The viscous modulation of Lamb’s dipole vortex
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A description of the adiabatic decay of the Lamb dipolar vortex is motivated by a variational
characterization of the dipole. The parameters in the description are the values of the entrophy and
linear momentum integrals, which change in time due to the dissipation. It is observed that the
dipole dilates during the decay procésadiusR~ (»t)*?, while the amplitude of the vortex and

its translation speed diminish in time proportional tet) *? and (wt)"!. © 1996 American
Institute of Physics.S1070-663(96)00206-7

In this Brief Communication we follow Swatérsn a  tion t—Q(y1(t), ...,yn(t)), where the parameters;(t)
description of the adiabatic frictional dissipation of the Lambare determined from the initial data and the evolution equa-
(or Batcheloy dipolar vortex® In Swaters this is done by  tions for the integrals, such that
means of an asymptotic expansion for a large Reynolds num-
ber, or say small kinematic viscosity. The solvability condi- E
tions in the perturbation analysis are translated towards the dt
end of his paper to transport or decay equations for the en- | i . o
ergy and entrophy integrals. Here it is really the decay ratel! tis Brief Communication we apply the principle to the

of the integrals that motivated us to give a description of the-2MP dipole, which will show that the vortex pair dilates
adiabatic decay. during the(adiabati¢ decay process, contrary to what was

The point of view that only the decay of a few of the observed by SwatefsThis difference is explained by the

infinitely many integrals seem to be important in the descrip-decay rate of the I|.near momentum mFegraI Wh'Ch_ IS an im-
tion of the dissipative dynamics is motivated by the self-Portant p.arame.ter in the chgracterlzatlon Of, the d'pP'.'e:
organization hypothesigsee Hasegawlaand references | We f'_rSt ertt_e_ Lellmb_s d'fp?:e as a relat(ljve eqwl_lft_)rlum
therein. This hypothesis specifies the idea of selective dissiSC'Ution. 1.e. r? crr]l_tlcahpomt of the energy un Ier Shpe%' Ic con-
pation of integrals and the relation with the asymptotic beStraints. With this characterization we apply the dynamic
havior of the system. We view the Navier—Stokes equation§elf'°rgan'zat'on principle to find the correct dt_'-zcay rates not
as a Poisson systerfor generalized Hamiltonian system only for energy and entrophy, but also for the linear momen-
tum integral.

given by the Euler equations, with a non-Hamiltonian pertur- i . i i
The evolution of vorticity for an incompressible planar

bation if v, the kinematic viscosity, is small. Due to the id is d ibed by th . K - ih ki
dissipation term the Poisson structure of the dynamical sysf-“' is described by the Navier—Stokes equation with kine-

tem is destroyed and the integrals of the conservative’,“atic viscosity coefficignt». Denoting Fhe scalar vorticity by
Hamiltonian, system are no longer preserved.  and the streamfunction by, we write

The adiabatic decay is an approximation of the evolution jﬁu:_vw.gv¢+ VAo,
of solutions of the dissipative system by means of a projec-
tion on a set of solutions of the conservative system. For the
Lamb dipole this is no more than a projection on a manifold
of relative equilibria, given suitable dynamics on this mani- ) o N
fold. In van Groesetf this adiabatic decay is shaped into a The spatial flow domain is the plarié? and conditions at
dynamical self-organization principle. The dynamics intro-mf'n'ty are that the vorticity vanishes, while the streamfunc-
duced on the manifold of relative equilibria is found from the fion ¢ satisfies
dissipative evolution of the integrals which characterize the ()

Yi(1)=(41i(),Q)=(51;(Q),vAQ). )

B _ _(0 1)
w=—Ay, with J= 1 o) (3)

manifold. This gives the adiabatic decay by means of dissi- e H?(R?), with ¢(x)~ — Ko In|x|,

pating constrained minimizers. In van Groesgrhis is 2m

shown for the decay of Taylor vortices. In van de Fliert and as|x|—.

van Groesehthe principle is applied to the adiabatic decay

of monopolar vortices. Herel" denotes the total vorticity, s€&). In casev=0, this
For a short recap of this dynamic princip]e, let dynamical system has a Poisson structure, with the Hamil-

Q(y1,...,y,) be a family of relative equilibria, corre- tonianH given by the kinetic energy,

sponding to exact solutions of tHeonservativg evolution 1

equation and found variationally from H(w)= Ef Yywdxdy. (4)
Cilt{H(w)lll(w)_ 715 iha(@)= ak @ Other invariant integrals are the Casimir integrals

C(w)=[f(w)dxdy, for an arbitrary functionf of w, with
Starting with a function) of this form, consider the evolu- special cases given by the circulation and the entrophy:
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1 ) The dissipative equations for the integrals can be found
F(“’):J wdxdy, W(w)= EJ wdxdy, (5 directly from the Navier—Stokes equations; for smooth vor-

_ _ ticity solutions w of the Navier—Stokes equations it holds
and furthermore the linear and angular momentum integralgnat

Lx(w)zwadXdy, Ly(w)=fywdxdy, H(w)=—-2vW(w), W(w)=—2vD(w),
(6) [(0)=0, P(w)=2v(w), (11
P(w)=£f (X% +y?)wdxdy. . .
2 Ly(@)=0, Ly(w)=0. (12

Relative equilibria of the Euler equatiorﬁ'se., of (3) with Here D(w):%f(vw)Z and the dot denotes differentiation

v=0] are found from variational principles lik&l) using s i, respect to time. We approximate the dissipative dynam-
constraints a choice of the Casimir and/or momentum inte;.q of the Navier—Stokes equations with initial condition

grals._ The pon-differentiable integrals for pqsitive an_d ”ega_given by the steadily translating Lamb dipole, by projection
tive circulations can be used separately to find relative equi

Lo , on the manifold of relative equilibria. In this adiabatic ap-
l(';b“a W;DBa compact supportsee van de Fliert and van . imation we are led by the dissipative equations for en-
roeseh” - -

trophy and linear momenturi/= —2vD,L,=0, to consider

the dynamics:
F+(w)=f (w),dxdy, F-(w)=f (w)_dxdy, .
@ Q(w(t),I(t)), withw=—-2vd, [=0. (13

with (w) , =max(,0) and @) _ =min(w,0). Here d=D(()). Since Lamb’s dipoleQ}(w,l) as given by
From the literature the best known dipolar vortex is the(9) satisfies the Laplace eigenvalue probléb+ —uAQ,

Lamb- or Batchelor-dipole with distributed vorticify’ As ~ we simply find the relation

pointed out in van de Flieftthis dipolar vortex is a relative

equilibrium characterized by the variational principle: d=D(Q)= M = ﬂ,
crit crit{H (o) Ly(@) =0, Ly()=I, P(w)=0, a
Y © and we obtain compatibility for the decay of the energy
(8) h=H(Q):
It is in fact not difficult to show that for a solution of a Tow VT T RS T e )

iational principle of the f . . .
vanational principie ot the form With w=1/2p;\wrr it follows that W=—4vp; W/,

crit{H(w)|Ly(w)=0, Ly(w)=I, such that we can conclude:

w~(vt) 2, h~(wt) 1, R%~ ut,

P(0)=0, C(w)=c}, 1) 1) g
with parameter valuée R\{0}, the flow of the angular mo-

mentum is the identity and the Hamiltonian flow is a trans-

lation in the x-direction. So for Lamb’s dipole we have a We compare these decay rates with Swatterho describes

steady transiation in the-direction, with the speed given by the viscous adiabatic decay of the Lamb dipole vortex using

the Lagrang_e multiplier corresponding to the linear MOMeNthe transport equationse., the dissipative equationr the
tum constraint (w) =1. : -

. . . .. energy and entrophyd=—-2vW, W=-2vD, in a singu-
Due to the symmetry in positive and negative vorticity . . S
L L lar perturbation theory with small parameter Taking into
and the optimization ovet , the multipliers forI", and

) account the decay rates of energy and entrophy, together
I'_ are equal to zero. Assuming that the free boundary probgii the “dispersion” relation];(kR) =0, a solution is con-

lem for the vorticity is solved by a circular support, it holds structed withk = 0. R=0 andi= — sz)\/Rz such that

onr=<R that y=puw+\y and the vorticity satisfies in this ’ ! ’

circle w~ (vt) 2, h~(wt) 1, R2~1,

L (15)
/.LZF"‘Vt, A~(wt) "L,

(16)

—J
Jo(p1) !

with, in terms of the specified parameters; (is the first
non-trivial zero ofJ,):

w(r,0)= (kr)sin 6, 9 ,U«=%~1, A~ exp( —K2ut).

In comparison with the adiabatic decay described above,
these dynamics are not adjusted to the decay of the linear

, lps 1 R? I momentum integral. An important consequence of including
Re= ) =15=—7, AN=5—5z. (100  the decay of the linear momentum besides that of entroph
2\ 7w e ;f 27R Y Py

and energy is the dilation of the dipolar vortex, wiRf
We remark again that the multipliaris the translation speed growing linearly in time. This is similar to the dissipative
of the dipole. behavior of monopolar vortices, where we observe a dilation
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ance equation as found from the Navier—Stokes equations,
such that the orthogonality conditions in the asymptotic ex-
pansion are met as well. In terms of the homogeneous adjoint
problem formulated by Swatérsve find that the variational
formulation gives a motivated choice for the orthogonality
conditions of the inhomogeneity.

Finally we remark that the decay rates for the Lamb
dipole seem special, as the energy decaysvé)s ¢ and not
as logt, as would be expected. This can be related to the
special, optimal choice of the constraint valyte. For an-

other choice of this value we find that the Lagrange multi-
plier for the circulation is not equal to zero, in which case

° 10 200 oy wu~1hv and it follows thatw= —2vd~ —2»w? such that
W~(Vt)_1, h~log vt, RZ2~ pt,
FIG. 1. The evolution in time of the parameters which characterize the 1
Lamb dipole. For the initial parameter setting we chég=8 cm and 1 (17)
Ao=0.31 cm s, which are typical values as in the experiments byr Flo = FN vt, 7\"’(1/'[)71.

etal®® Then we have ky=0.48 cnt!, ;=129 cnfs! and
wo=4.5 cnf s 2. With »=0.01 cnf s™!, the Reynolds number for this

flow is Re— 2Rohg /=500, These decay rates hold for instance for the Chaplygin vortex,

which satisfieq8) for another value ofy+ than the optimal

value; see van de FlieftThese decay rates also correspond
to the rates found for monopolar vortiéeand for Oseen’s

elliptically shaped vortex support the expansion is accompa(—#'ffus'ng vc_)rtex, which is known to be an exact but uncon-
fined solution to the Navier—Stokes equatiqsee for in-

nied by a relaxation towards axisymmejfy. de Fi q G z

In Fig. 1 the evolution of the parameter values is shown,Stance van de Fliert and van Groegen
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