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 The purpose of this article is to simultaneously optimize decision rules for
 combinations of elementary decisions. With this approach, rules are found
 that make more efficient use of the data than could be achieved by opti-
 mizing these decisions separately. The framework for the approach is de-
 rived from Bayesian decision theory. To illustrate the approach, two ele-
 mentary decisions (selection and mastery decisions) are combined into a
 simple decision network. A linear utility structure is assumed. Decision rules
 are derived both for quota-free and quota-restricted selection-mastery deci-
 sions in case of several subpopulations. An empirical example of instruc-
 tional decision making in an individual study system concludes the article.

 Decision problems in educational and psychological testing can be classi-
 fied in many ways. An elegant typology of test-based decisions has been
 given in van der Linden (1985, 1990). Each type of decision making in this
 typology can be viewed as a specific configuration of three basic elements-
 namely, a test, a treatment, and a criterion. In general, the following four
 different types of decision problems can be distinguished: selection, mas-
 tery, placement, and classification.

 Educational applications of the four types of decision making can be
 found in such fields as the admission of students to schools (selection),
 pass-fail decisions (mastery), the aptitude/treatment/interaction paradigm
 in instructional psychology (placement), and vocational guidance situations
 where most promising schools must be identified (classification).

 In Hambleton and Novick (1973), Huynh (1976a, 1977), Mellenbergh
 and van der Linden (1981), Novick and Petersen (1976), Petersen (1976),
 Petersen and Novick (1976), van der Linden (1980, 1981, 1987) and
 Vos (1988), these elementary decision problems have been studied ex-

 Portions of this article were presented at the European Meeting of the Psycho-
 metric Society, 1987, Enschede, The Netherlands. The author is indebted to Wim
 J. van der Linden as well as two anonymous reviewers for their valuable comments
 and to Jan Gulmans for providing the data for the empirical example.
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 tensively; these authors also indicate how, analytically or numerically, op-
 timal decision rules can be found by using (empirical) Bayesian decision
 theory.

 The four elementary decisions can be met both in their pure forms or in
 combinations with each other. The latter is the case, for instance, in test-
 based decision making in individualized study systems (ISSs). These sys-
 tems can be conceived of as networks that consist of various types of
 decisions, as nodes (Vos & van der Linden, 1987). In such systems decision
 making can be viewed as the processing of students through a network of
 several of the elementary decisions.

 The purpose of this article is the simultaneous optimization of combina-
 tions of elementary decisions using a decision-theoretic approach. Com-
 pared with separate optimization of elementary decisions, two main advan-
 tages can be identified. First, rules making more efficient use of the data
 can be found. Second, utility structures can be made more realistic. In
 order to illustrate the approach, here a selection and a mastery decision will
 be combined into a simple decision network, and it will be indicated how
 optimal rules for guiding students through such a system can be derived.
 The first advantage of the simultaneous approach is illustrated using this
 simple system. For instance, when optimizing acceptance-rejection rules in
 the combined decision network, pass-fail decisions to be made later can
 already be taken into account. The second advantage will be explained after
 the utility function for the combined decision has been specified.

 For each elementary decision, one or more of the following restrictions
 may apply (van der Linden, 1990):
 1. Multiple populations. The problem of culture-fair decision making may
 arise because of the presence of subpopulations reacting differently to the
 test items-that is, for populations defined by race or sex. In such a case,
 the test items are often assumed to be biased against some of the popu-
 lations.

 2. Quota restrictions. For some treatments, due to shortage of resources,
 the number of vacancies are constrained.

 3. Multivariate test data. The decisions are based on data from a whole test

 battery instead of a single test.
 4. Multivariate criteria. The success of the treatments is measured by multi-
 ple criteria.

 Here, restrictions will only be made with respect to the presence of
 subpopulations and the number of students to be accepted for some treat-
 ments. First, the problem of culture-fair decision making will be considered
 for a quota-free selection problem. Next, optimal rules will be derived for
 quota-restricted selection problems using methods of constrained optimiza-
 tion. The final section presents some empirical examples of optimal cut-off
 scores for quota-free as well as quota-restricted selection-mastery deci-
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 sions. These are for two subpopulations and are referred to as the disadvan-
 taged and the advantaged populations.

 Statement of the Problem

 As noted before, a well-known example of combinations of elementary
 decisions in education is an individualized instruction system. Figure 1
 shows a flowchart of a system in which a selection decision is followed by
 a treatment, in this case an instructional module. Then a mastery decision
 follows, after which a placement decision assigns the students to two differ-
 ent routes through a module, both leading to the same learning objective.
 Real-life ISSs often have more decision points.

 Selection-mastery decisions may occur in an ISS, for instance, when de-
 cisions on the admission of students to the system should be made. Then a
 selection test is administered before the treatment takes place and students
 promising satisfactory results on the criterion are accepted for the first
 module of the instructional program (see Figure 2). Let us suppose that the
 criterion is unreliably measured, which is not uncommon in ISSs. If success
 on the criterion is measured by a threshold value separating masters from
 nonmasters, then, in fact, after the treatment a mastery decision has to be
 taken, and the problem is a selection-mastery decision problem. Students
 who have reached the module objectives may proceed with the next mod-
 ule. However, students who failed are provided with supplemental instruc-
 tion, extra learning time, corrective feedback, and the like. These students
 have to prepare themselves for a new mastery test.

 In the following, we shall suppose that in the selection-mastery decision
 problem g (g ? 2) subpopulations reacting differently to the test items can
 be distinguished. Furthermore, it is assumed that the observed selection
 test score variable X, the observed mastery test score variable Y, and the
 true score variable T underlying Y, the criterion score, assume only con-

 treatment i

 est treatment criterion

 I treatment j

 reject

 FIGURE 1. Example of an individualized study system
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 test treatmentiteion

 reject

 FIGURE 2. A system of one selection and one mastery decision

 tinuous values. Formally, the presence of populations reacting differently
 to test items implies different cut-off scores for each population (Gross &
 Su, 1975; Petersen & Novick, 1976). Therefore, let x,ci and Yci denote the
 cut-off scores for subpopulation i (i = 1,2,... , g) on the observed test score
 variables X and Y, respectively. However, the cut-off score t,c on the crite-
 rion score T is assumed to be equal for each population and is set in advance
 by the decision maker. The combined decision problem can now be stated
 as setting simultaneously cut-off scores x,i and Yci that, given the value of t,,
 are optimal in some sense.

 In the present article, following common practice in criterion-referenced
 testing, we consider only decisions in which the decision rules 8 have a mon-
 otone form: Students are admitted to a treatment if their test score is above

 a certain cutting point and rejected otherwise. They can be defined for our
 example in the following way:

 ao for X < xci
 B(X, Y) = a for X xc, Y <yc (1)

 a2 for X >xci, Y 2 yi

 where ao, al, and a2 stand for the actions to reject a student, to retain an
 accepted student, and to advance an accepted student, respectively.

 An appropriate framework for dealing with decision problems such as
 this is Bayesian decision theory (e.g., DeGroot, 1970; Ferguson, 1967;
 Keeney & Raiffa, 1976; Lindgren, 1976). There are two fundamental ele-
 ments in a Bayesian procedure: probabilities and utilities. In case of an ISS,
 a probability model predicts the outcomes of the several possible routes for
 the students, and a utility structure evaluates the outcomes predicted. The
 optimal procedure as prescribed by Bayesian decision theory is to look for
 a decision rule that maximizes expected utility.

 With respect to the first element, it will be assumed that the relation
 between the measurement X of the selection test, the measurement Y of the
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 mastery test after the treatment, and the criterion variable T can be repre-
 sented by a joint probability function fi (x, y, t) of X, Y, and T. The
 experiment needed for parameter estimation of this joint probability func-
 tion runs as follows: Students from the same probability function qi (x) of
 X are randomly drawn and accepted for the treatment, after which their
 performances on the mastery test Y are measured. It is important to notice
 that the necessary statistics for specifying Rfi (x, y, t) come from the experi-
 ment executed as above and not, for example, from ISSs in which students
 are already either rejected or accepted for the treatment on the basis of
 their scores on the selection test in question. This is to guarantee that qj (x)
 and the rest of Ifi (x, y, t) that arise in this way do not depend on whether
 or not a student is selected for the treatment on the basis of his or her

 realized value of X. With respect to this requirement, it should be realized
 that, although the nature of the actions shown in Figures 1 and 2 is se-
 quential, the cut-off scores x,i and Yci are optimized simultaneously using
 data coming from the above experiment. Note that, due to the presence of
 different populations reacting differently to test items, different probability
 functions for each population should be assumed (Gross & Su, 1975; Peter-
 sen & Novick, 1976).

 Also, the decision maker may have different utilities associated with dif-
 ferent populations (Gross & Su, 1975; Petersen & Novick, 1976). Hence,
 in addition to separate probability distributions, the decision maker has to
 specify explicitly his or her utility function for each subpopulation sepa-
 rately.

 Monotonicity Conditions

 As mentioned before, in a decision-theoretic approach, optimal decision
 rules are found by optimizing expected utility. However, the restriction to
 monotone rules in our article is only correct if there are no nonmonotone
 rules with higher expected utility. It is here that the notion of an essentially
 complete class of decision rules comes in handy. An essentially complete
 class is defined as a class of decision rules as good as rules outside this class
 (e.g., Ferguson, 1967, p. 55).

 In case of separate elementary decisions, the monotonicity conditions are
 known (Ferguson, 1967, section 6.1; Karlin & Rubin, 1956). Two condi-
 tions have to be met. First, the probability model relating observed test
 score Z to true score T should have a monotone likelihood ratio (MLR)-
 that is, it is required that for any t2 < t1, the likelihood ratio f(z I tl)/f(z It2)
 is a nondecreasing function of z. Second, the utility function should be
 monotone-that is, the actions should be ordered such that for each two
 adjacent actions the utility functions have at most one point in which the
 difference between the utilities changes sign. If these conditions are met, a
 monotone solution is said to exist. It should be noted that for the classifica-
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 tion problem these conditions do not hold without modifications (van der
 Linden, 1987).

 To guarantee that the monotone rule of the combined decision problem
 belongs to an essentially complete class, the following extra condition (Leh-
 mann, 1959, section 3.3) should hold: For any t2 < t1, the likelihood ratio
 k (x, yItl)/k (x, y It2) is a nondecreasing function in each of its arguments-
 that is, for any t2 < t1 and fixed values of Y = yfx and X = Xfix, the likelihood
 ratios k (x, yfxiltl)/k (x, yfix lt2) and k (xfi, yl tl)/k (xfr, ylIt2) are nondecreasing
 functions of x and y, respectively.

 It will be shown that, in addition to the conditions of MLR and monotone
 utility, this condition is sufficient for a monotone solution to exist for the
 combined decision problem. The condition of monotone utility is elabo-
 rated in the next section.

 Linear Utility Function for a Selection-Mastery Decision

 Generally speaking, a utility function evaluates the total consequences of
 all possible decision outcomes. Formally, it is a function uji(t) that describes
 the utility incurred when action aj (j = 0, 1, 2) is taken for the student from
 subpopulation i whose true score is t. Although utility functions can be em-
 pirically assessed without making any assumptions about the form of the
 utility functions (e.g., Vrijhof, Mellenbergh, & van den Brink, 1983), usu-
 ally the form of the utility function is specified on a priori grounds. In sta-
 tistical decision theory, several forms of the utility functions have been
 adopted. Amongst the forms most extensively discussed in the psycho-
 metric literature belongs the threshold utility (Gross & Su, 1975; Hamble-
 ton & Novick, 1973; Novick & Petersen, 1976; Petersen, 1976; Swamina-
 than, Hambleton, & Algina, 1975; van der Linden, 1980, 1981, 1987) in
 which the utility is at a constant low level up to some threshold point tc and
 then at a constant high level above that point.

 An obvious disadvantage of the threshold utility function is that it as-
 sumes constant utility for students to the left or to the right of t, no matter
 how large their distance from t,. For instance, a misclassified true master
 with a true score just above t, gives the same utility as a misclassified true
 master with a true score far above tc. It seems more realistic to suppose that
 for misclassified true masters the utility is a monotonically decreasing func-
 tion of the true score t.

 Moreover, the threshold utility function shows a "threshold" at the point
 t = tc, and this also seems unrealistic in many cases. In the neighborhood of
 this point, the utilities for correct and incorrect decisions frequently change
 smoothly rather than abruptly.

 As discussed earlier, the linear utility functions, just like the threshold
 utility functions, are specified on a priori grounds. It is, however, not
 known whether decision makers agree with these a priori chosen functions.
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 Fortunately, the linear utility function dealt with here seems to be a realistic
 representation of the utilities actually incurred in many decision-making
 situations. In a recent study, for instance, it was shown by Mellenbergh
 (1989), van der Gaag (1987), and van der Gaag, Mellenbergh, and van den
 Brink (1988) that many empirical utility structures could be approximated
 by linear functions.

 In view of this, Mellenbergh and van der Linden (1981) and van der
 Linden and Mellenbergh (1977) propose a linear utility function for deter-
 mining optimal cutting scores on the separate decisions. Here, their func-
 tion is restated for the combined decision problem as a linear function in t
 for subpopulation i (also see Figure 3):

 rboi(t - t) + doi for X <x,ci
 uji (t) = bli(t - tc) + dii for X xci, Y <Yc, (2)

 .b2i(t- t) + d2i for X >xci, Y > Yci
 where boi, b2i > 0.

 For each action aj (j = 0, 1, 2), this function consists of a constant term
 and a term proportional to the difference between the criterion perfor-
 mance t of a student and the minimum level of satisfactory criterion per-
 formance t,. The parameters dji(j = 0, 1, 2; i = 1,2) can represent, for ex-
 ample, the costs of testing or the cost of following an instructional module.

 The values for dji are mostly negative because costs of testing are involved.
 Also, the values for dji might differ by group, for instance, if special test
 instructions have to be given for some minority groups. The condition
 boi, b2i > 0 is equivalent to the statement that for the rejected students and
 the accepted students who passed the mastery test, utility is a strictly de-
 creasing and increasing function of t, respectively.

 Note that it cannot be said beforehand whether the utility associated with
 action a,-that is, uli(t)-is increasing or decreasing, because the utility of
 the combined decision depends on the utilities associated with the selection
 as well as the mastery decision. Depending on whether the influence of
 the utility associated with the acceptance or with the fail decision is the
 most important, uli(t) is an increasing or decreasing function of t, respec-
 tively. The parameters bji and d1j (j = 0, 1,2; i = 1,2) have to be empirically
 assessed (e.g., Novick & Lindley,1978; Vos, 1988). Figure 3 displays an
 example of a combined linear utility function for bli > 0.

 At the beginning of the article, I remarked that one of the main advan-
 tages of a simultaneous approach was that more realistic utility structures
 could be used. Formula 3 effectively demonstrates how a utility function
 defined on the ultimate criterion of the ISS (master or nonmaster) can be
 properly brought into a previous decision (selection decision).

 As noted before, it will be assumed in the combined decision problem
 that g (g ? 2) subpopulations can be distinguished because of possible bi-
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 Uji(T) T

 u2i (t)

 uli (t)

 Itio,0 t12, i -T

 FIGURE 3. Example of a linear utility function for a selection-mastery decision
 (bi, > 0)

 ases in the tests implying that the optimal cutting scores, the probability
 functions, and the utility functions are allowed to assume a different form
 for each subpopulation (Gross & Su, 1975; Petersen & Novick, 1976). De
 Gruijter and Hambleton (1984) have discussed the problems of how inclu-
 sive a population should be and that the sample size in each subpopulation
 may be too small to result in the stable determination of optimal cutting
 scores.

 The point to be noted, however, is that the necessity to distinguish sub-
 populations arises from the decision problem and its educational or societal
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 context (van der Linden, 1985) and not from the application of statistical
 decision theory. Any other method of setting cutting scores will meet the
 same problem as it arises. In contrast, statistical decision theory is quite
 able to deal with student sampling and subpopulation structures when con-
 fronted with the necessity to do so.

 As Gross and Su (1975) and Petersen and Novick (1976) have argued
 convincingly, fair selection is a question of utilities. Whether a selection
 procedure is believed to be fair to the various subpopulations that can be
 distinguished depends on the utilities of those involved in the selection
 process. From this point of view, the linear utility model can be used to
 allow for the fact that the students might belong to a disadvantaged or ad-
 vantaged subpopulation by choosing separate parameter values for the sub-
 populations involved (Mellenbergh & van der Linden, 1981). Suppose, for
 example, that subpopulation h is considered more advantaged than i. In
 choosing values of the parameters of the linear utility function, this can be
 taken into account by requiring that incorrect decisions are considered
 worse for subpopulation i than for h, whereas correct decisions are consid-
 ered more valuable for i than for h. This amounts to choosing values of the
 slope parameters such that b0o > boh and b2i > b2h for all t.

 The possible actions are supposed to be ordered as ao, al, and a2. Using
 the fact that, as can be seen from Figure 3, the difference between the util-
 ities changes sign precisely once, the condition of monotone utility for the
 utility function defined by Formula 2 can be expressed as

 uj,(t) - uoi(t) = (bli + boi)(t - tc) + dii - doi > 0 for t > tlo,i

 ui,(t) - uoi(t) = (bli + boi)(t - tc) + d i - doi 5 0 for t < tlo,, (3)

 U2i(t) - Uli(t) = (b2i - bli)(t - tc) + d2i - di r 0 for t > tl2,i

 u2i(t) - u1i(t) = (b2i- bli)(t - tc) + d2i - di 0 for t < t2,i' (4)

 where tio,i and t12,i(t10,i 5 t12,i) denote the T coordinates of the intersection
 of utility line uli(t) with uoi(t) and U2i(t), respectively. Furthermore, it is
 assumed that the functions uli(t) - uo0(t) and U2i(t) - Uli(t) are strictly in-
 creasing functions of t, implying that the slope parameters (bli + boi),
 (b2i - bli) > 0. Using the fact that bo0, b2i > 0, this means that the following

 condition should hold for the utility parameter bli:

 b2i > bii, if bli > 0

 boi > -bli, if b li < 0.

 Optimal Cutting Scores for Quota-Free Selection

 In this section, optimal cutting scores are derived for the combined de-
 cision problem in case of quota-free selection. That is, we are looking for
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 pairs of cutting scores (xci, Yc) such that the overall expected utility is a
 maximum.

 Overall Expected Utility

 In maximizing overall expected utility, first the expected utility of a
 random student from the ith subpopulation will be calculated, which, as
 monotone solutions are looked for, can be written as

 E [ui (T xci, yc)] = [bo(t - t) + doi]wi(x, t) dtdx

 "+ ff [bl(t - tc) + di]f(x, y, t)dtdy dx (6)

 "+ ff [b2i(t - tc) + d2i]fli(x, y, t) dtdy dx,
 Xci Yci --

 where w (x, t) is the joint probability function of X and T in subpopulation
 i. Let Ei(Tlx), ki(x, y), and Ei(Tlx, y) denote the regression function of the
 criterion variable Ton X, the joint probability function of X and Y, and the
 regression function of the criterion variable T on X and Y in subpopulation
 i, respectively, and rearranging terms, it follows that (6) can be written as

 E[ui(Txci, Yc)] = {bo[tc - Ei(T x)] + doi}qi(x) dx

 "+ {(bo0 + bl)[Ei(Tlx) - tcl

 "+ d1i - doil}q(x) dx (7)

 + {(b2i,- b1i)[ E(Tlx, y) - tc]
 X ci ci

 + d2i- dll}ki(x, y) dy dx.

 Now, the decision procedure is viewed as a series of separate decisions,
 each of which involves one random student, and it is assumed that the
 overall expected utility is the sum of the expected utilities for the individual
 students. Thus, overall expected utility of the combined decision problem
 is:

 g

 E[u(Txci, y,)] = p E[ui(Tlxci, y,)], (8)
 i= 1

 where pi, Cf=lpi = 1 is the proportion of students from subpopulation i in
 the total population of students.

 In quota-free selection there is no restriction as to the number of students
 that can be accepted for the treatment. Therefore, Equation (8) is maxi-
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 mized if the expected utility of a random student is maximized. This is done
 by maximizing Formula 7 for each subpopulation separately. The maximum
 of Ei [u(TJxci,,yc)] now depends only on the second and third term in the
 right-hand side of Equation (7), because the first term is independent of xci
 and Yci. Using a result from decision theory (e.g., Chuang, Chen, & Novick,
 1981) stating that for any prior distribution of t, E[u(Tlz)] is a nondecreas-
 ing function of z if f(z/t) has MLR and u(t) is a nondecreasing function of
 t, and assuming the monotonicity condition from Lehmann, it follows from

 (4) that Ei [U2i(t) - Uli(t)Ix, y] = (b2i - bij)[Ei(TIx, y) - tc] + d2i - dli is a
 nondecreasing function in each of its arguments. Because (b2i - bli) > 0,
 this implies that (a/ax)Ei(Tjx, y) and (a/ay)Ei(Tjx, y) > 0. Similarly, using
 (3) instead of (4), it follows that Ei [uli(t) - uoi(t)Ix] = (bli + boi)[E,(TIx) -
 t] + d-i - doi is a nondecreasing function of x, implying that, because
 (bli + boi) > 0, (d/dx)Ei(Tlx) > O0. Using qi(x), ki(x, y) 2 0, it follows now
 that the sign of the sum of the second and third term changes only once
 from negative to positive, and, therefore, E[ui(TIxci,yi)] will reach its
 maximum for exactly one pair of cutting scores (x'i, yci).

 Maximizing Expected Utility for a Random Student

 Necessary conditions for the optimal values of the cutting scores, say xcI
 and yc', optimizing the expected utility for a random student from subpopu-

 lation i, E, [u (Tlxci, yci)], can be obtained by differentiating Ej [u (Txcji, yci)]
 with respect to xci and ycj, setting the resulting expressions equal to zero,
 and solving simultaneously for xci and yci.

 Using the property that for any bivariate distribution f(x, y), it holds that

 SJ f (x, y)dy dx = - ff(x, y) dy dx = f(x, s) dx.
 as as Jx s x

 For the derivative of Ej [u(TIxc,, yci)] with respect to yj this results in

 Ei [u (Tlxci, y,j)]
 ayci 0 (9)
 = i(ci) f {[bi - b2i][Ei(TIx, Yci) - tc] + dli- d2i)Zi(x lci) dx = 0,

 Xci

 where z,(x ly,) and si(y) denote the posterior probability function of X
 given Y = yc and the marginal probability function of Y in subpopulation
 i, respectively. Because si(y)L:-0-the possibility of si(y)= 0 will be ig-
 nored-it follows that Equation (9) can be replaced by

 f{(b2i- bli)[Ei(TIx, Yci) - tc] + d2i - dl1}zi(x yci) dx = 0. (10) Xci

 Similarly, differentiating E, [u(TIxc,iyc)] with respect to xc, using qj(x) 2
 0-the possibility of qi(x) = 0 will also be ignored-results in
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 (boi + bl,)[Ei(Tlxci) - tc] + di - do,
 ( (11)

 + (b2i- bli)[E(Txc, y)- tc] + d2i - dli}mi(y xci) dy = 0,
 yci

 with mi(y Ixci) being the posterior probability function of Y given X = xi.
 Now, solving the system of Equations (10) and (11) for xci and yci, one ob-
 tains the optimal cutting scores x" and y'.

 Linear Regression

 For given regression functions and probability density functions, the op-
 timal quota-free decision strategy is represented by the system of Equations
 (10) and (11). If the monotonicity conditions are not strict or it does not
 hold that si(y) or qi(x) > 0 in the neighborhood of the solution, the optimal
 decision strategy may not be unique. Throughout this article it will be
 assumed that conditions like these are fulfilled.

 Because the relations between the test scores and the criterion (true
 score) in the regression functions are not directly observable, psychometric
 models are needed to estimate these relations. Possible psychometric mod-
 els are the linear regression functions 0i + Fix and oai + pix + Tiy for Ei(TIx)
 and Ei(TIx, y), respectively. The monotonicity conditions (d/dx)Ei(Tlx) =
 Fi, (a/ax)Ei(Tjx, y) = pi, and (a/ay)Ei(Tlx, y) = i > 0 are fulfilled for these
 regression functions (e.g., Lord & Novick, 1968). Assuming linear regres-
 sion, it can be shown from classical test theory that the linear regression of
 T on X is given by

 Ei(Tlx) = Ei(Ylx) = t,yi + pi(ry,/x, i/)(x - IX, i), (12)

 Yl,i, px,i, Pi, ry,i, and x, i being the population means of 1Y and Xi, the
 population correlation between Xi and 1Y, and the population standard de-
 viations of Yi and Xi, respectively. From Equation (12), it follows that

 ri = pi(lry, i lx, i), i = RLy,i - Fi ?x, i. (13)
 Furthermore, using results from classical test theory, it can be shown that

 the linear regression of T on X and Y can be written as

 Ei(Tlx, y) = y,i + (y, i/x, i)[(Pi- yy,,ipi)/(l - p1)](x - .x,i)

 + [(pwy,i - p2)/(1 - p2)](y - _Iy,i), (14)
 py,, i being the reliability coefficient of Yi. From Equation (14), it follows
 that

 Pi = (y, i /x, i){(pi - pyy, i p)/( - p2)}

 Ti = (1pyy, i - p )/(1 - 2) (15)
 0ti = - ?X, i Pi + "Ly, i(1 - Ti).
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 All quantities appearing in Equations (13) and (15) can be estimated
 straightforwardly; thus, estimates of the linear regression functions can be
 calculated.

 Because the system of Equations (10) and (11) cannot be analytically
 solved for x,c and yci, the determination of the optimal cutting scores may
 be carried out via numerical approximation methods such as the Newton
 iterative algorithm for solving nonlinear equations. However, before con-
 tinuing with this procedure, it is necessary to specify, in addition to the re-
 gression and utility functions, the probability functions appearing in Equa-
 tions (10) and (11). In Appendix A, the iterative solution of the system of
 Equations (10) and (11) is presented if it is assumed that the variables X and
 Y have possibly different bivariate normal distributions in each subpopu-
 lation.

 Special Solutions

 The optimal solution for the separate mastery and selection decision both
 can easily be derived from Equations (10) and (11) by imposing certain
 restrictions on xci and yci, respectively.

 First, putting xci = -oo in Equation (10), that is, accepting all students,
 and using fPOzi(xlyci)dx = 1, Equation (10) will take the form

 (b2i - bli)[Ei(Tlyci) - tc] + d2i - di- = 0. (16)

 Putting both utility lines uli(t) and U2i(t) in Formula 2 equal to each other,
 it appears that the t coordinate of the intersection, tl2,i, is equal to tc +
 (dli - d2i)/(b2i - bli), which implies that Equation (16) can be replaced by
 Ei(Tlyci) = t12,i. This solution yields the same optimal cutting score yc as the
 one given by van der Linden and Mellenbergh (1977) for the separate
 mastery decision. Analogous to the combined decision problem, a psycho-
 metric model is needed to specify the regression function Ei(Tlyci). For this
 purpose, the classical test model with linear regression (Lord & Novick,
 1968, p. 65) will be assumed, which is known as Kelley's regression line:

 Ei(Tlyi) = py, ,yci + (1 - pyy', i)y,i. (17)
 Substituting (17) into (16) gives

 yc = y, i + [tc - y, i + (di, - d2i)/(b2i - bli)]/pyy', . (18)
 According to Lord and Novick (1968), Equation (17) is

 an interesting equation in that it expresses the estimate of the true score
 as a weighted sum of two separate estimates---one based upon the stu-
 dent's observed score on the mastery test, yci, and the other based upon
 the mean, R, i, of the group to which s(he) belongs. If the mastery test is
 highly reliable, much weight is given to the test score and little to the group
 mean, and vice versa. (p. 65)
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 Analogous to the derivation of the optimal separate mastery decision
 from Equation (10), the optimal separate selection decision can be derived
 from Equation (11) by putting yci= --o-that is, advancing all accepted
 students. Doing so, and using Formula 2, it follows that

 Ei(Tlxci) = to2,i = tc + (doi - d2i)/(boi + b2i), (19)
 where t02,i denotes the t coordinate of the intersection of utility line uoi(t)
 with u2i(t). Also, this optimal solution is the same as the one reached by
 Mellenbergh and van der Linden (1981) for the separate selection decision.
 Adopting Kelley's regression line from classical test theory again, it follows

 from Equation (19) that the optimal cutting score xc; can be expressed in
 closed form as

 Xci = x, i + [tc - P?,x,i + (doi - d2i)/(boi + b2i)]Pxx', i, (20)

 where pxx,,i denotes the reliability coefficient of Xi.

 An interesting case arises when dli = d2i in Equation (18). Whenever this
 occurs, both utility lines uli(t) and U2i(t) intersect at tc, and thus, Equation
 (18) takes the form

 yc = ?y ,i + (tc - ly,i)/Pyy',i. (21)
 In other words, if the amounts of constant utility associated with the actions
 retaining and advancing a student in the separate mastery decision are
 equal or there are no constant utilities at all, then there is no need to assess

 the parameters bli and b2i. In the numerical example, this situation will be
 further elaborated.

 Similarly, all utility function parameters vanish from Equation (20)
 whenever doi = d2i; thus, Equation (20) can be further simplified to

 xc' = Px,i + (tc - x, i)/Pxx, ,. (22)

 Optimal Cutting Scores for Quota-Restricted Selection

 In quota-restricted selection only a fixed number of students can be
 accepted for the instructional program. The selection constraint can be ex-
 pressed as

 po = pi [Prob(X xci)] = P p Jqi(x)dx , (23)
 i=l i=1 xci

 g

 where 0 <P < po pi = 1 represents the fixed proportion of all students that
 i=1

 can be accepted.
 Analogous to the quota-free model, optimal cutting scores xc and yc can

 be derived by maximization of the overall expected utility from Formula 8
 subject to Equation (23). To solve this constrained optimization problem,
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 first introduce the selection constraint into the function to be optimized-
 Equation (8)-through a Lagrange multiplier X:

 L (xci,, X) = >pi E[ui(Tlxci,ydc)]+ X po - ,i f q(x)dx , (24)
 i= i= 1 xci

 where X is a constant.

 Now optimizing cutting scores for quota-restricted selection proceeds by
 differentiating L (xci, yc, ) with respect to xi and yci, setting the resulting
 expressions equal to zero, and solving for xci, Yc, and X using Newton's
 iterative method again. The system of Equations to be solved numerically
 is attached as Appendix B with a brief explanation. A numerical example
 illustrating the procedure is given in the next section.

 A Numerical Example

 The linear utility model for optimal selection-mastery decisions was ap-
 plied to a sample of 43 freshmen in medicine. Both the selection and mas-
 tery tests consisted of 17 free-response items on elementary medical knowl-
 edge with test scores ranging from 0-100. The treatment consisted of a
 computer-aided instructional (CAI) program.

 The students differed with respect to the level at which the subject biol-
 ogy was treated at the secondary education. Some students visited types of
 secondary education in which some minor attention was given to elemen-
 tary medical knowledge during the biology lessons. Also, they finished the
 subject biology with a certifying exam at the end of the secondary education
 in which some items applied to elementary medical knowledge. Due to this
 difference in previous education, the total population of 43 students could
 be distinguished with respect to elementary medical knowledge into a dis-
 advantaged and an advantaged subpopulation of 27 and 16 students, re-
 spectively.

 Let the disadvantaged and advantaged population be referred to as sub-
 population 1 and 2, respectively. The normal models assumed for the distri-

 butions Xi and Yi showed a satisfactory fit to the test data for a Kolmogorov-
 Smirnov goodness of fit test with p-values of 0.869, 0.934, 0.867, and 0.993
 for X1, Y1, X2, and Y2, respectively. The absolute differences between the
 theoretical and observed cumulative distribution functions were 0.0686,
 0.1035, 0.1495, and 0.1067, respectively. The parameters for the theoretical
 cumulative distribution functions were estimated from the samples.

 The teachers of the course considered students as having mastered the
 subject matter if their test scores were at least 55. Therefore, tc was fixed
 at 55.

 The means, standard deviations, and correlation between X and Y were
 computed for each subpopulation using the maximum likelihood estimates
 of the unbiased sample means, sample standard deviations, and sample cor-
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 relations, respectively. Furthermore, because the items were not scored as
 right or wrong, the reliabilities of the test scores were estimated as coeffi-
 cient a (Cronbach, 1951) for each subpopulation. The results of these com-
 putations are shown in Table 1.

 It should be emphasized that the necessary data for computing these
 statistics come from the experiment described earlier in which students
 exposed to the same selection test were randomly drawn and accepted for
 the treatment, after which their criterion performances were measured.

 First, the quota-free situation is considered. Because population 2 was
 considered more advantaged than 1, it should hold that bo01 > b02 and
 b21 > b22. Besides these conditions for the utility parameters in Formula 2,

 condition (5) should hold for the utility parameters bji (j = 0, 1, 2; i = 1, 2).
 Substituting the values of the statistics of Table 1 into Equations (13) and
 (15), the optimal cutting scores xc' and y'i were then obtained by numer-
 ically solving the system of Equations (26) and (27) of Appendix A for xci
 and yci(i = 1, 2), and using the computer program NEWTON, available on
 request from the author, with tc as starting values and as a criterion for
 convergence that the absolute differences between X', n+l and x'c, as well as
 between y'i, l1 and y'b,, were smaller than 10-7. To illustrate the dependence
 of the results on the utility structure, optimal cutting scores were computed

 for 10 different values of the utility parameters bii and dji (j = 0, 1, 2;
 i = 1,2). The absolute values of bij and dji for utility function 1 until 5 were
 the same as the absolute values for utility function 6 until 10. However, the
 sign of b1, was taken negative in the last five runs, taking into account the
 fact that the sign of b1i could not be specified beforehand. The results are
 reported in Table 2 together with the number of iterations required to con-
 verge. As can be seen from Table 2, the consequence of increasing the
 parameters b0i and b2i (i = 1, 2) is a decrease of the cutting scores. Further-
 more, inspection of Table 2 shows that a decrease of the amount of constant

 utility, dyj(j = 0, 1, 2; i = 1, 2), implies that the cutting scores have to be
 raised.

 Using Equations (18) and (20), the optimal cutting scores were also com-
 puted for the separate mastery and selection decisions. Because no constant

 TABLE 1

 Statistics selection and mastery tests (X and Y)

 Disadvantaged Advantaged

 Statistic X Y X Y

 Mean 50.875 62.626 56.453 67.148
 Standard deviation 10.981 11.645 11.674 13.344
 Reliability 0.762 0.775 0.783 0.813
 Correlation 0.8564 0.8685
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 amounts of utility were assumed for utility functions 2 and 7, Equations (21)
 and (22) were used to compute the optimal cutting scores for these two
 utility specifications. The results are reported in Table 2. Table 2 shows that
 the optimal selection as well as the optimal mastery scores in the separate
 model have been raised compared to those in the combined model.

 This implies that when the combined model is used for decision-making,
 more individuals will be selected for the treatment and more will be ad-

 vanced because the cutting points from the simultaneous approach are
 lower than those obtained with the separate models. Moreover, for all util-
 ity structures the cutting points for the selection decision of the combined
 model are even substantially lower for the following reason. The psycho-
 metric portion of this model includes the information provided by the
 average performance of the group on the mastery test in the estimation of
 the cutting points for the selection decision-Equation (12)-whereas the
 psychometric portion of the separate selection model is entirely based on
 information provided by the selection test, Equation (20), as a weighted
 sum of individual and group score. Because the mean performance of the
 groups on the mastery test surpasses their performance on the selection test
 and the criterion for mastery, the combined model should yield lower
 cutting points for the selection decision.

 In contrast, the cutting points for the mastery decision from the models
 generally do not have such large differences. These differences heavily de-
 pend upon the values of the utility parameters. For instance, for the values
 of utility structure 3, the difference for the advantaged group is only 2.30.

 Inspection of Equation (7) and Table 2 shows that for fixed bji the optimal
 cutting scores are dependent upon d2i - dii. The smaller the difference, the
 higher the optimal cutting scores. This makes sense: A smaller value of d2i
 relative to dli means a smaller amount of constant utility for the decision
 "advance accepted students" relative to "retain accepted students" and, in
 that case, the optimal cutting score for the mastery decision is higher; a
 smaller value of dli relative to d2i would produce the opposite effect.

 To give an impression of the gain in reliability of decisions, the reliability
 both for the simultaneous and separate solution has been calculated. In the
 psychometric literature, several methods for computing and interpreting
 reliability indexes for decisions have been proposed (Hambleton & Novick,
 1973; Huynh, 1976b; Subkoviak, 1976; Swaminathan, Hambleton, & Al-
 gina, 1974; van der Linden & Mellenbergh, 1978). Two reliability indexes
 that have been recommended are (a) the agreement coefficient and (b) the
 kappa coefficient. These two coefficients measure the consistency of deci-
 sions across two test administrations, and both require somewhat different
 interpretations than traditional reliability coefficients, which are essentially
 correlations of test scores on two administrations.

 The agreement coefficient is simply the proportion of examinees consis-
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 tently classified on both administrations, and kappa reflects the proportions
 of consistent decisions observed beyond that expected by chance. As Berk
 (1980) has noted in reviewing the literature on criterion-referenced test
 reliability, the agreement coefficient might be the preferred index of agree-
 ment for tests intended for individualized instructional decisions at the
 classroom level.

 Methods for estimating the agreement and kappa coefficient from a sin-
 gle test administration have been proposed, thereby eliminating the need
 for a second test administration (Huynh, 1976b, Marshall & Haertel, 1976;
 Subkoviak, 1976, 1988). Because the Kolmogorov-Smirnov goodness of fit
 tests indicate that the observed distributions of Xi and Yi (i = 1, 2) do not
 significantly deviate from the norm, it can be shown (Peng & Subkoviak,
 1980; Subkoviak, 1976) that the agreement coefficient for the Xi scores,
 px,(i = 1,2), can be calculated as follows: pxi = 1 - 2[P(z < c) - P(z < c,
 z' < c)]. In this equation, c = (xci - 0.5 - tx, i)/0x, i where xci, iX,i, and ax,
 are the optimal cutting score, the mean, and the standard deviation of the
 Xi scores, respectively (see Huynh, 1976b). The probability that a standard-
 ized normal variable is less than c is P(z < c). Finally, P(z < c, z' < c) is

 the probability that two standardized normal variables, with correlation ta,
 are both less than c, where a is the Cronbach's alpha reliability coefficient
 of the X, scores; this quantity is obtained from tables of the bivariate normal

 distribution provided by Gupta (1963) and others. Similarly, pyi(i = 1,2)
 can be obtained for the 1Y scores. The results of these computations for
 both Xi and Yi scores are shown in Table 3 in which the ratios of odds of
 consistent classification, rxi and ry(i = 1, 2), for the simultaneous and sepa-
 rate solution have also been calculated. As can be seen from these ratios,
 the simultaneous approach is associated with substantial gains in consis-
 tency of classification.

 Finally, the quota-restricted situation is considered. The proportions pi
 (i = 1,2) of the student population belonging to each subpopulation were
 estimated as ni/n, where n represents the total sample size and ni represents
 the number of students in the sample in subpopulation i. The proportion po
 of the total student population that could be accepted for the instructional
 treatment was arbitrarily set equal to 0.333. The optimal cutting scores xci
 and y' were obtained by numerically solving the system of Equations (26)
 of Appendix A and (36) and (37) of Appendix B for xci and yci, and using
 the computer program LAGRANGE, available on request from the author,
 with the optimal solution of the quota-free situation as starting values and

 as a criterion for convergence that the absolute differences between x'1,n+1
 and xl,, YI,n+1 and ycln, x2,n+l and x2,n, and Y'2,n+l and y'2, were smaller
 than 10-7. The optimal cutting scores were computed again for 10 different
 values of bji and dij; the results are shown in Table 4 together with the
 number of iterations to convergence.
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 From Table 4 it can be seen that the optimal selection scores xcl and x'z
 in the quota-restricted model have to be raised compared to those in the
 quota-free model. This result is in accordance with our expectations, be-
 cause fewer students can be accepted in the restricted situation.

 Discussion

 In this article an approach to instructional decision making for combina-
 tions of elementary decisions has been presented. A useful application of
 simultaneous decision making can be found in the area of instructional de-
 cision making in ISSs. As an example, two elementary decisions (a selec-
 tion and a mastery decision) were combined into a simple ISS to indicate
 how, by simultaneous optimization of such networks, optimal rules for pro-
 ceeding students through ISSs can be designed within a Bayesian decision-
 theoretic framework. The utility structure adopted in this combined deci-
 sion problem was a linear utility function.

 Further examination of the "best" way to represent more complicated
 instructional networks of combinations of elementary decisions seems to be
 a valuable line of research. Such instructional networks can also be formal-

 ized with the aid of Bayesian statistics and optimal rules for these simulta-
 neous optimization problems can be found.

 Also, more efforts are needed to examine other more realistic forms util-

 ity functions might take in certain educational applications. For example,
 the normal ogive utility function (Novick & Lindley, 1978) takes utility to
 be a nonlinear function of the true score. Such a utility structure might be
 adopted, for instance, when it is reasonable to assume a levelling-off effect.

 Another interesting line of research seems to be to design "optimal CAI-
 networks" using the method of simulation. This can be done by first deriv-
 ing theoretical optimal decision rules using the models advocated in this
 article. Then, for a simulated distribution of students, it can be determined
 in which instructional network the shortest time is spent to reach a certain
 final mastery level.

 A final remark is appropriate. The parameters to be estimated are all
 familiar parameters, such as correlations, covariances, linear regression
 parameters, and multiple regression parameters. Estimation of these, for
 which standard statistical theory provides estimators with favorable proper-
 ties, can yield errors of estimation that propagate in computing the optimal
 rules of this article. I therefore recommend not using samples as small as
 those used in the foregoing experiment. The example, however, was used
 only for illustration. This does not mean, however, that small samples nec-
 essarily yield inaccurate results. The way errors of estimation propagate de-
 pends on the whole structure of the optimal rules, involving not only distri-
 butional parameters but utility parameters as well.

 In reference to the last remark, one of the referees of an earlier draft of
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 this article raised the question of robustness of results--that is, whether
 parameters differing somewhat from the ones that were actually used lead
 to the same decisions. In order to examine this question, a few computer
 runs using the programs NEWTON and LAGRANGE have been made with
 small differences in the utility as well as the distributional parameters.
 These runs indicated that the optimal cutting scores for both the simulta-
 neous and separate approaches were not very sensitive to small changes in
 the utility parameters. As far as the sensitivity of the decisions with respect
 to the distributional parameters was concerned, it appeared that the
 decisions were somewhat influenced. However, the optimal cutting scores
 for the simultaneous and the separate approaches changed in the same
 direction and with about the same magnitude. Moreover, the ratios of
 odds of consistent classification hardly changed, indicating that the simul-
 taneous optimization technique is still superior in this case to the separate
 approaches.

 To deal with errors of estimation in the distributional parameters, it
 should be noticed that still another approach is possible. If only samples of
 limited size can be used, one can think of establishing "regions of indiffer-
 ence" as in the Johnson and Neyman (1936) technique-that is, intervals on
 the selection as well as the mastery test score variable for which we are in-
 different to the selection and mastery decision because of sampling error.
 These regions of indifference can be established by first constructing con-
 fidence intervals for the distributional parameters, and then simultaneously
 determining the range of optimal cutting scores associated with these inter-
 vals using the procedures presented here.

 Appendix A

 Iterative Solution in Case of the Bivariate Normal Model

 In order to solve the system of Equations (10) and (11) for xci and Yci, the
 decision maker must specify the joint probability function of X and Y. It is
 assumed that the variables X and Y have possibly different bivariate normal
 distributions in each subpopulation. Assuming that the X and Y scores are
 in their standardized form, this can be written as

 ki(xN, yN) = {(2rr)-1(1 - p2)-12 exp[-(x2 - 2piXNYN + y2)/2(1 - pf)]}, (25)

 where XN and YN denote the standardized scores (x - ptx)/ux and (y - pIy)/
 uy of X and Y, respectively. For the standardized bivariate normal distribu-
 tion in Equation (25), the conditional distribution of XN given YN= y, is
 normal with expected value PiYN and variance (1 - p?) (e.g., Johnson &
 Kotz, 1970). Likewise, the distribution of YN given XN = XN is normal with
 expected value PiXN and variance (1 - pt).

 Substituting a, + Pix + iYci and N(piyN, c, 1 - p2) into Equation (10) for
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 E,(TIx, yci) and Zi(XNIYN, ci), respectively, and using the property that the
 primitive function of xe -0.5x2 is equal to -e -0.5x2, it follows that Equation
 (10) will take the form

 f(xci, yci) = [(b2i - bli)(oti + Pi 3x,3 i + "riYci + Pi ox, i piYN, ci- tc)

 + d2i - dli]ox,i{1 - ([(XN, ci - PiYN, ci)/(1 - p)1/2} (26)

 +(b2i- bii)Pirx, i2(1 - p2)1/2 (P[(XN, ci - PiYN, ci)/(1 - 2)1/2]

 = 0,

 where F[.] and (p[.] denote the standard normal distribution function and
 the standard normal density, respectively.

 Similarly, substituting 0i + Fixci, ai + PiXci + -Tiy, and N(pixN, c, 1 - pt)
 into Equation (11) for Ei(Tlxci), E,(TIxci, y), and mi(YNIXN, c), respectively,
 results in

 g (xci, yci) = [(bo + bli)(Oi + Fixci - tc) + dli - doi]

 "+ [(b2i - bli)(oi + pxici+ T, yi + Ti Pi, iXN, ci - tc)

 "+ d2i - dli]{1 - D[(yN, ci - piXN, ci)/(l - pt)1/2]} (27)

 "+ (b2i - bli)Ti(y, i(1 - p)1/2 [(YN, ci- PiXN, ci)/(l - 1/2

 = 0.

 The system of Equations (26) and (27) cannot be analytically solved for xci
 and y,c, but it can be iteratively solved using Newton's method for systems
 of nonlinear equations (e.g., Ortega & Rheinholdt, 1970). Updated esti-
 mates xi, n+l and y', n+, after iteration n + 1 are obtained using the following
 formulas:

 Xci, n+ = Xcli, n - {[f(alayci)g - g (d/dyci)f]/J(f, g)}

 i,n+l = Yci,n - {[g(d/laci)f - f(xci)g]J(f, g]}, (28)

 where J (f, g) = (/alaxci)f(alay,)g - (alaxci)g (/alay,)f represents the Jacobian
 of the functions f(xci, yci) and g (xci, yc'). It is recommended that the cut-off
 score tc on the true score scale T is used as a first approximation to xc'
 and yc.

 In order to solve the nonlinear system of Equations (26) and (27) via the
 iterative procedure given in (28), the partial derivatives of f(xci, yci) and
 g(xc ,yci) are needed. They are given as

 (/xc)f(xci, yci) = -[/(1 - p)]-1 p[(xN, ci - PiYN, c)/(1 - p)1/2]  (29)
 [(b2i - bli)(oti + PiXci + "iyci - tc) + d2i - dli],
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 (a/lyci)f (Xci, yci)

 = (b2i- bli) i /(y, i(i(T yi + ipix, i)(1 - F[(XN, ci - PiYN, c)/(l - )1/2)

 "+ pi/[(l - p2)1/2] [(XN, ci- PiYN, ci)/(1 - P)1/2](Oi + Xci + TiYci c- tc)

 + (d2i - dli)pil[(1 - p)l/2]x, i p[(XN, ci- PiYN, ci)/(1 - p21/2]/y, i, (30)

 (d/lxc,)g (x Yci) = (boi + bli)Fi

 "+ (b2i - bli)/x, if(pix,i + ri ry, i pi)(1 - 'D[(YN ci - PiXN, ci)(l - p)1/])

 "+ pi/[(1 - Pi)1/2]([(YN, ci- PiXN, ci)l(1 - p2)1/2](Oti + iXci + riYci - tc)}

 "+ (d2i - dli)Pi /[(1 - )1/2P[( YN, ci - i XN, ci)/( 12 , i, (31)

 ( c)g (xi, y) = -[(1 - p )1/2]-1 9[(N, ci - PiXN, ci)/(l - p1/2]
 (32)

 [(b2i- bli)(oti + Pixci + iYci - tc) + d2i- dl]/ry .

 An interesting special case of the combined linear utility function arises
 when do, = d1i = d2i. In that case, all utility parameters dji (j = 0, 1,2) vanish
 from Equations (26) and (27). In other words, if the amount of constant
 utility, dji, for each action is equal, then there is no need to choose values
 for dji in determining the optimal cutting scores x' and y'.

 It can be shown (Lord & Novick, 1968, sect. 17.2) that the standard
 normal distributions appearing in Equations (25)-(32) are almost inter-
 changeable with logistic functions for a scale parameter equal to 1.7. The
 logistic model will be preferred in the iterative procedure because it is
 easier to work with mathematically than the standard normal model. Using
 this approximation, we may rewrite the standard normal distribution as
 follows:

 ([(XN, ci - PyYN,ci)/(l - p)1/2] = 1 + exp[-1.7(xN ,ci- PiYN, ci)/(l - p-)1/2] -1

 (I[(YN, ci- piXN, ci)/(1 - p)1/2 = {1 + exp[-1.7(yN,cI- iXN, ci)/(1 -p2)12]}-

 The iterative procedure is implemented in a computer program called
 NEWTON.

 Appendix B

 Numerical Solution for Quota-Restricted Selection

 Differentiating L (xci, yci, X)--Equation (23)-with respect to yci and xci,
 setting the resulting expressions equal to zero, and using pi > 0, yields

 (al/yci)E [ui(Tlxci, Y,)] = 0, (33)
 (a/xci)E [ui(Tlxci, yi)] + Xqi(xci) = 0. (34)
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 As can be noticed from Equation (9), the solution to Equation (33) is the
 same as the solution for the case of quota-free selection given by Equation
 (26).

 The first term in the left-hand side of Equation (34) represents the de-
 rivative of the expected utility of a random student with respect to xci in the
 unrestricted situation-Equation (11). Substituting this partial derivative
 into Equation (34), and using qi(x) ? 0, it follows that

 (boi + bli)[Ei(Tlxci) - tc] + di, - doi-

 l( (35)
 + J{(b2i- bii)[Ei(Tlxci, y) - tc] + d2i- dii}mi(y Ixci) dy = 0.

 Yci

 Inserting the expressions for the linear regression functions and N(pixN, c,
 1 - p2) for mi(yNlxN, c), and integrating Equation (35), results in

 h (ci, yci) = [(bo0 + bli)(Oi + Fixci - tc) + dli - doi- X]

 "+ [(b2i- bli)(oi + piXci + TiLy,i + TiPiy iXN, ci - tc)

 "+ d2i - dii](1 - 4[(yN, ci- piXN, ci)/(1 - p)1/21) (36)

 + (b2i - bli)riy, i(1 - p)1/2 (P[(YN, ci PiXN, ci)(1 - )1/2] = 0.

 Because it has been assumed that the joint distribution of X and Y is a
 possibly different bivariate normal distribution in each population, it fol-
 lows that qi(x) is a normal distribution with mean pLx, and variance Ux, i2
 (e.g., Johnson & Kotz, 1970). Hence, the restriction of Equation (23) can
 be written as

 g

 V (Xcl,X7c2, ,X Xcg)= Pi [1 -I(XN, ci)] - PO =0. (37)
 i= 1

 Now, the solution for the quota-restricted selection model is found by solv-
 ing the system of Equations (26), (36), and (37) for the (2g + 1) unknown
 parameters xci, yc, and X. Note that with quota-restricted selection, unlike
 quota-free selection, the optimal cutting scores xc' and yc' (i = 1,..., g) are
 dependent upon each other.

 In order to apply Newton's iterative method to solve the given system
 of nonlinear equations, the partial derivatives are required again. From

 Equations (36) and (27), it can easily be verified that (alaxc)h(xci yc) =
 (d/dxci)g(xci, Yc), (/lyc)h (xci, yci) = (/alyci)g(xc, yci), and (d/dk)h (xci, yci) =
 - 1. The derivatives of f(xci, yci) and g (xci, yci) with respect to xci and yci were
 given in Equations (29) until (32), respectively. Furthermore, it follows
 from Equation (37) that

 (a/aXi)v (Xcl, Xc2, . . , Xcg) = (-Pi /X, I)(P(XN, ci. (38)
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 Analogous to the quota-free selection model, as can easily be seen from
 Equations (26), (36), and (37), no values for the utility function parameters

 dji(j = 0, 1,2) have to be specified when the amount of constant utility for
 each action is equal.

 A computer program called LAGRANGE has been written to obtain an
 optimal decision rule. In the program, the optimal solution (xc, y'.) of the
 quota-free selection model can be used as a first approximation in the
 iterative procedure.

 References

 Berk, R. A. (1980). A consumer's guide to criterion-referenced test reliability.
 Journal of Educational Measurement, 17, 323-349.

 Chuang, D. T., Chen, J. J., & Novick, M. R. (1981). Theory and practice for the
 use of cut-scores for personnel decisions. Journal of Educational Statistics, 6,
 129-152.

 Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psycho-
 metrika, 16, 297-334.

 DeGroot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill.
 De Gruijter, D. N. M., & Hambleton, R. K. (1984). On problems encountered

 using decision theory to set cutoff scores. Applied Psychological Measurement, 8,
 1-8.

 Ferguson, T. S. (1967). Mathematical statistics: A decision theoretic approach. New
 York: Academic Press.

 Gross, A. L., & Su, W. H. (1975). Defining a "fair" or "unbiased" selection model:
 A question of utilities. Journal of Applied Psychology, 60, 345-351.

 Gupta, S. S. (1963). Probability integrals of multivariate normal and multivariate
 t. Annals of Mathematical Statistics, 34, 792-828.

 Hambleton, R. K., & Novick, M. R. (1973). Toward an integration of theory and
 method for criterion-referenced tests. Journal of Educational Measurement, 10,
 159-170.

 Huynh, H. (1976a). Statistical considerations of mastery scores. Psychometrika, 41,
 65-79.

 Huynh, H. (1976b). On the reliability of decisions in domain-referenced testing.
 Journal of Educational Measurement, 13, 253-264.

 Huynh, H. (1977). Two simple cases of mastery scores based on the beta-binomial
 model. Psychometrika, 41, 65-78.

 Johnson, N. L., & Kotz, S. (1970). Distributions in statistics: Continuous univariate
 distributions. Boston: Houghton Mifflin.

 Johnson, P. D., & Neyman, J. (1936). Tests of linear hypotheses and their applica-
 tion to some educational problems. Statistical Research Memoirs, 1, 57-93.

 Karlin, S., & Rubin, H. (1956). Distributions possessing a monotone likelihood
 ratio. Journal of the American Statistical Association, 1, 637-643.

 Keeney, D., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences
 and value trade-offs. New York: Wiley.

 Lehmann, E. L. (1959). Testing statistical hypothesis. New York: Wiley.
 Lindgren, B. W. (1976). Statistical theory (3rd ed.). New York: Macmillan.

 338

This content downloaded from 130.89.3.19 on Tue, 26 May 2020 14:27:51 UTC
All use subject to https://about.jstor.org/terms



 Simultaneous Optimization of Decisions

 Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.
 Reading, MA: Addison-Wesley.

 Marshall, J. L., & Haertel, E. H. (1976). The mean split-half coefficient of agree-
 ment: A single administration index of reliability for mastery tests. Unpublished
 manuscript, University of Wisconsin-Madison.

 Mellenbergh, G. J., & van der Linden, W. J. (1981). The linear utility model for
 optimal selection. Psychometrika, 46, 283-293.

 Mellenbergh, G. J. (1989, March). Empirical specification of utility functions. Paper
 presented at the annual meeting of the American Educational Research Associ-
 ation, San Francisco, CA.

 Novick, M. R., & Petersen, N. S. (1976). Towards equalizing educational and
 employment opportunity. Journal of Educational Measurement, 13, 77-88.

 Peng, C. Y. J., & Subkoviak, M. J. (1980). A note on Huynh's normal approxi-
 mation procedure for estimating criterion-referenced reliability. Journal of
 Educational Measurement, 17, 359-368.

 Ortega, J. M., & Rheinholdt, W. C. (1970). Iterative solution to nonlinear equations
 in several variables. Orlando: Academic Press.

 Novick, M. R., & Lindley, D. V. (1978). The use of more realistic utility functions
 in educational applications. Journal of Educational Measurement, 15, 181-191.

 Petersen, N. S. (1976). An expected utility model for "optimal" selection. Journal
 of Educational Statistics, 4, 333-358.

 Petersen, N. S., & Novick, M. R. (1976). An evaluation of some models for
 culture-fair selection. Journal of Educational Measurement, 13, 3-31.

 Subkoviak, M. J. (1976). Estimating reliability from a single administration of a
 mastery test. Journal of Educational Measurement, 13, 265-271.

 Subkoviak, M. J. (1988). A practitioner's guide to computation and interpretation
 of reliability indices for mastery tests. Journal of Educational Measurement, 25,
 47-55.

 Swaminathan, H., Hambleton, R. K., & Algina, J. (1974). Reliability of criterion-
 referenced tests: A decision-theoretic formulation. Journal of Educational Mea-
 surement, 11, 263-268.

 Swaminathan, H., Hambleton, R. K., & Algina, J. (1975). A Bayesian decision
 theoretic procedure for use with criterion-referenced tests. Journal of Educa-
 tional Measurement, 12, 87-98.

 van der Gaag, N. L. (1987, June). Applications of empirical linear utility functions
 to mastery decisions. Paper presented at the European meeting of the Psycho-
 metric Society, University of Twente, The Netherlands.

 van der Gaag, N. L., Mellenbergh, G. J., & van den Brink, W. P. (1988). Empirical
 utility functions for pass/fail situations. Methodika, 2 (1), 40-52.

 van der Linden, W. J. (1980). Decision models for use with criterion-referenced
 tests. Applied Psychological Measurement, 4, 469-492.

 van der Linden, W. J. (1981). Using aptitude measurements for the optimal assign-
 ment of subjects to treatments with and without mastery scores. Psychometrika,
 46, 257-274.

 van der Linden, W. J. (1985). Decision theory in educational research and testing.
 In T. Husen & T. N. Postlethwaite (Eds.), International encyclopedia of educa-
 tion: Research and studies (pp. 1328-1333). Oxford: Pergamon Press.

 339

This content downloaded from 130.89.3.19 on Tue, 26 May 2020 14:27:51 UTC
All use subject to https://about.jstor.org/terms



 Hans J. Vos

 van der Linden, W. J. (1987). The use of test scores for classification decisions with
 threshold utility. Journal of Educational Statistics, 12, 62-75.

 van der Linden, W. J. (1990). Applications of decision theory to test-based decision
 making. In R. K. Hambleton & J. N. Zaal (Eds.), New developments in testing:
 Theory and applications (pp. 129-155). Boston: Kluwer.

 van der Linden, W. J., & Mellenbergh, G. J. (1977). Optimal cutting scores using
 a linear loss function. Applied Psychological Measurement, 1, 593-599.

 van der Linden, W. J., & Mellenbergh, G. J. (1978). Coefficients for tests from a
 decision-theoretic point of view. Applied Psychlogical Measurement, 2, 119-134.

 Vos, H. J. (1988). The use of decision theory in the Minnesota Adaptive Instruc-
 tional System. Journal of Computer-Based Instruction, 15 (2), 65-71.

 Vos, H. J., & van der Linden, W. J. (1987). Designing optimal rules for instruc-
 tional decision making in CAI systems. In J. Moonen & T. Plomp (Eds.), Devel-
 opments in educational software and courseware (pp. 291-299). Oxford: Per-
 gamon Press.

 Vrijhof, B. J., Mellenbergh, G. J., & van den Brink, W. P. (1983). Assessing and
 studying utility functions in psychometric decision theory. Applied Psychological
 Measurement, 7, 341-357.

 Author

 HANS J. VOS is Assistant Professor, Dept. of Education, University of Twente,
 PO Box 217, 7500 AE Enschede, The Netherlands. He specializes in psycho-
 metric methods, data analysis, and research methodology.

 340

This content downloaded from 130.89.3.19 on Tue, 26 May 2020 14:27:51 UTC
All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23
	image 24
	image 25
	image 26
	image 27
	image 28
	image 29
	image 30
	image 31
	image 32

	Issue Table of Contents
	Journal of Educational Statistics, Vol. 15, No. 4, Winter, 1990
	Volume Information [pp.  369 - 373]
	Front Matter [pp.  308 - 308]
	Comparing Expert and Trainee Assessments Using Regression Techniques [pp.  277 - 307]
	Simultaneous Optimization of Decisions Using a Linear Utility Function [pp.  309 - 340]
	Critical Values for Two Multiple Comparison Procedures Based on the Studentized Range Distribution [pp.  341 - 352]
	Computation and Statistical Inference for Decision Consistency Indexes Based on the Rasch Model [pp.  353 - 368]
	Back Matter [pp.  374 - 375]



