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A description of the adiabatic decay of the Lamb dipolar vortex is motivated by a variational
characterization of the dipole. The parameters in the description are the values of the entrophy and
linear momentum integrals, which change in time due to the dissipation. It is observed that the
dipole dilates during the decay process@radiusR;(nt)1/2], while the amplitude of the vortex and
its translation speed diminish in time proportional to (nt)23/2 and (nt)21. © 1996 American
Institute of Physics.@S1070-6631~96!00206-7#

In this Brief Communication we follow Swaters1 in a
description of the adiabatic frictional dissipation of the Lamb
~or Batchelor! dipolar vortex.2,3 In Swaters1 this is done by
means of an asymptotic expansion for a large Reynolds num-
ber, or say small kinematic viscosity. The solvability condi-
tions in the perturbation analysis are translated towards the
end of his paper to transport or decay equations for the en-
ergy and entrophy integrals. Here it is really the decay rates
of the integrals that motivated us to give a description of the
adiabatic decay.

The point of view that only the decay of a few of the
infinitely many integrals seem to be important in the descrip-
tion of the dissipative dynamics is motivated by the self-
organization hypothesis~see Hasegawa4 and references
therein!. This hypothesis specifies the idea of selective dissi-
pation of integrals and the relation with the asymptotic be-
havior of the system. We view the Navier–Stokes equations
as a Poisson system~or generalized Hamiltonian system!
given by the Euler equations, with a non-Hamiltonian pertur-
bation if n, the kinematic viscosity, is small. Due to the
dissipation term the Poisson structure of the dynamical sys-
tem is destroyed and the integrals of the conservative,
Hamiltonian, system are no longer preserved.

The adiabatic decay is an approximation of the evolution
of solutions of the dissipative system by means of a projec-
tion on a set of solutions of the conservative system. For the
Lamb dipole this is no more than a projection on a manifold
of relative equilibria, given suitable dynamics on this mani-
fold. In van Groesen5,6 this adiabatic decay is shaped into a
dynamical self-organization principle. The dynamics intro-
duced on the manifold of relative equilibria is found from the
dissipative evolution of the integrals which characterize the
manifold. This gives the adiabatic decay by means of dissi-
pating constrained minimizers. In van Groesen5,6 this is
shown for the decay of Taylor vortices. In van de Fliert and
van Groesen7 the principle is applied to the adiabatic decay
of monopolar vortices.

For a short recap of this dynamic principle, let
V(g1 , . . . ,gn) be a family of relative equilibria, corre-
sponding to exact solutions of the~conservative! evolution
equation and found variationally from

crit
v

$H~v!uI 1~v!5g1 ; . . . ;I n~v!5gn%. ~1!

Starting with a functionV of this form, consider the evolu-

tion t→V„g1(t), . . . ,gn(t)…, where the parametersg i(t)
are determined from the initial data and the evolution equa-
tions for the integrals, such that

d

dt
g i~ t !5^dI i~V!,V t&5^dI i~V!,nDV&. ~2!

In this Brief Communication we apply the principle to the
Lamb dipole, which will show that the vortex pair dilates
during the~adiabatic! decay process, contrary to what was
observed by Swaters.1 This difference is explained by the
decay rate of the linear momentum integral which is an im-
portant parameter in the characterization of the dipole.

We first write Lamb’s dipole as a relative equilibrium
solution, i.e. a critical point of the energy under specific con-
straints. With this characterization we apply the dynamic
self-organization principle to find the correct decay rates not
only for energy and entrophy, but also for the linear momen-
tum integral.

The evolution of vorticity for an incompressible planar
fluid is described by the Navier–Stokes equation with kine-
matic viscosity coefficientn. Denoting the scalar vorticity by
v and the streamfunction byc, we write

]t̂v52¹v•J¹c1nDv,

v52Dc, with J5S 0 1

21 0D . ~3!

The spatial flow domain is the planeR2 and conditions at
infinity are that the vorticity vanishes, while the streamfunc-
tion c satisfies

cPH2~R2!, with c~x!;2
G~v!

2p
lnuxu,

as uxu→`.

HereG denotes the total vorticity, see~5!. In casen50, this
dynamical system has a Poisson structure, with the Hamil-
tonianH given by the kinetic energy,

H~v!5
1

2E cvdxdy. ~4!

Other invariant integrals are the Casimir integrals
C(v)5* f (v)dxdy, for an arbitrary functionf of v, with
special cases given by the circulation and the entrophy:
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G~v!5E vdxdy, W~v!5
1

2E v2dxdy, ~5!

and furthermore the linear and angular momentum integrals,

Lx~v!5E xvdxdy, Ly~v!5E yvdxdy,

~6!

P~v!5
1

2E ~x21y2!vdxdy.

Relative equilibria of the Euler equations@i.e., of ~3! with
n50] are found from variational principles like~1! using as
constraints a choice of the Casimir and/or momentum inte-
grals. The non-differentiable integrals for positive and nega-
tive circulations can be used separately to find relative equi-
libria with a compact support~see van de Fliert and van
Groesen!,7,8

G1~v!5E ~v!1dxdy, G2~v!5E ~v!2dxdy,

~7!

with (v)15max(v,0) and (v)25min(v,0).
From the literature the best known dipolar vortex is the

Lamb- or Batchelor-dipole with distributed vorticity.2,3 As
pointed out in van de Fliert,8 this dipolar vortex is a relative
equilibrium characterized by the variational principle:

crit
g1

crit
v

$H~v!uLx~v!50, Ly~v!5 l , P~v!50,

~8!

W~v!5w, G1~v!5g1, G2~v!52g1%.

It is in fact not difficult to show that for a solution of a
variational principle of the form

crit
v

$H~v!uLx~v!50, Ly~v!5 l ,

P~v!50, C~v!5c%,

with parameter valuelPR\$0%, the flow of the angular mo-
mentum is the identity and the Hamiltonian flow is a trans-
lation in the x-direction. So for Lamb’s dipole we have a
steady translation in thex-direction, with the speed given by
the Lagrange multiplier corresponding to the linear momen-
tum constraintLy(v)5 l .

Due to the symmetry in positive and negative vorticity
and the optimization overg

1
, the multipliers forG1 and

G2 are equal to zero. Assuming that the free boundary prob-
lem for the vorticity is solved by a circular support, it holds
on r<R that c5mv1ly and the vorticity satisfies in this
circle

v~r ,u!5
22kl

J0~r1!
J1~kr !sin u, ~9!

with, in terms of the specified parameters (r1 is the first
non-trivial zero ofJ1):

R25
lr1

2Apw
, m5

1

k2
5
R2

r1
2 , l5

l

2pR2 . ~10!

We remark again that the multiplierl is the translation speed
of the dipole.

The dissipative equations for the integrals can be found
directly from the Navier–Stokes equations; for smooth vor-
ticity solutionsv of the Navier–Stokes equations it holds
that

Ḣ~v!522nW~v!, Ẇ~v!522nD~v!,

Ġ~v!50, Ṗ~v!52nG~v!, ~11!

L̇x~v!50, L̇y~v!50. ~12!

Here D(v)5 1
2*(¹v)2 and the dot denotes differentiation

with respect to time. We approximate the dissipative dynam-
ics of the Navier–Stokes equations with initial condition
given by the steadily translating Lamb dipole, by projection
on the manifold of relative equilibria. In this adiabatic ap-
proximation we are led by the dissipative equations for en-
trophy and linear momentum:Ẇ522nD,L̇y50, to consider
the dynamics:

V„w~ t !,l ~ t !…, with ẇ522nd, l̇50. ~13!

Here d5D(V). Since Lamb’s dipoleV(w,l ) as given by
~9! satisfies the Laplace eigenvalue problemV52mDV,
we simply find the relation

d5D~V!5
W~V!

m
5
w

m
,

and we obtain compatibility for the decay of the energy
h5H(V):

ḣ5
]h

]w
ẇ1

]h

] l
l̇5mẇ522nw. ~14!

With m5 l /2r1Awp it follows that ẇ524nr1Aw3p/ l ,
such that we can conclude:

w;~nt !22, h;~nt !21, R2;nt,
~15!

m5
1

k2
;nt, l;~nt !21.

We compare these decay rates with Swaters,1 who describes
the viscous adiabatic decay of the Lamb dipole vortex using
the transport equations~i.e., the dissipative equations! for the
energy and entrophy:Ḣ522nW, Ẇ522nD, in a singu-
lar perturbation theory with small parametern. Taking into
account the decay rates of energy and entrophy, together
with the ‘‘dispersion’’ relationJ1(kR)50, a solution is con-
structed withk̇ 5 0, Ṙ50 andl̇52nr1

2l/R2, such that

w;~nt !22, h;~nt !21, R2;1 ,
~16!

m5
1

k2
;1 , l;exp~2k2nt !.

In comparison with the adiabatic decay described above,
these dynamics are not adjusted to the decay of the linear
momentum integral. An important consequence of including
the decay of the linear momentum besides that of entrophy
and energy is the dilation of the dipolar vortex, withR2

growing linearly in time. This is similar to the dissipative
behavior of monopolar vortices, where we observe a dilation
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of the vortex domain while the amplitude diminishes.~For an
elliptically shaped vortex support the expansion is accompa-
nied by a relaxation towards axisymmetry.!7

In Fig. 1 the evolution of the parameter values is shown,
starting with a typical dipole velocity and radius of the sup-
port. For comparison with experimental and numerical re-
sults on the decay of dipolar vortices with a linearc-v re-
lation, we refer to Flo´r, van Heijst and Delfos,9 Flór and van
Heijst10 and Cavazza, van Heijst and Orlandi.11 In the nu-
merical simulations of the latter paper it was observed that
the dipole may eject patches of vorticity, while the remaining
dipole still satisfies a linearc-v relationship. Similar to the
generation of filaments in the evolution of monopolar vorti-
ces~as was observed by for instance Melander, McWilliams
and Zabusky!,12 this ejection of patches can not be described
by the decay through the quasi-stationary solutions given by
the relative equilibria.

In this respect it also needs to be remarked that although
the relative equilibria have compact support, a solution of the
Navier–Stokes equation will not be compact, since the dif-
fusion term will smooth out the support instantaneously.
Usually in numerical and laboratory experiments the vortex
domain is defined by a~constant! threshold for the vorticity,
i.e., an isolated eddy or vortex is defined by that region
where uv(x)u>v th . In this way the vortex support is well
defined and the radius of the dipole as given by the adiabatic
approximation should be viewed as such.

Concluding we can say that, led by the variational for-
mulation of the Lamb dipole, the adiabatic decay is de-
scribed using the decay rates for the entrophy and the linear
momentum. The energy then automatically satisfies the bal-

ance equation as found from the Navier–Stokes equations,
such that the orthogonality conditions in the asymptotic ex-
pansion are met as well. In terms of the homogeneous adjoint
problem formulated by Swaters1 we find that the variational
formulation gives a motivated choice for the orthogonality
conditions of the inhomogeneity.

Finally we remark that the decay rates for the Lamb
dipole seem special, as the energy decays as (nt)21 and not
as lognt, as would be expected. This can be related to the
special, optimal choice of the constraint valueg

1
. For an-

other choice of this value we find that the Lagrange multi-
plier for the circulation is not equal to zero, in which case
m;1/w and it follows thatẇ522nd;22nw2 such that

w;~nt !21, h; log nt, R2;nt,
~17!

m5
1

k2
;nt, l;~nt !21.

These decay rates hold for instance for the Chaplygin vortex,
which satisfies~8! for another value ofg

1
than the optimal

value; see van de Fliert.8 These decay rates also correspond
to the rates found for monopolar vortices7 and for Oseen’s
diffusing vortex, which is known to be an exact but uncon-
fined solution to the Navier–Stokes equations~see for in-
stance van de Fliert and van Groesen!.7
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FIG. 1. The evolution in time of the parameters which characterize the
Lamb dipole. For the initial parameter setting we choseR058 cm and
l050.31 cm s21, which are typical values as in the experiments by Flo´r
et al.9,10 Then we have k050.48 cm21, l 05129 cm3 s21 and
w054.5 cm2 s22. With n50.01 cm2 s21, the Reynolds number for this
flow is Re52R0l0 /n5500.
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