
Research article

Globally distributed component-based

software development: an exploratory

study of knowledge management and

work division
Julia Kotlarsky1, Ilan Oshri2, Jos van Hillegersberg3, Kuldeep Kumar4

1Warwick Business School, Warwick University, Warwick, UK;
2Rotterdam School of Management, Erasmus University, Rotterdam, The Netherlands;
3Department of Information Systems and Change Management, University of Twente, AE Enschede, The Netherlands;
4College of Business Administration, Florida International University, Miami, FL, USA

Correspondence: J. Kotlarsky, Warwick Business School, Warwick University, CV4 7AL Coventry, Warwick, UK.
Tel: þ 44 2476 524692;
Fax: þ 44 2476 524539;
E-mail: Julia.Kotlarsky@wbs.ac.uk

Abstract
Component-based development (CBD) can be an appealing proposition to globally
distributed software development teams because of the almost endless possibilities to
recombine and reuse components in new products. In particular, it has been suggested
that CBD will improve globally distributed software development practices by allowing
each site to take ownership of particular components, resulting in reduced inter-site
communication and coordination activities. Such an approach may indeed overcome
breakdowns in inter-site coordination efforts; however, it may also lessen opportunities to
share knowledge between sites and may hamper opportunities to reuse existing
components. A case study approach, exploratory in nature, was adopted to explore
knowledge aspects in global component-based software development. Evidence
collected at several globally distributed CBD projects suggests that the true potential of
CBD, which mainly relates to reusing components, can also be achieved when
components are developed in a joint manner (i.e. by several sites) by accessing and
utilizing expertise regardless of its geographical location. To improve the rate of
component reuse, the studied teams developed capabilities in three particular areas:
inter-site coordination, communications, and knowledge management. The paper
concludes by discussing the links between component reuse, CBD principles and
organizational capabilities, and offers managers and engineers some guidelines to
consider in their CBD projects.
Journal of Information Technology (2007) 22, 161–173. doi:10.1057/palgrave.jit.2000084
Published online 2 January 2007
Keywords: component-based development; global software development; component reuse; expertise

Introduction

G
lobal distribution of software development has
become widespread over the last 15 years (Herbsleb
and Moitra, 2001). Moreover, there are a number of

economic and technical drivers that are likely to accelerate
the growth of distributed software development. For one to
access a larger pool of expertise, often in low-cost
geographical locations, many companies are switching to
globally distributed software development or offshore

outsourcing of software products and services. On the
technological side, ongoing innovations in information and
communication technologies (ICT) improve the possibili-
ties to cooperate in a distributed mode.

Indeed, geographical distance and the time zone and
cultural differences associated with global distribution have
caused problems for globally distributed software teams in
achieving successful collaboration. A growing number of

Journal of Information Technology (2007) 22, 161–173
& 2007 JIT Palgrave Macmillan Ltd. All rights reserved 0268-3962/07 $30.00

palgrave-journals.com/jit

studies have reported problems regarding collaboration in
distributed work, such as coordination breakdowns
(Carmel, 1999; Cheng et al., 2004), lack of understanding
of a counterpart’s context (Cramton, 2001), and different
language competencies across remote sites (Sarker and
Sahay, 2004). Other studies have argued that globally
distributed work may exacerbate the chance of misunder-
standings (Battin et al., 2001; Olson and Olson, 2004), lack
of trust (Jarvenpaa et al., 1998; Cramton, 2001), asymmetry
in distribution of information among sites (Carmel, 1999),
difficulty in collaborating due to different skills and
training, and mismatches in information technology (IT)
infrastructure (Sarker and Sahay, 2004).

The practices recommended to overcome these difficul-
ties have mainly focused on a division of work that
minimizes the need for inter-site coordination and, there-
fore, communication and synchronization (Ebert and De
Neve, 2001; Mockus and Weiss, 2001; Repenning et al.,
2001; Herbsleb and Mockus, 2003). To achieve this, it was
recommended that ‘tightly coupled work items that require
frequent coordination and synchronization should be
performed within one site’ (Mockus and Weiss, 2001).

In this regard, past research (e.g. Carmel, 1999) has
indicated that the adoption of component-based develop-
ment (CBD), which aims to reduce the costs involved in
developing new products and to improve time to market of
new products through the reuse of components across
multiple products (Huang et al., 2003), may also facilitate
globally distributed software development. According to
this view, components can be developed independently
from remote locations (Repenning et al., 2001) and,
therefore, mitigate some coordination breakdowns asso-
ciated with the traditional, non-component-based (CB)
globally distributed software development (Carmel, 1999).
Put simply, each site should take responsibility to develop a
particular component with minimum inter-site commu-
nication and coordination activities (Repenning et al.,
2001). We claim that such an approach may, in fact, result
in fewer opportunities to reuse components because remote
sites may have limited exposure to the knowledge of
components developed by other remote teams and because
of the limited knowledge sharing between remote counter-
parts (Kotlarsky and Oshri, 2005).

In this paper, we report on two companies that followed
an approach, in which the development of a component was
jointly carried out across several sites. We explore the
capabilities that were imperative to achieve component
reuse in globally distributed CBD projects. Following this
introduction, the next section will provide a historical
background of CBD, followed by a review of the literature
on CBD in globally distributed software development
projects. The research method section then poses the key
questions that the studied companies were facing and
explain the research approach, exploratory in nature,
adopted for this study. The following section, based on
the empirical evidence, provides the rationale that guided
the companies in pursuing a division of work, based on the
expertise available within the dispersed teams regardless of
their geographical location (as opposed to the approach in
which one site takes ownership of the development of a
particular component). Next, the empirical section outlines
the capabilities developed by these companies in order to

support component reuse in globally distributed CBD
projects. Lastly, practical implications are offered to
managers and engineers.

Component-based development: background
CBD has its roots in manufacturing. Since the mid-1960s,
when the concept of modular production was introduced
(Starr, 1965), modular (later referred to as CB) product
architectures became dominant in manufacturing indus-
tries. Indeed, the trend to develop products that have a CB
architecture is well established in automotive, electronics,
aircraft, and other industries, and it has been successfully
used for setting up globally distributed design and
production activities. For example, in the computer
industry, Dell products include components produced by
different vendors in various locations. In the automotive
industry, the design of a car and the manufacture of car
components both involve designers and component sup-
pliers at various dispersed locations (Olin et al., 1999). Even
a very large and complex product such as an aircraft could
be developed from remote locations, as in the case of
Boeing-Rocketdyne (Malhotra et al., 2001), Boeing 777
(Yenne, 2002), and Airbus.

In the software development industry, CBD involves (i)
the development of software components and (ii) the
building of software systems through the integration of pre-
existing software components (Bass et al., 2000). Compo-
nents are units of independent production, acquisition, and
deployment that interact with each other to form a
functioning system (Szyperski, 1998). Being self-contained
and replaceable units, components can be reused across a
number of products, and be replaced by more recent and
advanced versions of components in a ‘plug-and-play’
manner, as long as the interfaces across the components
comprising the products are compatible.

Indeed, the idea to develop software components goes
back to the early days of computer systems in the form of
subroutines and subroutine libraries. In this regard, the
transition in software development took place as ‘[y]
programmers observed that they could insert subroutines
extracted from their previous programs, or even written by
other programmers, and take advantage of the functionality
without having to concern themselves with the details of
coding. Generally-useful subroutines were collected into
libraries, and soon very few people would ever again have
to worry about how to implement, for example, a
numerically-well-behaved double-precision cosine routine’
(Clements, 1995). Nevertheless, until the mid-1990s reusa-
bility was limited because module interfaces were program-
ming language specific and even platform specific ones.
Also, specification techniques to document module inter-
faces were insufficiently developed. Finally, the Internet as
an effective means to facilitate the development and
distribution of software modules was not as widespread
as it is today. These limitations have hindered the
development of global software component reuse (Traas
and van Hillegersberg, 2000).

With the introduction of software component technolo-
gies in the mid-1990s, such as Enterprise JavaBeans,
Microsoft COM, and CORBA (Peters and Pedrycz, 2000),
there have been expectations that CBD will offer additional

Component reuse in global CBD J Kotlarsky et al

162

avenues to software development and reuse opportunities.
As opposed to a monolithic system, a CB system has a
number of advantages for production and competitiveness.
In particular, a CB system allows changes to be made to
isolated functional elements of the product without
affecting the design of other components (Ulrich and
Eppinger, 2000). Also, a CB system supports the rapid
customization of products through the reuse of existing
standardized components, resulting in an improved pro-
duct variation, higher utilization of existing assets, better
reliability of products (Vitharana, 2003), shorter time to
market (Bass et al., 2000; Crnkovic and Larsson, 2002; Kim,
2002; Huang et al., 2003; Vitharana, 2003), and lower costs
associated with product development (Kunda and Brooks,
2000; Ravichandran and Rothenberger, 2003).

Along with this positive outlook, some possible chal-
lenges associated with CBD that co-located software
development teams have faced, have been reported in the
literature. For example, it has been argued that ‘it often
took longer to develop a reusable component than to
develop a system for a one-off purpose’ (Huang et al.,
2003). Other studies have reported difficulties associated
with the management of CBD in co-located projects, such as
a lack of stable standards, lack of reusable components, and
problems related to the granularity and generality of
components (Crnkovic and Larsson, 2002; Vitharana,
2003).

CBD in globally distributed software development contexts
As discussed above, globally distributed teams represent a
new organizational form that has emerged in conjunction
with the globalization of socio-economic processes.
Such teams have replaced the traditional single-site
hierarchy and the functional department structure for
various reasons. For one, companies in developed nations
have outsourced parts of their IT services and business
processes to developing nations (Carmel and Agarwal,
2002). Short-cycle development and the launch of new
products and software for global markets have required
expertise from a range of geographical areas (Desouza and
Evaristo, 2004). Indeed, an increasing number of companies
are setting up software development in a globally dis-
tributed mode and at the same time, are adopting a CBD
methodology. At the basis of this approach is the
assumption that in globally distributed software develop-
ment, particular parts of large software systems reappear
with sufficient reliability such that common parts can be
written once, rather than many times, and that common
systems can be built through reuse rather than being
rewritten over and over.

Alongside such advances in software development, recent
years have witnessed the emergence of open source
software (OSS) development. OSS projects develop ‘soft-
ware whose source code is distributed without charge or
limitations on possible modifications and distributions by
third parties’ (Crowston and Scozzi, 2002: 3). In most cases,
the development of OSS is entirely global and is voluntarily
carried out by individuals sometimes through the applica-
tion of CBD principles such as the use of JavaBeans. While
there are some similarities between OSS and commercially
driven globally distributed CBD projects in terms of the

application of specific methodologies and development
tools, being a commercially driven effort as opposed to the
voluntary process associated with OSS (Murugesan, 1999),
project managers of globally distributed CBD can consider
aspects relating to the way a component will be developed
that ensure that the challenges reported above relating to
coordination breakdowns across remote sites will be
minimized.

In this regard, the adoption of CBD by globally
distributed software development teams has indeed created
expectations that some coordination breakdowns asso-
ciated with the traditional, non-CB globally distributed
software development would be mitigated (Carmel, 1999)
through the organization of distributed work. For example,
it has been argued that each site could take ownership of a
particular component to develop it independently, with a
reduced degree of inter-site communication and coordina-
tion (Repenning et al., 2001). Indeed, this process would
facilitate the globalization of the software industry, as
components could be developed remotely with minimum
inter-site coordination (Repenning et al., 2001; Turnlund,
2004).

From a knowledge processes viewpoint, such an
approach, in which each site takes responsibility for the
development of a particular component, may result in fewer
opportunities for the entire project team to share knowl-
edge about existing components available for reuse.
Research has indeed shown that the knowledge embedded
in a design can be contextual and specific to a particular
business context to the extent that the transfer of any
solution, be it a component or a program, from one project
team to another often requires intensive communications
between members of these teams (Oshri and Newell, 2005).
This is because, in most cases, a component will need to be
modified before being re-applied in another product.
Against past expectations that CBD would result in fewer
communication and coordination activities, we claim that
in pursuing CBD principles, remote teams are more likely
to intensify their communication and coordination activ-
ities in an attempt to increase the reuse rate of existing
components.

Table 1 summarizes the issues revolving around co-
ordination, communication, and knowledge processes in
global traditional (non-CB) software development and in
global CBD projects.

To illustrate our claim, evidence from two globally
distributed CB software development projects is pre-
zsented, after the research approach section. First, evidence
relating to the way components were developed within
these projects is outlined. Following this, the capabilities
developed by these companies are analysed and discussed.

Research approach
In line with past research (Eisenhardt, 1989; Yin, 1994), a
case study method was selected for this research. An
in-depth case study of three globally distributed CBD
projects – two at TATA Consultancy Services (TCS) and
one at LeCroy – was carried out. We adopted a quali-
tative, interpretive approach. The main goal of the empirical

Component reuse in global CBD J Kotlarsky et al

163

Table 1 Challenges in global software development projects.

Global non-CB software
development

Global CB software development

Challenges Expectations New challenges

Coordination Breakdown of traditional
coordination mechanisms (Rafii,
1995; Espinosa and Carmel, 2003;
Cheng et al., 2004).

Lack of complete picture about
what is going on at remote
locations (Carmel, 1999).

Difficulties to work in different
time-zones (Karolak, 1999;
Kobitzsch et al., 2001).

Delays in distributed collaborative
work processes (Jarvenpaa and
Leidner, 1999; Herbsleb et al.,
2000).

Different tools, technologies, ICT
infrastructure (Sarker and Sahay,
2004).

Each site could take
ownership of particular
components and work on
them independently
without much need for
inter-site coordination
(Carmel, 1999; Colbert
et al., 2001; Repenning
et al., 2001).

Even when remote sites had
ownership of particular components,
extensive inter-site coordination was
required (IBM case in Carmel, 1999).

Difficulties to manage a complex
integration processes across sites if
components are fine-grained
(Turnlund, 2004).

A concern raised in recent studies
that there is a need to coordinate
onsite-offshore activities related to
component development,
modification and integration
(Alexandersen et al., 2003).

Communication Loss of communication richness
(Carmel, 1999).

Language barriers (Sarker and
Sahay, 2003).

Misunderstandings caused by
cultural differences (Battin et al.,
2001; Olson and Olson, 2004).

Lack of informal, inter-personal
communications (Herbsleb and
Mockus, 2003).

Opportunity to reduce
communication needs
between sites as each site
is working on different
components (Colbert
et al., 2001; Repenning
et al., 2001).

Remote sites know less about specific
and contextual knowledge embedded
in solutions.

Remote sites know less about the area
of specialization of their remote
counterparts.

Remote sites possess limited
knowledge of the ‘big picture’ i.e. new
developments in other sites are less
visible.

Knowledge
processes

Lack of understanding of
counterpart’s context (Orlikowski,
2002).

Asymmetry in distributing
information among sites (Carmel,
1999).

Lack of trust and motivation to
collaborate (Jarvenpaa and
Leidner, 1999).

Intensive knowledge
processes within remote
sites and fewer across
remote sites.

Risk of ‘re-inventing the wheel’ if
inter-site coordination and
communication activities are
reduced.

Differences in the specialization
domains developed in each site (e.g.
site A specializes in the banking
sector while site B specializes in the
insurance sector) that could hinder
the development of complementary
solutions and the implementation of
agility in design that offers future
integration of existing solutions.

Differences in the level of technical
expertise developed within sites that
could hamper the quality of
knowledge transfer processes from
team A to B when a particular
component is reused.

Component reuse in global CBD J Kotlarsky et al

164

research was to explore:

1. Which division of work approach (e.g. one site owns a
particular component, or joint development utilizing
expertise regardless of its geographical location) was
implemented by TCS and LeCroy, and how this division
of work affected inter-site coordination efforts between
remote sites.

2. What capabilities were critical in supporting component
reuse in the globally distributed CBD environment.

Evidence was gathered through a variety of sources, such as
interviews, documentation, and archival records (Eisen-
hardt, 1989; Yin, 1994). Interviews were conducted at two
remote sites per company: in Switzerland, India, and USA
for TCS, and Switzerland and USA for LeCroy. Interviewees
were chosen to include (1) counterparts working closely
from remote locations and (2) diverse roles such as
managers and developers. In total, 20 individuals were
interviewed (14 at TCS and six at LeCroy: see Appendix A
for information about the interviewees). Interviews lasted
1 h and 30min on average; they were recorded and fully
transcribed. A semi-structured interview protocol was
applied, to allow the researchers to clarify specific issues
and follow up with questions. Data were triangulated
through interviews with team counterparts in different
locations and through the use of project documents.

Data analysis followed several steps. It relied on iterative
reading of the data using the open-coding technique
(Strauss and Corbin, 1998), and sorting and refining
themes emerging from the data with some degree of
diversity (Miles and Huberman, 1994).

Following a short introduction to the projects, we report
on the approach taken in terms of the division of work, and
discuss the capabilities developed to support component
reuse in globally distributed CB project teams at TCS and
LeCroy.

TCS globally distributed CBD
The projects studied at TCS concerned the development
and implementation of Quartz, an integrated financial
platform aimed at providing solutions for financial institu-
tions, such as traditional and internet banks, brokerage/
securities houses, and asset managers. Quartz consisted of a
collection of architectural and business components that
can be integrated with third-party components to provide a
solution according to the requirements of a specific
customer. The following Quartz implementation projects
were investigated: (1) Skandia bank in Zurich and (2)
Dresdner bank in San Francisco. Both projects were
concerned with the implementation of Quartz; therefore,
they were analysed together as one ‘embedded’ case study
(Yin, 1994). The two projects are sub-units of analysis. In
terms of global distribution, the Skandia development team
was distributed across three geographical locations: two
offshore teams in Gurgaon and Mumbai (India) and an
onsite team at the customer location in Zurich (Switzer-
land). Furthermore, vendors of third-party components
were located in several countries (more than 25 vendors in
total). The Dresdner development team involved an offshore
team in Gurgaon and an onsite team at the customer site in
San Francisco.

LeCroy globally distributed CBD
The project studied at LeCroy, called Maui, involved the
development of a software platform for new generations of
oscilloscopes and oscilloscope-like instruments based on
the Windows operating system. The LeCroy global software
team involved two teams located in Geneva (Switzerland)
and New York (USA), and a main architect telecommuting
from Maine (USA). One key challenge for the Maui project
was to switch from embedded software to Microsoft COM
technology.

CBD: expertise-based or location-based division of work
Despite the expectation that CBD would enable a division of
work based on geographical location, in which one site
takes responsibility for the development of a particular
component, thus reducing the need for inter-site coordina-
tion required to complete a particular development
(Repenning et al., 2001), evidence from both TCS and
LeCroy suggests that dividing the work based on technical
or functional expertise enabled these companies to achieve
a high rate of component reuse and product variation. In
addition, a division of work based on expertise enabled TCS
and LeCroy to utilize the knowledge and expertise of their
employees regardless of their geographical location, thus
allowing these companies to access the pool of expertise
available in offshore locations. Lastly, an expertise-based
division of work approach required remote engineers and
managers to interact, and consult with remote counterparts
in order to solve design issues.

In dividing the work between the sites, some ground
rules were followed. For example, at TCS the first activities
that required direct customer contact and access to the
customer’s site, such as user requirements and release
management were done onsite. Self-contained activities,
such as coding and unit testing, were, on the other hand,
sent offshore to take advantage of the cost, quality, and
availability of offshore personnel. As one interviewee
explained, the onsite team was sending requirements
offshore:

Because the expertise and major source code are here
[offshore, in Gurgaon], and mainly because of the
expertise; it is quicker and easier to work here (Pankaj,
TCS).

The composition of the onsite team included experts who
provided expertise in those areas required at the customer
location. One manager described the areas of expertise
developed onsite:

Technical people look at technical and architectural
issues, functional people look at the functionality and the
development of the functionality. Support people handle
the configuration management, the groupware, the other
various tools which are being used by the team (Sanjay,
TCS).

On the other hand, activities that required involvement of
the client and close interactions among the TCS developers
were conducted in a mixed onsite – offshore manner.

Component reuse in global CBD J Kotlarsky et al

165

Overall, the majority of the activities required extensive
communications, and onsite and offshore teams conducted
them jointly through frequent communications using ICTs
and visits to remote sites. The only activities that were done
independently at the offshore location were coding and unit
testing.

At LeCroy, the division of work was also based on the
technical domains (areas of expertise) of the engineers.
Anthony, LeCroy’s Chief Software Architect, describes the
division of work in the following way:

What happened was, part of it was based on who was free
at that time, and part of it was where the expertise was.

The software team in Geneva was responsible for most of
the original core code in the oscilloscope: these were the
developers who had written the original code for oscillo-
scopes since the mid1980s. Anthony continued:

So they were also the natural guys to work on the next
generation, or defining the next generation.

Maine was another location where Jon, a system architect,
was based and collaborated with the team. Jon had worked
in New York for many years and had spent a year working
in Geneva. In 1999, he moved to Maine (USA) from where
he continued to work for LeCroy by telecommuting.

Originally five people, Jon in Maine and four people in
Geneva, developed the basics of the Maui. Later on in the
development process, additional people in NY and Geneva
started to work on the new platform, jointly developing new
features. This approach to development required a high
utilization of the Integrated Development Environment and
the employment of collaborative technologies. As the
manager of Geneva team pointed out:

We use MSN messenger – every member of the software
development group appears on the list. So, for having a
chat with someone, wherever they may be in the world in
the given time, you just need to double-click on their
name and start typing a line (Anthony, LeCroy).

To summarize, both companies, TCS and LeCroy, have
chosen to utilize the expertise available within their globally
distributed CBD projects regardless of their geographical
locations. In doing so, the companies recognize the need to
develop capabilities that will allow these teams jointly to
develop software components based on CBD principals.

Capabilities supporting globally distributed CB software
development
The division of work approach pursued by TCS and LeCroy
posed these companies new challenges. In particular, as
these companies attempted to reuse components across
different projects (for TCS) and products (for LeCroy), and
improve product flexibility through the application of CBD
principals, three areas had become critical in achieving
success: (i) inter-site coordination; (ii) knowledge manage-
ment; and (iii) communication channels.

Inter-site coordination capabilities
Two areas of capabilities were developed by TCS and
LeCroy that supported inter-site coordination activities.
The first area, which is generic in nature, involved a high-
speed, wide-band ICT infrastructure that ensured connec-
tivity between remote sites. The ICT infrastructure
supported rapid access to the network, shared resources
(e.g. server and project repository, databases), and Web
access to common resources. For example, as Corey (VP of
IS, LeCroy) outlined:

The role of the WAN, server and applications pool, how
file shares are set up, conferencing tools, and just plain
network speed are of very high importance [y] and no
firm trying to execute globally distributed CBD success-
fully can do so without the right infrastructure.

The second area of capabilities was developed mainly in-
house to support joint development activities carried out
across remote sites, without increasing the inter-site
coordination overhead. These included the following
capabilities:

� Automated management of interdependencies between
components and related files. This capability allows for
managing dependencies between components. Managing
these interdependencies is not a problem as long as the
number of components is small, because in such a case,
the dependencies can be modelled and understood
visually. However, when the number of components
becomes high, visual understanding is no longer an
option. To manage inter-dependencies between a high
number of components, LeCroy developed an in-house
tool that supported rapid update of changes, four times a
day, by automatically building components that had
changed since the last ‘build’, thus utilizing time-zone
differences. One manager from LeCroy explained:

We have a server that builds four times a day all the
components, and produces ‘release binaries’. So I don’t
have to build every component locally. If someone
changes the hardcopy component and they put it back,
it will be rebuilt on the server and then in the morning I
can import that component and just use it (Larry,
LeCroy).

This capability allowed developers from NY and Geneva to
access the latest versions of the development files when they
started their working day.

� Bug tracking capability. The complexity involved in
developing components from several remote locations
created new challenges in terms of tracking bugs and
managing versions of components and products. This is
because, each single bug being reported required its
source to be tracked and traced (i.e. whether it had
originated from one of the customers or from an internal
development team), and required the location of all the
components in which this particular code was reused. In
CBD, there is a need to trace bugs on three different
levels: first, on the system level, where customers report
problems with their specific product; second, on the
product level, where errors are detected in a specific

Component reuse in global CBD J Kotlarsky et al

166

product version; and finally, on the component level,
where the fault is located. The need to trace bugs is
closely related to version and configuration management,
because any modification in the component could lead to
an upsurge of new versions of different products, which
already exist in several versions (see a similar claim by
Crnkovic and Larsson, 2002). Therefore, it is imperative
to carefully record links between components, products,
and systems so that tracing errors on all levels is possible.
This requirement may not be unique to CBD; however,
what is specific to the CB approach is the mapping
between products and components and the management
of error reports on product and component level, which
is the most difficult part of the management involved in
CBD (Crnkovic and Larsson, 2002). Indeed, for bug
tracking TCS used a combination of tools: MS-Access for
issues registration and resolution, and PVCS Tracker for
defect logging, tracking, and analysis. At LeCroy, for
instance, the use of automated tools for bug tracking
helped to speed up the development by utilizing time-
zone differences. For example, as the manager of the
Geneva team explained:

I would not say that time differences are a disadvantage,
and close to a release or big milestone they can be a big
advantage. Because problems, bugs fixes, can be passed
on from time-zone to time-zone (Anthony, LeCroy).

� Standardization and centralization of the tools and
methods across locations was perceived as imperative
by TCS and LeCroy for the effectiveness of component
reuse, mainly because software development activities
such as building and testing a code could be carried out
on the central server. Some of the technologies im-
plemented to facilitate this capability are: Web access,
replicated databases, and a single (integrated) develop-
ment environment. To facilitate the standardization of
processes and learning among newcomers, TCS and
LeCroy created a guide that explains how to use tools and
methods.

Knowledge management capabilities
Ensuring a high degree of component reuse requires
knowledge management capabilities. One key challenge
that TCS faced, for example, was that several Quartz
implementation projects for different clients were running
in parallel, and the people involved in different Quartz
implementations did not have a direct exposure to the work
that other project teams were engaged in. Therefore, several
knowledge management mechanisms were introduced by
TCS that facilitated the transfer and reuse of components
across product teams. For example, TCS created a new role
in the form of a program manager, who coordinated all
Quartz implementations and was aware of new components
being developed for a specific customer, and who facilitated
the reuse of components across different Quartz imple-
mentations at different geographical locations. This way,
TCS exploited customer-specific components by adding
them to the Quartz package, so that with each new Quartz
implementation, TCS increased the variety of components/
functionalities that this product offered to potential clients.

For example, after implementing Quartz at Royal Skandia
UK, an insurance company, where Quartz was implemented
as an investment engine, insurance products were added to
the next version of Quartz:

A lot of changes were made to the basic Quartz system
just to be able to integrate it with the insurance business.
We had to build in a lot of things that deal with policy
administration and policy distribution, which are not
particularly bank products. This way typical insurance
products were added to Quartz: they were released as the
next version of Quartz (Sanjay, TCS).

Furthermore, to facilitate the reuse of knowledge and
components in a globally distributed environment, engineers
were encouraged to rotate between onsite and offshore
locations to bridge knowledge gaps between the two sites.

LeCroy, on the other hand, developed a ‘component
toolbox’, a repository of components that implemented
functionalities common to the oscilloscopes and oscillo-
scope-like instruments. These components included (i)
hundreds of mathematical functions, one component per
functionality; (ii) Graphical User Interface components that
provide the user interface; (iii) core components that allow
the systems to work together and provide the basic
instrument capabilities; and (iv) acquisition board driver
components responsible for controlling the acquisition
hardware of an oscilloscope.

Based on this knowledge management system, a specific
oscilloscope could be built by selecting and integrating
these components with oscilloscope-specific acquisition
and application systems. Furthermore, LeCroy introduced
an integrated development environment on the central
server, accessible for all members of the dispersed team.
Centralization of tools in one location ensures one single
environment for all remote locations. For the LeCroy
software team, there are no ‘local’ tools as such: all tools are
located at one central place. For example:

Version Control System (VCS) – Perforce – exists in
Geneva and guys access it here [in NY] the same way over
WAN, so the only difference there is: from here it takes a
little longer to access it, speed is slower. It doesn’t matter
where you are in the world, you still can access the same
single VCS (Anthony, LeCroy).

Indeed, managing knowledge across sites required both
companies to invest in unique repositories, but also to
identify individuals from the globally distributed teams
who could share the knowledge created in one team with
the others. By doing so, TCS for example, was able to
develop its Quartz platform rapidly and offer solutions in
new or related markets. Enabling knowledge flow between
remote sites to increase the possibilities of reuse was also
largely supported by the communication capabilities
developed by TCS and LeCroy.

Communication channels
In light of the division of work applied by both TCS and
LeCroy, the development of communication channels and
capabilities that ensure the flow of information with

Component reuse in global CBD J Kotlarsky et al

167

minimum breakdowns and misunderstandings between
remote sites was considered critical in their globally
distributed CBD environments. To cope with this challenge,
both TCS and LeCroy encouraged frequent communications
between remote members and introduced design rules,
aiming to make communications more effective. For
example, these companies encouraged systematic and
frequent communications in the form of regular teleconfer-
ences between software managers in dispersed locations,
and transatlantic videoconferences with the entire team
every one or two months. Such communications helped to
coordinate expertise across locations and better utilize the
dispersed knowledge. For example, as the onsite manager of
the Dresdner project explained:

Between us [offshore] and our onsite team we say ‘we’ll
do this portion of the job because we have more
competent people here who can look at this part, and
you can look at that portion of the job’. It’s mutual
communication (Sunil, TCS).

This helped to streamline information flows between
dispersed teams. In addition, attention was given to
improving the style and content of communications, which
helped to reduce misunderstandings and confusion induced
by different cultural backgrounds. This was particularly
important for the LeCroy global team, where people from
different cultures collaborated over distance. For example,
as one interviewee explained:

I have a lot of experience working with a lot of foreign
cultures. In some cultures if you are on the phone
explaining something to somebody and they don’t under-
stand it – they still say ‘I understand’. So the way I try to
ensure that the information was received correctly is
through a very detailed process of describing the issue.
For example I say, ‘open this Web link. What do you see?’
So it is very specific, very detailed (Adrian, LeCroy).

Both companies encouraged working flexibility, in terms of
working conditions, for example, working from home, and
flexible working hours, which helped increase the overlap
of working hours between dispersed locations so that teams
could collaborate in real time.

Reuse at Lecroy and TCS: some evidence
Both companies utilized the benefits offered by CBD, such
as the ability to reuse components and to build product
families rapidly by developing capabilities in the areas of
inter-site coordination, knowledge management and com-
munication. LeCroy’s Maui CB architecture (platform)
served as a basis for a number of future products, helped
to reduce considerably time-to-market (an increased
number of products offered to a market per year), and
made possible the easy integration of LeCroy products with
additional functionalities developed by third parties. After
the first product (i.e. WaveMaster) based on the Maui
architecture was launched in January 2002, a large number
of WaveMaster models and Disk Drive Analysers, which are
based on the Maui platform, were released, all as a result of

a rapid recombination and reuse of existing components. In
January 2003, LeCroy launched the WavePro Oscilloscope
series (7000, 7100, and 7300), which is also based on the
Maui platform.

TCS Quartz CB architecture also supported the reuse of
components across different implementations by adding
customer-specific components to the Quartz package. Since
the first Quartz implementation project started in 1998,
Quartz has been implemented in over 40 clients, and the
platform has grown to include three different product
families: Quartz Securities, Quartz Payments, and Quartz
Financial. Furthermore, in the last 3 years, Quartz has been
ranked among top 25 best-selling banking systems by the
International Banking Systems Journal.

Discussion and implications
Before discussing the cases, it is important to note that our
findings are based on two case studies and therefore, by
definition, meet only to a limited extent the criteria of
transferability (the extent to which the findings can be
replicated across cases). Additional research across multiple
case studies is needed in order to verify the insights reported
in this paper. With this in mind, we can explore the approach
to coordinating work and the capabilities developed by the
studied companies, recognizing that not all the practices
implemented by TCS and LeCroy would be appropriate in the
context of other globally distributed CBD projects.

In developing these capabilities, TCS and LeCroy mainly
focused on how to improve the rate of reuse when
implementing CBD in globally distributed software devel-
opment projects. To improve the rate of reuse of
components, TCS and LeCroy followed an approach in
which the development of components is jointly carried out
by several remote sites instead of the more commonly
found approach in which each site takes responsibility for a
particular component. Managers from LeCroy and TCS
indicated that while the approach in which dispersed sites
jointly develop components requires a higher degree of
coordination between dispersed project teams and intensi-
fied communication between remote counterparts, it also
offers advantages in the form of knowledge integration
(Walz et al., 1993) and knowledge sharing (Kotlarsky and
Oshri, 2005) across the various sites, processes that are
imperative for component reuse. Against past expectations
that CBD would mainly focus on developing component
knowledge within particular teams (Colbert et al., 2001;
Repenning et al., 2001), this study has illustrated how TCS
and LeCroy have invested in developing component
knowledge within and across dispersed teams to ensure
that critical knowledge of component is available at more
than one site. Through coordination mechanisms, such as
the automated management of interdependencies between
components and standardized tools, remote counterparts
were able to access work done in a different location easily
and to continue the development or debugging of a
particular component. This across-site participation in
development and debugging activities assisted in expanding
the knowledge relating to a particular component beyond
the boundaries of the site involved. Furthermore, for
remote teams who often work on several projects in
parallel, this deeper familiarity with a particular component

Component reuse in global CBD J Kotlarsky et al

168

meant that they could assess the possibilities of reusing this
component in other products or markets. For this reason,
putting in place, mechanisms that supported the sharing of
component knowledge across various sites was critical to
promoting component reuse at TCS and LeCroy.

The communication mechanisms implemented by both
TCS and LeCroy further supported knowledge sharing and
integration needed for component reuse. In line with the
approach that component knowledge should be jointly
developed across sites, TCS and LeCroy promoted the use
of various communication methods (e.g. videoconferen-
cing, chats, short- and long-term relocations). Commu-
nication styles were designed to ensure that remote sites
would be able to understand each other and share
component knowledge, despite language barriers and
cultural diversity. As stated above, past studies anticipated
that CBD principles would indeed reduce the need to
communicate between sites. Our study suggests that in
order to achieve a high rate of reuse, remote sites actually
need to maintain a high degree of communication and
utilize various means of communication in order to ensure
that component knowledge is shared and the possibilities of
reuse are improved.

Lastly, the implementation of certain knowledge manage-
ment practices also contributed to the reuse achieved by
these companies. In seeking to reuse components and by
utilizing expertise residing in a project team regardless of
its geographical location, these companies pursued an
approach that promoted the capturing and distribution of
explicit component knowledge as well as the sharing of tacit
knowledge acquired through participation and involvement
(Lave and Wenger, 1991). Indeed, TCS and LeCroy invested
in mechanisms that captured both the explicit knowledge
(e.g. via component repository) and tacit knowledge (e.g.
via program managers) of a particular component,
acknowledging the complexity involved in transferring
knowledge between remote sites. In this regard, explicit
knowledge about various components was captured and
shared between remote sites through the codification and
storage of design documents and components in a central
repository. These documents and components could be
retrieved by the entire global team in their search for
reusable components. Tacit knowledge was acquired by the
program manager through his/her involvement in the
design of various components, a process that allowed this
person to develop understanding and reuse knowledge
about markets, existing in-house solutions, and their
suitability for emerging business opportunities, something
that can hardly be codified and captured.

The capabilities developed by TCS and LeCroy are
summarized in Table 2. Furthermore, we outline the
benefits expected from a component reuse viewpoint when
implementing these capabilities in globally distributed CBD
teams. While the evidence presented here is unique in the
context of CBD in globally distributed teams, these
capabilities are still firm specific and, therefore may vary
from one company to another.

What implications does this study have for research and practice?
From a research viewpoint, against the expectations of past
studies, this study illustrates how globally distributed CBD

project teams may make the most of component reuse
opportunities by pursuing an approach in which remote
sites jointly develop components. Indeed, in this study, the
costs associated with inter-site coordination and commu-
nication activities are likely to be higher; however, the
possibilities to reuse components can also be improved
should companies invest in capabilities that promote
knowledge sharing and knowledge integration activities.
We further claim that intensive communication activities
between globally distributed CBD teams may lead to the
development of a ‘virtual shared memory’ of the entire
team, contributing to component reuse processes. In this
regard, we align our findings with the emerging body of
studies on transactive memory in the context of globally
distributed teams. Transactive memory as a concept
highlights the need to build a shared memory in which
person A knows what person B knows. Through such
knowledge activities, often promoted through the utiliza-
tion of various communication means, team and product
performance could be improved (Moreland and Myaskovs-
ky, 2000; Akgun et al., 2005), including the sharing and
reuse of knowledge (Faraj and Sproull, 2000; Majchrzak and
Malhotra, 2004).

In addition, in line with past research (Land and
Kennedy-McGregor, 1987; Galliers and Swan, 1997), we
have learned that globally distributed teams at TCS and
LeCroy have often discovered opportunities to reuse
existing components through involvement in development
and via informal communication channels, and not always
through formal knowledge management systems. Further-
more, the joint development of a particular component by
several remote sites may impel a higher degree of
standardization in terms of development tools, project
methodologies, procedures and documents, which is
imperative in itself for CB software development. Indeed,
some interviewees indicated that the dispersed and yet
highly integrated development process of components
resulted in a set of standardized tools, procedures and
documents. In turn, a well-developed set of standardized
tools, templates, and procedures may further improve the
possibilities to reuse component knowledge.

Considering the exploratory nature of this study, we
submit that our main contribution revolves around a
number of pragmatic guidelines to companies that consider
the application of CBD principals in their globally
distributed environments. A theory related to CBD in
globally distributed environments may emerge, should
future research confirm the findings reported in this study
by conducting cross-industry surveys, and testing the
relationship between the capabilities reported above and
the success criteria of globally distributed CB software
development projects.

While this case highlights the benefits associated with the
joint development of a particular component regardless of
the geographical location of the expertise, in practice, we
suggest that project managers should first assess whether
such an approach is in their interest. Indeed, both TCS and
LeCroy sought to improve the rate of reuse of their
components and therefore, pursued an approach that
advanced knowledge sharing and knowledge integration
across remote sites. In this regard, project managers should
evaluate the objectives of their project to determine

Component reuse in global CBD J Kotlarsky et al

169

Table 2 Capabilities developed by TCS & LeCroy supporting globally distributed CBD

Capabilities
implemented by TCS
and LeCroy

Characteristics Benefits

Inter-site coordination capabilities

Automated
management of
interdependencies
between components
and related files

Automatically building components that have
changed since the last ‘build’, four times a
day, on the central server.

Rapid update of changes.
Members of dispersed teams have access to
work done at remote site; they are aware of
reusable components being developed
elsewhere.

Time-zone differences are utilized by
programming ‘builds’ of components to run
during night time.

Bug tracking across
products and projects
on system, product
and component levels

Setting up bug tracking tool on the central
server, enabling Web access.

All components and products that are affected
by the bug can be identified.

Standardization of
tools and methods
across locations

Using similar tools and methods across
dispersed locations, creating a Guide that
explains how to use methods and tools.

Ensure compatibility and ‘integratability’ of
files, components and applications developed
and used at remote locations.
Speeds up the learning among newcomers.

Centralization of tools Centralizing tools used by dispersed team
members on a central server, Web-access,
Integrated Development Environment.

Members of dispersed teams always work with
updated files and have access to updated
project and product documents.

Knowledge management capabilities

Component repository
accessible from all
dispersed locations

Creating repository of reusable components
that implement functions common to
majority of products.

Enable knowledge reuse across products.
Reduce time-to-market through reuse of
existing components.
Increase product variety.
Avoid ‘not invented here’ syndrome.

Program manager Appointing program manager to have
overview of all components being developed
for different clients.

Enable knowledge reuse across projects.
Increase product variety through reuse of
customer-specific components in future
products.

Communication channels and capabilities

Frequent
communications

Organizing systematic and frequent
communications between managers and
developers of dispersed teams using on-line
chat, email, teleconferencing and
videoconferencing.

Streamline information flows and coordinate
activities between dispersed teams.
Time-zone differences are utilized by handing
over bugs and some small tasks between the
teams.

Improving the style
and content of
communications

Adjusting style and content of communication
(e.g. wording and selection of media) to
personal and cultural characteristics of
remote counterparts.

Improve understanding between remote
counterparts.
Reduce possibility of misunderstandings and
conflicts.

Working flexibility Supporting flexible working conditions, e.g.
equipment to enable working from home and
flexible working hours.

Enable remote counterparts to collaborate in
real-time by increasing overlap in working
hours.

Component reuse in global CBD J Kotlarsky et al

170

whether achieving cost-efficiencies, often gained by out-
sourcing development activities to low-cost locations
such as India, is more important than the investment in a
long-term development of shared knowledge and reuse
capabilities. A hybrid approach, in which some develop-
ment activities will be carried out jointly across the remote
sites and other activities will be centralized and accom-
plished in one location, is another possibility. In terms of the
capabilities needed to support a joint development effort of a
particular component across several sites, based on the
evidence from TCS and LeCroy, Table 2 offers project
managers some capabilities in the areas of the inter-site
coordination, communications, and knowledge management
required for the sharing of knowledge and the reuse of
components in CBD environments. Last but not the least, we
suggest that managers attempt to appoint project members
based on their shared histories of collaboration in their area
of expertise. In this way, members of a dispersed team will
know each other, and their respective and shared commu-
nication and coordination routines, from past projects.
Through such staffing strategies, the costs associated with
inter-site communication and coordination activities can be
reduced, and the challenges associated with inter-site coor-
dination and communication activities can be overcome
while knowledge sharing and component reuse can be improved.

References

Akgun, A.E., Byrne, J., Keskin, H., Lynn, G.S. and Imamoglu, S.Z. (2005).

Knowledge Networks in New Product Development Projects: A transactive

memory perspective, Information & Management 42(8): 1105–1120.

Alexandersen, C., Kumar, K. and Van Hillegersberg, J. (2003). Bank-in-a-Box:

Skandia’s a Agile and Customizable Financial Services Platform, Chicago,

USA: Society for Information Management (SIM).

Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord,

R. and Wallnau, K. (2000). Volume I: Market Assessment of Component-

Based Software Engineering, Pittsburg, USA: Carnegie Mellon Software

Engineering Institute (SEI).

Battin, R.D., Crocker, R. and Kreidler, J. (2001). Leveraging Resources in Global

Software Development, IEEE Software 18(2): 70–77.

Carmel, E. (1999). Global Software Teams: Collaborating Across Borders and

Time Zones, Upper Saddle River, NJ: Prentice-Hall P T R.

Carmel, E. and Agarwal, R. (2002). The Maturation of Offshore Sourcing

of Information Technology Work, MIS Quarterly Executive 1(2):

65–77.

Cheng, L., De Souza, C.R.B., Hupfer, S., Patterson, J. and Ross, S. (2004).

Building Collaboration into IDEs, Queue 1(9): 40–50.

Clements, P.C. (1995). From Subroutines to Subsystems: Component-based

software development, The American Programmer 8(11): 1–8.

Colbert, R.O., Compton, D.S., Hackbarth, R.L., Herbsleb, J.D., Hoadley, L.A.

and Wills, G.J. (2001). Advanced Services: Changing how we communicate,

Bell Labs Technical Journal 6(1): 211–228.

Cramton, C.D. (2001). The Mutual Knowledge Problem and Its Concequences

for Dispersed Collaboration, Organization Science 12(3): 346–371.

Crnkovic, I. and Larsson, M. (2002). Challenges of Component-Based

Development, The Journal of Systems and Software 61(3): 201–212.

Crowston, K. and Scozzi, B. (2002). Open Source Software Projects as Virtual

Organizations: Competency rallying for software development, IEE

Proceedings Software 149(1): 3–17.

Desouza, K.C. and Evaristo, J.R. (2004). Managing Knowledge in Distributed

Projects, Communications of the ACM 47(4): 87–91.

Ebert, C. and De Neve, P. (2001). Surviving Global Software Development, IEEE

Software 18(2): 62–69.

Eisenhardt, K.M. (1989). Building Theories from Case Study Research,

Academy of Management Review 14(4): 532–550.

Espinosa, A. and Carmel, E. (2003). Modeling Coordination Costs Due to Time

Separation in Global Software Teams, in Workshop on Global Software

Development, part of the International Conference on Software Engineering

(ICSE) (Portland, Oregon, USA, 2003).

Faraj, S. and Sproull, L. (2000). Coordinating Expertise in Software

Development Teams, Management Science 46(12): 1554–1568.

Galliers, R.D. and Swan, J.A. (1997). Against Structured Approaches:

Information Requirements Analysis as a Socially Mediated Process, in The

Thirtieth Annual Hawwaii International Conference on System Sciences

(Hawwaii, 1997).

Herbsleb, J.D. and Mockus, A. (2003). An Empirical Study of Speed and

Communication in Globally-Distributed Software Development, IEEE

Transactions on Software Engineering 29(6): 1–14.

Herbsleb, J.D., Mockus, A., Finholt, T.A. and Grinter, R.E. (2000). Distance,

Dependencies, and Delay in Global Collaboration, in Conference on

Computer Supported Cooperative Work (Philadelphia, Pennsylvania, USA,

2000).

Herbsleb, J.D. and Moitra, D. (2001). Global Software Development, IEEE

Software 18(2): 16–20.

Huang, J.C., Newell, S., Galliers, R.D. and Pan, S.-L. (2003). Dangerous

Liaisons? Component-Based Development and Organizational Subcultures,

IEEE Transactions on Engineering Management 50(1): 89–99.

Jarvenpaa, S.L., Knoll, K. and Leidner, D.E. (1998). Is anybody out

there? Antecedents of trust in global virtual teams, Journal of MIS 14(4):

29–64.

Jarvenpaa, S.L. and Leidner, D.E. (1999). Communication and Trust in Global

Virtual Teams, Organization Science 10(5): 791–815.

Karolak, D.W. (1999). Global Software Development: Managing Virtual Teams

and Environments. IEEE Computer Society: Los Alamitops, USA.

Kim, S.D. (2002). Lessons Learned from a Nationwide CBD PROMOTION

PROJECT, Communications of the ACM 45(10): 83–87.

Kobitzsch, W., Rombach, D. and Feldmann, R.L. (2001). Outsourcing in India,

IEEE Software 18(2): 78–86.

Kotlarsky, J. and Oshri, I. (2005). Social Ties, Knowledge Sharing and

Successful Collaboration in Globally Distributed System Development

Projects, European Journal of Information Systems 14(1): 37–48.

Kunda, D. and Brooks, L. (2000). Assessing Organisational Obstacles to

Component-Based Development: A case study approach, Information and
Software Technology 42: 715–725.

Land, F.F. and Kennedy-McGregor, M. (1987). Information and Information

Systems: Concepts and perspectives, in R.D. Galliers (ed.) Information

Analysis: Selected Readings, Sydney: Addison-Wesley Publishers Ltd.

Lave, J. and Wenger, E. (1991). Situated Learning Legitimate Peripheral

Participation, Cambridge: Cambridge University Press.
Majchrzak, A. and Malhotra, A. (2004). Virtual Workspace Technology Use and

Knowledge-Sharing Effectiveness in Distributed Teams: The influence of a

team’s transactive memory, Knowledge Management Knowledge Base.

URL:http://knowledgemanagement.ittoolbox.com/documents/

document.asp?i¼ 3164. Date accessed: September 23, 2004.
Malhotra, A., Majchrzak, A., Carman, R. and Lott, V. (2001). Radical

Innovation Without Collocation: A case study at Boeing-Rocketdyne, MIS

Quarterly 25(2): 229–249.
Miles, M.B. and Huberman, A.M. (1994). Qualitative Data Analysis: An

Expanded Sourcebook, California: Sage.

Mockus, A. and Weiss, D.M. (2001). Globalization by Chunking: A quantitative

approach, IEEE Software 18(2): 30–37.

Moreland, R.L. and Myaskovsky, L. (2000). Exploring the Performance Benefits

of Groups Training: Transactive memory or improved communication?

Organizational Behavior and Human Decision Processes 82(1): 117–133.

Murugesan, S. (1999). Leverage Global Software Development and Distribution

Using the Internet and Web, Cutter IT Journal 12(3): 57–63.

Olin, J.G., Greis, N.P. and Kasarda, J.D. (1999). Knowledge Management Across

Multi-tier Enterprise: The promise of intelligent software in the auto

industry, European Management Journal 17(4): 335–347.

Olson, J.S. and Olson, G.M. (2004). Culture Surprises in Remote Software

Development Teams, Queue 1(9): 52–59.

Orlikowski, W.J. (2002). Knowing in Practice: Enacting a collective capability in

distributed organizing, Organization Science 13(3): 249–273.

Oshri, I. and Newell, S. (2005). Component Sharing in Complex Products and

Systems: Challenges, solutions and practical implications, IEEE Transactions

on Engineering Management 52(4): 509–521.

Component reuse in global CBD J Kotlarsky et al

171

Peters, J.F. and Pedrycz, W. (2000). Software Engineering: An Engineering
Approach, New York: John Wiley & Sons, Inc.

Rafii, F. (1995). How Important Is Physical Collocation to Product Development

Success? Business Horizons (January–February): 78–84.

Ravichandran, T. and Rothenberger, M.A. (2003). Software Reuse Strategies

and Component Markets, Communications of the ACM 46(8): 109–114.

Repenning, A., Ioannidou, A., Payton, M., Ye, W. and Roschelle, J. (2001).

Using Components for Rapid Distributed Software Development, IEEE

Software 18(2): 38–45.

Sarker, S. and Sahay, S. (2003). Understanding Virtual Team Development: An

interpretive study, Journal of the Association for Information Systems 4: 1–38.

Sarker, S. and Sahay, S. (2004). Implications of Space and Time for Distributed

Work: An interpretive study of US–Norwegian system development teams,

European Journal of Information Systems 13(1): 3–20.

Starr, M.K. (1965). Modular Production: A new concept, Harvard Business

Review 43(November–December): 131–142.

Strauss, A.L. and Corbin, J.M (1998). Basics of Qualitative Research, Thousand

Oaks, CA: Sage Publications.

Szyperski, C. (1998). Component Software Beyond Object-Oriented

Programming, New York: Addison-Wesley.

Traas, V. and van Hillegersberg, J. (2000). The Software Component Market on

the Internet: Current status and conditions for growth, ACM SIGSOFT 25(1):

114–117.

Turnlund, M. (2004). Distributed Development Lessons Learned, Queue 1(9):

26–31.

Ulrich, K.T. and Eppinger, S.D. (2000). Product Design and Development, New

York, USA: McGraw-Hill.

Vitharana, P. (2003). Risks and Challenges of Component-Based Software

Development, Communications of the ACM 46(8): 67–72.

Walz, D.B., Elam, J.J. and Curtis, B. (1993). Inside a Software Design Team:

Knowledge acquisition, sharing, and integration, Communications of the

ACM 36(10): 62–77.

Yenne, B. (2002). Inside Boeing 777: Building The 777, St. Paul: MBI Publishing

Company.

Yin, R.K. (1994). Case Study Research: Design and Methods, Newbury Park, CA:

Sage.

About the authors
Dr. Julia Kotlarsky is an Assistant Professor of Information
Systems, Warwick Business School, UK. She holds a Ph.D.

degree in Management and IS from Rotterdam School of
Management Erasmus (The Netherlands). Her main re-
search interests revolve around social and technical aspects
involved in the management of globally distributed IS
teams, and IT outsourcing. Julia published her work in
journals such as Communications of the ACM, European
Journal of Information Systems, Information Systems
Journal, IEEE Security & Privacy, and others.

Dr. Ilan Oshri is an Assistant Professor of Strategic
Management, Rotterdam School of Management Erasmus,
The Netherlands. Ilan holds a Ph.D. degree in technological
innovation from Warwick Business School (UK). His main
research interest lies in the area of knowledge management
and innovation. Ilan has published widely his work in
journals and books which include IEEE Transactions on
Engineering Management, Communications of the ACM,
European Journal of Information Systems, Management
Learning, Information Systems Journal, and others.

Dr. Jos van Hillegersberg is a Professor of Design and
Implementation of Information Systems and head of the
Department of Information Systems and Change Manage-
ment at the University of Twente (The Netherlands). He has
published in Journal of Product Innovation Management,
Communications of the ACM, Information Systems, Journal
of Information Technology, and others.

Dr. Kuldeep Kumar is a Visiting Professor of IS at The City
University of Hong Kong (China). He is also the Professor
of IS at Florida International University, Miami (USA), and
Professor of IS Research at RSM Erasmus (The Nether-
lands). His research has been published in books and
journals, such as MIS Quarterly, Communications of the
ACM, IEEE Transactions on Software Engineering, Informa-
tion Systems, Informatie, and others.

Appendix A

Interviewees’ information

TCS – Interviewees’ details
Interviews were carried out in March 2002 in Gurgaon and Zurich sites. Roles are correct for 2002.

Name Role Location

Sanjay Ba Executive manager for Quartz Gurgaon
Sanjay Sa Delivery manager for Quartz Gurgaon
Sunila Offshore project leader for Dresdner Gurgaon
Sandeep Project manager and onsite project leader of Dresdner San Francisco
Bala Software engineer (team of Sunil) Gurgaon
Pankaja Offshore project leader for Skandia Gurgaon
Sourin Software engineer (team of Pankaj) Gurgaon
Nitina Technical consultant (former technical architect for Skandia) Gurgaon
N.G.S Vice President Gurgaon

Component reuse in global CBD J Kotlarsky et al

172

Ashvini Technical architect and team leader for Skandia Zurich
Tuhin Software engineer (team of Ashvini) Zurich
Krishna Manager of front-end team (head of team in Mumbai) Zurich
Rik Executive for TCS-Skandia Relationships (IS) Zurich
Rajan Project manager and onsite project leader for Skandia Zurich

aThese individuals were interviewed twice.

LeCroy - interviewees’ details

Interviews were carried out between November 2001 — January 2003 in Geneva and NY sites. Roles are correct for 2002.

Name Role Location

Larrya Director of software engineering, responsible for the NY team NY
Anthonya Chief software architect, responsible for the Geneva team Geneva
Gilles Software engineer Geneva
Adrian Web-master NY
Corey Vice President Information Systems NY
Dave VP, Chief Technology Officer NY

aThese individuals were interviewed twice.

Appendix Continued

Name Role Location

Component reuse in global CBD J Kotlarsky et al

173

	Globally distributed component-based software development: an exploratory study of knowledge management and work division
	Introduction
	Component-based development: background
	CBD in globally distributed software development contexts
	Research approach
	TCS globally distributed CBD
	LeCroy globally distributed CBD

	CBD: expertise-based or location-based division of work
	Capabilities supporting globally distributed CB software development
	Inter-site coordination capabilities
	Knowledge management capabilities
	Communication channels

	Reuse at Lecroy and TCS: some evidence
	Discussion and implications
	What implications does this study have for research and practice?

	References
	Appendix A
	Interviewees’ information

