m TH(n), r = 1, . . . ,R, m = 1, . . . ,M ;

(c) for r = 1, . . . ,R, and m = 1, . . . ,M , and for k = 1, 2,

ESkm(n) =
R∑
r=1

TH(r)
m (n)∑R

r=1 TH(r)
m (n)

E
(
S(r)
m

)k
;

(d) for m = 1, . . . ,M , and for l = 1, . . . , min(cm − 1,n),

pm(l|n) =
ESm(n)

l

R∑
r=1

ν(r)
m TH(r)(n)pm(l − 1|n− 1); (21)

(e) for m = 1, . . . ,M , if n < cm, Qm(n) = 0, otherwise,

Qm(n) =
ESm(n)
cm

R∑
r=1

ν(r)
m TH(r)(n)

[
Qm(n− 1) + pm(cm − 1|n− 1)

]
and

QM+1(n) =
TH(n)
λ

[
QM+1(n− 1) + pM+1(0|n− 1)q

]
;

(f) for m = 1, . . . ,M

pm(0|n) = 1−
min(cm−1,n)∑

l=1

pm(l|n)−Qm(n)
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and

pM+1(0|n) = 1−QM+1(n);

(g) for m = 1, . . . ,M , if n < cm, EL̃m(n) = 0, otherwise,

EL̃m(n) =
ESm(n)
cm

νmTH(n)
[
EL̃m(n− 1) +Qm(n− 1)

]
;

(h) ELM+1(n) = THM+1(n) ETM+1(n).

A.4. Multiclass AMVA

The notation is this appendix is an extended version of that in the previous
appendices. In particular, we introduce the vector notation ~n = (n(1), . . . ,n(R)), in
which n(r) denotes the number of class r tokens in the network. Furthermore, we
denote by ~er the R-dimensional vector with a one at position r and a zero at the other
positions. Finally, variables depending on the population ~n equal zero if there is a
class r = 1, . . . ,R for which n(r) < 0.

1. Initialize. Set pm(0|~0) = 1, Qm(~0) = 0, EL̃m(~0) = 0, m = 1, . . . ,M and for
r = 1, . . . ,R, pM+r(0|~0) = 1, QM+r(~0) = 0, ELM+r(~0) = 0.

2. For n = 1, . . . ,N , for all states ~n for which
∑R

r=1 n
(r) = n, and n(r) 6 N (r)

compute:

(a) for r = 1, . . . ,R, and m = 1, . . . ,M ,

ET (r)
m (~n) = Qm(~n− ~er)ES(r)

rem,m(~n) +EL̃m(~n− ~er)
ESm(~n− ~er)

cm
+ES(r)

m ,

where

ES(r)
rem,m(~n) =

cm − 1
cm + 1

ESm(~n− ~er)
cm

+
2

cm + 1
1
cm

ES2
m(~n− ~er)

2ESm(~n− ~er)
;

and for r = 1, . . . ,R,

ETM+r(~n) =
[
ELM+r

(
~n− ~er

)
+QM+r

(
~n− ~er

)
+ pM+r

(
0|~n− ~er

)
q(r)] 1

λ(r) ;

(b) TH(r)(~n) = n(r)
/( M∑

m=1

ν(r)
m ET (r)

m (~n) +ETM+r(~n)

)
;

(c) for r = 1, . . . ,R, and m = 1, . . . ,M , and for k = 1, 2,

ESkm(~n) =
R∑
r=1

TH(r)(~n)∑R
r=1 TH(r)(~n)

E
(
S(r)
m

)k
;
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(d) for m = 1, . . . ,M , and for l = 1, . . . , min(cm − 1,n),

pm(l|~n) =
ESm(~n)

l

R∑
r=1

ν(r)
m TH(r)(~n) pm(l − 1|~n− ~er);

(e) for m = 1, . . . ,M , if n < cm, Qm(n) = 0, otherwise,

Qm(~n) =
ESm(~n)
cm

R∑
r=1

ν(r)
m TH(r)(~n)

[
Qm
(
~n− ~er

)
+ pm

(
cm − 1

∣∣~n− ~er)]
and for r = 1, . . . ,R,

QM+r(~n) =
TH(r)(n)
λ(r)

[
QM+r

(
~n− ~er

)
+ pM+r

(
0
∣∣~n− ~er) q(r)];

(f) for m = 1, . . . ,M

pm(0|~n) = 1−
min(cm−1,n)∑

l=1

pm(l|~n)−Qm(~n)

and for r = 1, . . . ,R,

pM+r(0|~n) = 1−QM+r(~n);

(g) for m = 1, . . . ,M , if n < cm, EL̃m(n) = 0, otherwise,

EL̃m(~n) =
ESm(~n)
cm

νmTH(~n)
[
EL̃m

(
~n− ~er

)
+Qm

(
~n− ~er

)]
;

(h) for r = 1, . . . ,R,

ELM+r(~n) = THM+r(~n) ETM+r(~n).
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