J. EDUCATIONAL COMPUTING RESEARCH, Vol. 6(3) 265-285, 1990

STRATEGIES FOR PROGRAMMING
INSTRUCTION IN HIGH SCHOOL:
PROGRAM COMPLETION VS.
PROGRAM GENERATION

JEROEN J. G. VAN MERRIENBOER
Department of Instructional Technology
University of Twente, The Netherlands

ABSTRACT

In an introductory programming course, the differential effects on learning
outcomes were studied for an experimental instructional strategy that
emphasized the modification and extension of existing programs (completion
strategy) and a traditional strategy that emphasized the design and coding of
new programs (generation strategy). Two matched groups of twenty-cight and
twenty-nine high school students from grades ten through twelve volunteered
for participation in a ten-lesson programming course using a small subset of
the structured programming language COMAL-80. After the course, the
completion group was superior to the generation group in measures concerning
the construction of programs; furthermore, it was characterized by a lower
mortality. The data indicated that the completion strategy facilitated the use of
templates; however, this does not necessarily seem to imply that the students
actually understood the working of those templates, because no differences
occurred in the ability to interpret programs. In the conclusion, the completion
strategy is considered to be a good alternative to more traditional strategies and
recommendations are made for further improvements.

In recent years, the teaching of computer programming in high schools has become
a popular activity in most western countries. However, the evidence continues to
accumulate that students usually do not learn to program very well [1-7]. Whereas
the research concerning the psychological processes involved in elementary
programming is quickly developing, it appears difficult to apply this knowledge to
the design of introductory programming courses. Consequently, there are still few
guidelines or instructional strategies that teachers and others in the educational field
can use (o improve their programming courses in order to increase learning
outcomes.

265

© 1990, Baywood Publishing Co., Inc.

266 / MERRIENBOER

The goal of this study is to investigate if an instructional strategy which initially
emphasizes the modification and extension of existing, well-designed programs
(completion strategy) yields higher learning outcomes for a program construction
task than a strategy that immediately emphasizes the design and coding of new
programs (generation strategy). Both strategies were implemented in a ten-lesson,
introductory programming course for high school students in grades ten through
twelve. The two groups of students learned to use a small subset of the program-
ming language COMAL-80.

Up to the present, no empirical data regarding learning outcomes for instruc-
tional strategies that emphasize program completion have been reported. Research
concerning the teaching of elementary programming is usually aimed at instruc-
tional methods, or tactics, that arc implemented using the complete generation of
new computer programs. Well-known examples include the presentation of con-
crete computer models and the explicit teaching of design and debugging techni-
ques [8-13]. Whereas such tactics certainly are valuable to improve programming
instruction, changes on a strategic level may be equally necessary to reach higher
learning outcomes.

Deimel and Moffat promoted such a change in instructional strategy by separat-
ing four phases in an “ideal” introductory programming course [14]. In the first
phase, students run working programs, observe their behavior, and evaluate
their strengths and weaknesses. In phase two, students are actually introduced to
well-structured programs; their primary activities in this phase are reading and
hand tracing of programs. Thus, learning the specific language is largely done
by extracting the language features from concrete programs. During the third
phase, students modify and extend existing programs and practice both design and
coding aspects on a modest scale. Finally, students should be able to generate
programs on their own and continue practicing basic design techniques and
structured coding.

Several authors recommended similar strategies to overcome difficulties in
clementary programming. Dalbey, Tourniaire, and Linn reported that students
showed a serious lack of planning in program generation [15]. They suggested that
“it would seem quite appropriate to begin instruction with comprehension of
program code.... Those programs would demonstratec how planning is used in
programming.... Thus, students would have a better understanding of the role of
planning in programming” [15, p. 18]. Pea reported negative effects of “bugs” on
the learning process in programming [16]. Bugs are misconceptions that students
have about the operation of computers and the working of programming languages.
These misconceptions cause systematic errors in the comprehension and construc-
tion of programs. According to Pea, “bugs like these could be snared if one used
program reading or debugging activities as central components of programmmg
instruction” [16, p. 34].

Thus, several authors have recommended that programming instruction should
initially emphasize working with existing programs instead of generating new

PROGRAM COMPLETION VS. GENERATION / 267

programs. With reference to those suggestions, I have investigated the psycho-
logical support that could be given to such instructional strategies, such as the
reading approach, and compared them with two other groups of prevailing
strategies, the expert, and the spiral approach [17]. The reading approach recom-
mends that students begin by observing existing programs and then modifying and
enhancing those programs; the expert approach stresses top-down design and starts
the novice off with a relatively complex but intrinsically motivating programming
problem; the spiral approach is a parallel syntax and semantic acquisition empha-
sizing small incremental steps and building up a program by mastering the language
constructs first.

For our present purposes, the completion strategy may be scen as an instance of
the reading approach, because the students’ activities vary [rom reading and
tracing, through modification and amplification, to designing and coding complete
programs. The generation strategy may be seen as a variant of either the expert or
the spiral approach, because it employs program generation as a primary student
activity. In the following, the two main reasons for proclaiming that the reading
approach is superior to the expert and the spiral approach, or more generally, that
the completion strategy is superior to the generation strategy, will be briefly
reviewed:

First, therc must be enough task variation in practice to develop a broad
procedural knowledge base, which is the basis of some flexibility in the con-
struction of programs [18]. Such variation in elementary programming may be
offered by:

1. The assignment of different tasks, such as using the editor, running and
tracing programs, designing and coding algorithms, modifying, extending
and debugging programs, and so forth, and

2. The presentation of a broad range of both programming problems that have
different underlying solutions and programs that are correct solutions to
different programming problems.

Task variation is not easily accomplished in the generation strategy because the
design and coding of complete programs is heavily emphasized at the cost of other
activities; besides, many programming problems are presented but only a few
programs actually demonstrate correct problem solutions. On the contrary, task
variation is easily accomplished in the completion strategy because all kinds of
tasks naturally appear in the course. In addition, almost all problems are presented
in combination with a (partial) solution, so that students are confronted with a wide
variety of problems as well as solutions to those problems that have the form of
well-designed, working programs.

A sccond advantage of the completion strategy is related to its natural usc of
examples. This advantage is considered to be particularly important because it
directly concerns the transition from passive, declarative knowledge to desired

268 /| MERRIENBOER

programming behavior. For example, Anderson, Farrell, and Sauers reported that
students who are learning to program make a highly selective use of instructional
materials: They use worked-out examples of problem solutions that are related to
the problem at hand and which have the form of concrete computer programs [19].
Licberman observed that such “learning by example” has not been taken seriously
enough in designing programming instruction and proposes that examples of
solutions should be the kernel of well-designed instruction. Students can use such
examples as blue-prints to map their new solutions and they may generalize from
it to learn new programming principles and techniques.

More specifically, worked-out examples are expected to provide the students
with stereotypic sequences of computer instructions or programming language
templates. Those templates can be related to single program lines (e.g., PRINT
“text”; variable), several program lines (e.g., a looping structure with proper
initializations above the loop and counters or running totals placed correctly within
the loop), or complete programs (e.g., a general input-process-output template).
Thus, whereas low-level templates provide statements to use in one particular
situation, higher level templates are applicable in increasingly wider varieties of
situations.

Ehrlich and Soloway and Soloway referred to learned templates as “program-
ming plans” and stressed the importance of tcaching templates in elementary
programming [21, 22]. Once learned, the templates facilitate both the design and
coding of programs. In program design, high level templates may be used to
separate input, process, and output; then, the problem can be further decomposed
into parts that can be performed with other known templates. In the coding of
program lines, low level templates may be used to combine elementary commands
with their arguments using the correct syntax. Consequently, the availability of
correct templates is expected Lo increase the probability that a semantically correct
solution is reached as well as the capability to correctly code this solution.

Students learn templates from worked-out examples that are presented in
lectures, textbooks, or practice. In fact, examples appear more and more in
textbooks that teach elementary programming (e.g., [23, 24]). In the generation
strategy, examples can obviously be presented in class or textbooks; however, they
are usually presented in isolation from the tasks assigned as practice, that is, there
is never a direct bond between the examples and the program generation tasks.
Consequently, students will often skip over the examples, not study them at all, or
only start searching for examples that fit in with their solution when they experience
scrious difficulties in solving a programming problem. In contrast, present-
ing worked-out examples automatically takes place in the completion strategy.
Students are required to study the examples carefully because there is a direct,
natural bond between examples and practice: They cannot correctly finish an
assignment without studying the program that has to be completed.

In this study, I compared learning outcomes for two groups of high school
students that attended an introductory programming course which was designed

PROGRAM COMPLETION VS, GENERATION / 269

according to either the completion strategy or the generation strategy. As the main
hypothesis, it is stated that the students in the completion group, who per-
form assignments that offer higher task variation and a direct bond between
examples and practice, will be superior in measures concerning program construc-
tion because they are more familiar with programming language templates.

In accordance with Maycr and Webb, two more categories of learning outcomes
were distinguished: 1) factual, passive knowledge of basic commands and syntax,
and 2) ability in interpreting programs [8, 25]. Although these categories are not
the ultimate goals of programming instruction, they may be seen as vehicles to
reach proficiency in program construction. With regard to knowledge of basic
commands and syntax, no difference between the groups is predicted because such
elementary knowledge can be learned without having knowledge of templates.
However, the completion group is expected to be superior to the generation group
in interpreting programs, because they should have greater availability of program-
ming templates which should be useful in program comprehension tasks. The
following study was designed to test these hypotheses.

METHOD

Subjects

At the beginning of the scholastic year, students fifteen to seventeen years of
age attending a Dutch high school received an entry form to apply for participation
in a ten-lesson introductory programming course, which was not part of the
students’ regular time-table. Thirty-three males and twenty-four females volun-
teered for participation.

The self-selected sample was divided in two experimental groups by a combined
matching procedure [26]. Four variables were used for classification: Sex, year of
study, variant of study (exact vs. language and humanities), and prior experience
with computers. Two levels were distinguished with regard to prior experience:
1) no experience or only some experience with games and/or applications software,
and 2) some experience with both games and/or applications software and program-
ming in a high-level language (usually BASIC). Exactly matched pairs were
formed and randomly assigned over the experimental groups; the allotment of
remaining subjects was balanced so that the means of the groups were equal for all
classification variables. This procedure resulted in one group of twenty-eight
subjects and one group of twenty-nine subjccts, of which twenty-one pairs were
matched exacitly.

Materials

Questionnaire — The participating students filled in a short questionnaire two
weeks before the start of the course. It contained questions about their age, sex,

270 / MERRIENBOER

year of study, kind of attended courses, prior experience with computers, motiva-
tion for participation, and so forth.

Classroom setting and programming language — All lessons took place in a
computer class equipped with a network of fifteen NewBrain microcomputers. The
goal of the course was the acquisition of some elementary programming skills using
a small subset of the computer language COMAL-80 [27]. This particular language
was chosen for several reasons:

1. Structured programming is supported in a user-friendly environment,

2. The comprehension and evaluation of programs is simplified by allowing
only one statement per line,

3. Graphical, Logo-like facilities are provided that students find highly motivat-
ing, and

4. Students were not likely to have had experience with the language because
it is relatively new and, in The Netherlands, not yet well-known.

Instructional materials — All instruction was based on workbooks that con-
tained five chapters on different subjects [28]. Each chapter included enough
information and training materials to provide for two periods of forty-five minutes.
A short summary completed each chapter and a comprehensive summary con-
cluded the whole workbook. The main topics in the course were: 1) variables, input,
output, and arithmetic operations, 2) loop-exit-endloop structures for iteration,
3) counter variables, running totals, and initializations, 4) simple graphics com-
mands, and 5) integer division and its remainder. The workbooks were available
intwo versions that profoundly differed in their implemented instructional strategy;
one version emphasized the generation of new programs, the other version empha-
sized the completion of existing programs.

For both versions, the structure of each chapter is displayed in Figure 1.
The chapters for both strategies began with a presentation of factual infor-
mation about new commands and syntactical details. The study of this part did
not require the use of the computer and lasted approximately thirty minutes.
For example, the following issues were dealt with in the first chapter: What
is a variable? What is the distinction between the name and the value of a
variable? How do you assign a value to a variable? How do you perform arithmetic
operations on variables? How do you print the value of a variable or expression on
the screen?

For the generation strategy, each chapter consisted of two additional parts. In
the first part, a model solution was presented that demonstrated the generation of
a program which used the newly learned commands and syntax. The study of this
part lasted approximately fifteen minutes. Although it was permitted to type in the
program to experiment with it, use of the computer was not necessary. For example,
the model solution in chapter three dealt with counters and running totals and
started from the problem of how to calculate and oulput the mean of an array of

‘ABaeis uope|dwoo ay) pue ABajesis uonelsuab ay) Joj sisideyo aAly sy} Jo Yoes Jo aimonis syl | anbig

z

o uw gy uw gt uw 0g

ki

2 INIWNDISSY | JLNIWNDISSY NOILYWHOAINI TYN1ov
= NOLLTWOO | | NOLLTINOD 40 NOILVINIS3Hd
3

= LRI A 5 S TN ISl P S MR ey

o up St ‘un oe

[

< NOLLNTOS NOILYWHOSNI VN LoV
m INSWNDISSY NOILYHINID BaOW 40 NOLLVINISIHd
w

o

¢ aold3d

L Qoid3d

271

272 /| MERRIENBOER

input values. A step-by-step description of the development of a correct program
was provided.

In the second part, a generation assignment was presented that required the
design, coding, and debugging of a complete program. Each assignment offered a
problem specification and some guidelines for designing and testing the program.
The students were given the entire second period (45 minutes) to complete the
assignment. For example, the assignment for chapter four concerned the generation
of a program to draw stars with » beams. In addition to the number of beams, the
length of their sides and their interior angle had to be treated as input variables.
The program had to be tested and debugged until it worked correctly.

For the completion strategy, each chapter consisted of only one additional
section that contained four completion assignments. Each assignment had three
components: 1) a problem specification, 2) a complele or, more usually, partial
solution in the form of a well-structured program that used the newly learned
commands and syntax, and 3) some questions concerning the structure and the
working of this program as well as instructions to modify or complete it. The
available time to finish each assignment was approximately fifieen minutes so that
one problem could be worked on in the first period and the remaining three in the
second period. Because it took students considerably less time to finish a comple-
tion assignment than a generation assignment it was not possible to present the
same amount of problems across conditions. However, the problem specification
of one randomly chosen completion assignment was for each chapter identical to
the generation assignment in the other version of the workbook.

All (partial) programs presented in the completion assignments were available
on disk and could be downloaded from the network. The students answered
questions concerning the program’s actions in their workbooks; all other tasks
required the use of the computer. For example, one of the assignments of chapter
four concerned a problem specification and a program to draw polygons. The
students had to run this program with several input values to observe and study its
workings, they had to modify it in order to draw spirals instead of polygons, and
finally they had to complete it by adding extra input variables.

Evaluation forms — The students had 1o fill in a course evaluation form after
the fifth and the last lesson. The form could be used to comment on the design and
content of the course. In addition, it included six closed questions that the students
scored on a five-point scale. The questions were related to:

. The attractiveness of the factual information,

The degree of difficulty of the factual information,

. The attractiveness of the assignments,

The degree of difficulty of the assignments,

. The quantity of information and assignments that had to be studied and
performed during the lessons, and

6. The amount of time that was spent studying course-topics at home.

L N T

PROGRAM COMPLETION VS. GENERATION / 273

Tests — Three tests were administered to assess learning outcomes: 1) a
program construction test to measure skill in designing and coding complete, new
programs, 2) a factual knowledge test to measure passive knowledge of commands
and syntax, and 3) a program comprehension test to measure proficiency in
interpreting programs.

The program construction test consisted of two programming problems for
which students had to generate programs on paper; the available time to finish this
test was sixty minutes. Both programs had to satisfy the following restriction:

1. Only existing commands are used.

Furthermore, both programs required, in addition to some specific charac-
teristics, the use of seven essential COMAL-80 features or programming concepts.
These common, necessary features are:

2. Variables, written as single names and a unique variable name for each
variable;

3. The input-command, as in the statements <INPUT variable> or <INPUT
“text”: variable>;

4. The print-command, as in the statements <PRINT variable>, <PRINT
expression>, <PRINT “text”>, <PRINT “text”; variable>, or <PRINT
“text”; expression>;

5. Conditionals, in the term <a relation b>, where a and b stand for variable
or expression, and relation stands for =, <, <=, >, or >=;

6. Iterations, in the term <LOOP / EXIT WHEN conditional | ENDLOOP>,
where each of the three elements is coded on a new line;

7. Counter variables or running totals, in a looping structure as <counter:=
Counter operator constant>, <running:= running operator variable>, or
<running: = running operator expression>, where operator stands for + or —;

8. Counter variables or running totals initialized above a looping structure, as
<counter:= constant > oI <running:= constant>.

In addition, the readability and usability of both programs could be enhanced
by the use of four other characteristics. These optional features are:

9. Print- and input commands combined, as in the statement <INPUT “texs”:
variable>;
10. Double print commands combined, as in the statement <PRINT “texr”;
variable> or <PRINT “text”; expression>;
11. Variable names that reflect their functions;
12. Comments, as <// comment=> 1o indicate both the scope of the program and
the functions of various parts.

274 | MERRIENBOER

Both the factual knowledge test and the program comprehension test included
cighteen four-choice questions; the available time to finish each test was thirty
minutes. All items were selected from a small existing item bank and had expected
p-values of approximately .60. The items of the factual knowledge test evaluated
knowledge of single commands and syntactical details of COMAL-80; the items
of the program comprehension test referred to the workings and actions of two
complete programs that were presented on paper.

Procedure

Formation of groups — The instructional materials were randomly assigned to
the experimental groups: One group (n = 28) received the generation workbook and
one group (n = 29) received the completion workbook. Subgroups of two or, if
necessary, three students were formed that worked together on one computer for all
lessons. In case of non-attendance or mortality, the remaining students were assigned
to new subgroups so that they always worked in groups of two or three students.

Activities during the course — The instruction was given for one period a week
for ten weeks. The two groups attended the course at the same time of day but on
different days of the weck. All lessons occurred in subsequent weeks, except fora
break between lessons four and five because of school vacations. All procedures
were identical for both groups.

The first lesson started with a short verbal introduction about the structure and
the goals of the course. Then all students received either a generation or a
completion workbook. Whereas the workbooks did not contain actual group tasks,
the students were encouraged to work together on all assignments. More specifi-
cally, they were instructed:

1. To work strictly according to the workbook by answering questions and
performing tasks in the indicated sequence,

2. To discuss all difficulties regarding the text or tasks within their subgroup
and to consult the teacher only in case of insuperable difficulties, and

3. To work at their own tempo but to follow the time schedule presented in the
workbook as closely as possible.

The students in each subgroup regularly switched places to give everyone equal
Opportunity to enter information on the computer; they answered all questions in
their workbooks and performed further tasks by using the computer.

Two experienced teachers conducted the course; each of them led an €qual
number of lessons for both groups. The teachers’ contribution to the course was
limited because the subgroups worked independently on their workbooks. The
teachers were instructed: 1) to help subgroups in case of serious difficulties that
they could not resolve for themselves, and 2) to encourage subgroups to let all
students spend an equal amount of time entering information on the computer.

PROGRAM COMPLETION VS, GENERATION / 275

Administration and scoring of tests — The factual knowledge test and the
program comprehension test were administered in the week after the last lesson;
the program construction test was administered in the subsequent week. Students
worked individually on all tests, without assistance of other students or the teacher.
The students received a certificate of participation after they finished the program
construction test.

The scores on the factual knowledge test and the program comprehension test
were determined by the number of correctly answered items. Scoring of the
program construction test was conducted in three steps. First, the number of
correctly and incorrectly coded lines were counted; incorrectly coded lines were
simply defined as lines that would not have been accepted by the COMAL
interpreter because of syntactic errors.

Second, two observers scored the correct use of each of the seven COMAL-
features or programming concepts that had to be present in both programs, and the
restriction that only existing commands were used, as true or false; in addition, they
scored the correct use of each of the four optional features as true or false. Then,
the overall quality of each program was computed as the number of true categories,
so that each student’s maximum overall score for the correct use of features was
twenty-four.

Finally, the two observers scored the semantic correctness of each program on
the following five-point scale:

1. The program is hardly recognizable as a “real” program (e.g., no general
input-process-output plan is used),

2. The program can be recognized as a “real” program but obviously does not
try to reach its goal because the functional units do not perform the required
task,

3. The program clearly tries to reach its goal but includes both semantical and
syntactical errors,

4. The program is semantically correct but includes syntactical errors, and

5. The program is semantically as well as syntactically correct.

Consequently, cach student’s maximum score for the semantic correctness of
constructed programs was ten.

RESULTS

Mortality and Non-Attendance

In the completion group, twenty-six of the twenty-nine subjects completed the
course; in the generation group, only twenty-one of the twenty-cight subjects
completed the course. The percentages of mortality in subgroups, classified by sex
and prior knowledge, are displayed in Table 1.

276 /| MERRIENBOER

Table 1. Percentages of Mortality in Subgroups
Classified by Sex and Prior Experience

Group

Subgroup n Completion n Generation
Males

Medium 8 12.5 8 12.5

Low 11 18.2 6 16.7
Females

Medium 1 — 1 —

Low 9 - 13 38.5*

*p < .05

As may be seen from this table, the difference in mortality is completely
accounted for by the subgroup of female subjects with low prior knowledge. In the
completion group, all females with low prior knowledge completed the course; in
the generation group, only eight of the thirtcen female subjects with low prior
knowledge completed the course, (1, N = 22) = 4.48, p < .05. No significant
differences in non-attendance were observed for subjects that completed the course.
The non-attendance rates were 8.5 percent in the completion group and 6.7 percent
in the generation group.

After the course, the composition of the experimental groups was no longer
equivalent for each classification variable as a result of the differential mortality.
Therefore, subsequent analyses on test scores are carried out on matched pairs only;
fifteen of the original twenty-one pairs were available after the course was completed.

Tests

The median number of program lines coded for both programs in the program
construction test was twenty-four for both groups; the corresponding means were
23.5 for the completion group and 29.5 for the generation group. With respect to
the validity of those numbers, it should be recalled that only one statement per line
could be coded. The median percentage of incorrectly coded lines was 13.6 percent
for the completion group and 24.1 percent for the generation group; the means
were, in order, 18.7 percent and 31.8 percent. According to a Wilcoxon signed rank
test, this difference is significant, W (15) = 26, p < .05; the Hodges-Lehmann
cstimator for the effect size is thirteen.

Table 2 displays the proportions of programs in which the essential and optional
features of the programming language COMAL-80 were used correctly. The
completion group was superior to the generation group for all features (significantly
on the 10% level for five features), with cxception of the use of conditionals (e.g.,
in EXIT WHEN conditional). The coefficient alpha for the internal consistency of
the measure = .83; the interobserver reliabilities ranged from .69 to 1.00. A signed

PROGRAM COMPLETION VS. GENERATION / 277

Table 2. Proportions of Programs in which Necessary and
Optional Features were Used Correctly

Group (N = 15)

Features Completion Generation rIobs w

NECESSARY

1. Commands .83 .60 77 %28.5*
2. Variables .87 .67 71 39.0
3. Input 0 47 1.00 33.0*
4. Print 73 .63 .98 46.5
5. Conditionals 47 .60 91 87.0
6. Looping .53 47 .90 53.0
7. Counters 53 .33 .96 29.5%
8. Initialization 43 27 92 32.5*
OPTIONAL

9. Print /Input .20 13 1.00 53.0
10. Print /Print 37 .20 1.00 395
11. Names .93 73 .69 39.0
12. Comments .53 A7 .89 230k

2N is fourteen because an odd number of zero differences occurred.

*n < .10.

**5 < .05.

wk < 025,

rank test was conducted to test the significance of the differences. The most
conspicuous difference occurred in the use of comments. In the completion group,
53 percent of the constructed programs contained meaningful comments; in the
gencration group, only 17 percent of the programs contained such comments.

With regard to the overall scores for the correct use of features, a maximum
score of twenty-four points could be reached if a subject correctly used all twelve
features in both programs. The interobserver reliability for those scores = .98. The
medians were f[ifteen for the completion group and ten for the generation group;
the corresponding means were 14.3 and 10.5. A signed rank test yields a significant
difference,W (14) = 13, p < .01, the Hodges-Lehmann estimator for the effect size
is three.

Concerning the semantic correctness of the programs, the subjects could reach
a maximum score of ten points if both constructed programs were semantically as
well as syntactically correct. The interobserver reliability for these scores = .86.
The completion group was superior to the generation group: The medians were, in
order, six and five; the corresponding means were 5.6 and 4.8. This diffcrence is
significant, W (15) = 26, p <.05; the Hodges-Lehmann estimator for the effect size
is one.

With regard to the factual knowledge test and the program comprehension test,
no significant differences were observed between the groups. The medians for the
numbers of correctly answered items in the factual knowledge test (KR20 = .75)
were seven in the completion group and ten in the generation group; the means

278 | MERRIENBOER

were, in order, 8.4 and 10.0. This difference is nonsignificant, W (14) = 31.5. The
medians for the numbers of correctly answered ilems in the program comprehen-
sion test (KR20 = .54) were eight for both groups; the corresponding means were
8.5 for both groups.

Evaluation

Evaluation data were analyzed for all subjects that completed the course by
one-way analyses of variance with repeated measures. The mean scores over the
measurements after the fifth and the last lesson arc displayed in Table 3.

No significant effects were observed on judgment scores for attractiveness and
difficulty of the—for both groups identical—presented factual information or
the—completion vs. generation—assignments. However, the (Group X Measure-
ment) interaction for the judged difficulty of assignments nearly yielded a sig-
nificant effect. The mean scores for the completion assignments were 2.77 on the
first measure and 2.85 on the second measure; the mean scores for the generation
assignments were, in order, 2.48 and 2.95,F(1,45) = 3.61, p < .06.

For the drop outs in the generation group who did complete the first five lessons
(n = 4), the judgments of difficulty of the generation assignments significantly
differed from the rest of the group on the first measure: The means were 3.75 for
the drop outs and 2.48 for the rest of the group, T (23) = 2.20, p <.05. The judgments
of difficulty of assignments in the completion group did not significantly differ
between drop outs (# = 3) and the rest of the group: The means were, in order, 3.00

Table 3. Mean Judgment Scores of Both Groups for
Aftractiveness, Difficulty, and Quantity

Group
Completion Generation
Judgment (N=26) (N=21)

Attractiveness ®

Information 273 274

Assignments 2.29 2.36
Difficulty ®

Information 2.56 2.67

Assignments 2.81 2.72
Quantity

Lessons © 3.60 3.29*

Homework ¢ 1.75 1.84

8 2 = attractive, 3 = neutral,
2 = easy, 3 = neutral,
€ 3 = neutral, 4 = quite a lot.
91 =0-1/2 hour, 2 = 1/2-1 hour.
*p < .10.

PROGRAM COMPLETION VS. GENERATION / 279

and 2.77. With respect to further evaluation data, the drop outs did not show
differences to the rest of the groups.

Finally, both groups voluntarily spent the same amount of time on homework.
However, the groups slightly differed in their judgment of the amount of work that
had to be done during the lessons: Mean scores for the completion group and the
generation group were, in order, 3.60 and 3.29, F (1,45) = 3.09, p < .08. After the
last lesson, all subjects were asked to cstimate the percentage of information and
assignments that could be thoroughly studied and exercised during the course.
These estimations yielded mean scores of 60 percent for the completion group and
84 percent for the generation group, T (45) = 4.18, p < .005.

DISCUSSION

The main hypothesis of this study, which statcd that the completion strategy is
superior to the generation strategy for learning outcomes regarding a program
construction task, is clearly supported by the results. First, while the length of
constructed programs was statistically equal for both groups, the percentage of
correctly coded program lines was higher for the completion group. Second, all but
one of the programming language features that had to be present in the constructed
programs were more often correctly used in the completion group than in the
generation group; furthermore, the overall quality of programs, as measured by the
numbers of correctly used features, was higher in the completion group. Finally,
the semantic correctness of the constructed programs was superior in the comple-
tion group.

The students judged both strategics as equally difficult and equally attractive.
In addition, the rate of non-attendancc was comparable and the students spent,
besides the lessons, the same amount of time to working at home. Consequently,
the differential effects of instructional strategies on learning outcomes in program
construction cannot be easily accounted for by factors related to affect towards the
course or time-on-task.

The superiority of the completion strategy was hypothesized because the hi gher
task variation and, in particular, the direct bond between practice and the presen-
tation of worked-out examples was expected to facilitate the development of
templates. The results support this view. As predicted, no difference between the
groups could be observed in knowledge of single commands and syntax; in fact,
the generation group was slightly superior to the completion group on the factual
knowledge test. Nevertheless, the percentage of correctly coded lines was higher
for the completion group. This may be explained by the availability of templates
that offer structures to code either statements or single lines, that is, to combine
basic commands with their arguments using the correct syntax. Extra support for
this explanation is given by the fact that non-cxisting commands and incorrect
input-statements appear significantly less frequently in the completion group.

280 / MERRIENBOER

The results also -indicate that students in the completion group had better
templates available to code several related program lines. For instance, both groups
correctly used structures for iteration with the same frequency. However, in the
completion group those looping structures were more often combined with proper
initializations above the loop as well as a correct use of counter variables and/or
running totals within the loop. Obviously, the completion strategy yields better
developed templates to combine iterations with related concepts.

Finally, the completion strategy led to better developed general templates of
what a well-coded program should look like. For instance, comments to indicate
the scope of the program and the goals of certain parts were more common in the
completion group. Other high level templates may be used to separate input,
process, and output; subsequently, the problem can be decomposed in parts that
can be performed with lower-level templates. This process should increase the
probability that a semantically correct solution is found, thus, it may explain the
finding that better solutions were reached in the completion group.

Apart from being useful in the construction of programs, templates are expected
to be helpful in interpreting programs. However, contrary to the prediction, no
difference in test scores were observed on the program comprehension test. One
possible explanation is that students learn templates as units that serve as both
partial solutions to decomposed problems and building blocks to construct
programs. However, they do not really seem to understand the working of those
units, that is, the flow of control within them.

As a speculation, it may be that correctly using templates comes prior to
understanding their internal workings. In this case, the short duration of the course
may account for the absence of a difference in program comprehension scores. This
effect may be further strengthened by the fact that, according to the students’
estimations, a smaller amount of the presented information and assignments could
be thoroughly studied in the completion strategy. A better balanced volume of
instructional materials would probably have enlarged differences in learning
outcomes.

In future experiments concerning the completion strategy, measures will be
taken to secure a more thorough learning of the flow of control within templates.
As Anderson, Boyle, Corbett, and Lewis, as well as Lieberman pointed out,
examples should be annotated with information about what they are supposed to
illustrate |20, 29]. The programs presented in the completion assignments
can easily be amplified with such remarks. First, it may be desirable to further
annotate the examples by cxplicitly referring to the templates they use.
Second, both the critical features of the templates and the flow of control within
them should be emphasized o stimulate the gaining of understanding about how
they work.

Whereas the results on learning oulcomes may be adequately explained by the
higher task variation and the direct bond between practice and worked-out
examples in the completion assignments, which in turn led to a greater availability

PROGRAM COMPLETION VS. GENERATION / 281

of templates in the completion group, it should be noted that other factors may be
of importance. In general, instructional strategies such as the generation and the
completion strategy can be thought of as sets of instructional methods, or tactics,
that pertain to the design of practice (e.g., kind and duration of assignments and
the quality of feedback) and instructional materials (¢.g., presentation of factual
information and model solutions) [17]. Although the generation group and the
completion group most profoundly differed in the kind of assignments they
performed (i.e., generation assignments that offer little task variation and no
worked-out examples vs. completion assignments that offer more task variation
and a natural bond between examples and practice), they also differed in other
respects.

First, the groups differed in time spent doing assignments. The completion group
spent sixty minutes per lesson working on completion assignments and the genera-
tion group spent forty-five minutes per lesson working on generation assignments.
Whereas it can be argued that both groups spent approximately the same amount
of time to actual programming tasks because the completion assignments involved
a substantial amount of program reading, which is the same aclivity as the
generation group was involved in while studying the model solutions, the pos-
sibility that the different amounts of practice influenced learning outcomes cannot
with certainty be precluded.

Second, no quantitative data are available on the feedback that students
received. Apart from the successful execution of the programs, both groups
received feedback from the teacher in case of difficulties they could not resolve for
themselves. In making use of the feedback of the COMAL interpreter, the genera-
tion group may have been at a disadvantage because they would have more
self-generated code and thus it could be more difficult for them to identify the code
responsible for the “buggy” output. But as a consequence, more help from the
tcacher would be expected in the generation group and actually, both teachers
confirmed this expectation. However, the contribution of eventual differences
in the amount and quality of feedback to learning outcomes cannot be easily
determined.

Third, the strategies differed in their presentation of instructional materials
because the generation group received model solutions and the completion group
did not. Although the completion group had (partial) programs available on disk
and were required to observe the execution of programs while working on the
completion assignments, the generation group were only given a printout of the
model solutions in their workbooks. It is possible that observing the dynamic
cxecution of a program facilitates understanding of programming concepts to a
greater degree than reading a program. In fact, it is possible to study learning
outcomes for more similar strategics by presenting the model solutions on line for
the gencration strategy. '

Generally, in future research on instructional strategies it will be necessary to
make further careful comparisons of learning outcomes for strategies that apply

282 / MERRIENBOER

different sets of tactic for the design of practice and the presentation of instructional
materials. This research should not only focus on tracking down global guidelines
for instructional design, but also on an assignment of weights to instructional tactics
and an assessment of possible interactions between tactics. Then, it will become
more clear which tactics must be included in instructional strategies that contribute
to higher learning outcomes.

Besides effects on learning outcomes, a conspicuous and unexpected dif-
ference between the completion and the generation stratcgy occurred with
regard to mortality in the groups. In the completion group, mortality was—for a
self-imposed, supplementary course—relatively low and cqually divided over
subgroups; in the generation group, mortality was higher and primarily occurred
for female subjects with low prior knowledge. Furthermore, the drop outs
in the generation group judged the assignments as difficult compared to the
rest of the group, whereas the drop outs in the completion group did not differ
in their judgments from the rest of the group. Possibly, female subjects
with low prior knowledge experience the generation of complete programs
as a difficult and menacing task: The completion strategy largely obviates this
difficulty.

A second result concerning the difficulty of assignments indicated that in the
generation strategy the judged difficulty of assignments increased during the
course, whereas in the completion strategy assignments were judged equally
difficult throughout the course. These judgments of difficulty can be related to
required processing load [17]. In the generation strategy, task-required processing
load rises during the course as programs have to be generated for increasingly
difficult programming problems; processing overload is hard 1o prevent because
the design and coding of new, complete programs is the primary student activity.
On the contrary, task-required processing load is more easily controlled in the
completion strategy because this strategy varies the complexity of student activ-
ities, such as reading, tracing, modification, and completion: The stable judgment
of the difficulty of completion assignments supports this view.

Summarizing, the completion strategy seems to be an excellent alternative 1o
more traditional strategies that mainly emphasize the generation of programs for
three rcasons:

1. It results in better learning outcomes for program construction,

2. Itis characterized by a lower mortality rate, in particular for female students
with low prior knowledge about computers, and

3. There is reason to believe that it shows superior control over students’
task-required processing load in working on programming assignments
during the course.

With regard to the results, it finally should be explained why the reported study
was primarily interested in performance measures and not in transfer of learned

PROGRAM COMPLETION VS, GENERATION /[283

skills. Although one of the most often cited rationales for programming courses is
that learning computer programming will improve students” higher level, domain
independent cognitive skills, there is conflicting research evidence regarding the
relationship between computer programming and such skills. Low learning out-
comes in most programming courses may account for the conflicting results
because the cognitive skills that are expected to develop out of programming no
doubt depend upon attaining a certain proficiency in programming by the students.
As Kurland et al. pointed out, we need to more closely study instructional strategies
that yicld higher learning outcomes before we prematurcly go looking for far
transfer effects from programming; the present study was designed to provide for
this need [2].

In future research concerning the completion strategy, more attention will be
paid to measures that secure a more thorough understanding of the flow of control
within templates. Then, two paths will be taken. First, in addition to learning
outcomes, the problem solving processes and problem approaches of students
who are working according to the completion or the generation strategy will be
observed. For this purpose, parts of both strategies will be implemented in the form
of computer-assisted instruction. Close obscrvations of individual students work-
ing according to one of the strategies will yield further, more precise information
about the appropriateness of the completion strategy.

Second, the completion strategy will be implemented in a regular high school
programming course so that learning outcomes can be studied for larger groups
that compulsory participate in a course of relatively long duration. Unfortunately,
much effort will have to be invested in designing such a course as yetl few
instructional materials are available that could be classified under the completion
strategy. However, this investment is believed to be worth while as the results of
the present study consolidated the view that a change in instructional strategies is
needed to reach more satisfactory learning outcomes, and could thus lead to
eventual far transfer effects of learned cognitive skills.

ACKNOWLEDGMENTS

I thank Sanne Dijkstra, Otto Jelsma, and Hein Krammer for their helpful
comments on a draft of this article.

REFERENCES

1. J.Dalbey and M. C. Linn, The Demands and Requirements of Computer Programming:
A Literature Review, Journal of Educational Computing Research, 1:3, pp. 253-274,
1985. 2

2. D. M. Kurland, R. D. Pea, C. Clement, and R. Mawby, A Study of the Development
of Programming Ability and Thinking Skills in High School Students, Journal of
Educational Computing Research, 2:4, pp. 429485, 1986.

284 / MERRIENBOER

3

4

10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. C. Linn, The Cognitive Consequences of Programming Instruction in Classrooms,
Educational Researcher, 145, pp. 14-29, 1985.

M. C. Linn, K. D. Sloane, and M. . Clancy, Ideal and Actual Qutcomes from Precollege
Pascal Instruction, Journal of Research in Science Teaching, 24:5, pp.d467-490,
1987.

R. D. Pea and D. M. Kurland, On the Cognitive Effects of Learning Computer
Programming, New Ideas in Psychology, 2:2, pp. 137-168, 1984,

D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons, Conditions of
Learning in Novice Programmers, Journal of Educational Computing Research, 2:1,
pp. 37-56, 1986.

P. R. Pintrich, C. F. Berger, and P. M. Stemmer, Students’ Programming
Behavior in a Pascal Course, Journal of Research in Science Teaching, 24:5, pp.
451-466, 1987.

R. E. Mayer, Different Problem-Solving Competencies Established in Learning Com-
puter Programming with and without Meaningful Models, Journal of Educational
Psychology, 67:6, pp. 725-734, 1975.

R. E. Mayer, The Psychology of How Novices Learn Computer Programming, Com-
puting Surveys, 13:1, pp. 121-141, 1981.

R. E. Mayer, Contributions of Cognitive Science and Related Research in Learning to
the Design of Computer Literacy Curricula, in Computer Literacy, R. Seidel, R.
Anderson, and B. Hunter (eds.), Academic Press, New York, pp. 129-159, 1982.

R. E. Mayer and B. Bromage, Different Recall Protocols for Technical Text Due
to Advance Organizers, Journal of Educational Psychology, 72:2, pp.209-225,
1980.

J. M. Hoc, Planning and Direction of Problem Solving in Structured Programming: An
Empirical Comparison between Two Methods, International Journal of Man-Machine
Studies, 15:4, pp. 363-383, 1981.

5. McCoy Carver and D. Klahr, Assessing Children’s logo Debugging Skills
with a Formal Model, Journal of Educational Computing Research, 2:4, pp. 487-525,
1986.

L. E. Deimel and D. V. Moffat, A More Analytical Approach to Teaching the
Introductory Programming Course, in Proceedings of the NECC, 1. Smith and
M. Schuster (eds.), The University of Missouri, Columbia, pp. 114-118, 1982.
1. Dalbey, F. Tourniaire, and M. C. Linn, Making Programming Instruction Cognitively
Demanding: An Intervention Study, ACCCEL Report, University of California,
Berkeley, 1985.

R.D. Pea, Language Independent Conceptual “Bugs” in Novice Programming, Journal
of Educational Computing Research, 2:1, pp. 25-36, 1986.

I. 1. G. Van Merriénboer and H. P. M. Krammer, Instructional Strategies and Tactics
for the Design of Introductory Computer Programming Courses in High School,
Instructional Science, 16:3, pp. 251-285, 1987.

R. Brooks, Towards a Theory of the Cognitive Processes in Computer Programming,
International Journal of Man-Machine Studies, 9:6, pp. 737-751, 1977.

I. R. Anderson, R. Farrell, and R. Sauers, Learning to Program in LISP, Cognitive
Science, 8:2, pp. 87-129, 1984.)

H. Lieberman, An Example Based Environment for Beginning Programmers, lnstruc-
tional Science, 14:3, pp. 277-292, 1986.

21.

22,

24.
25.

26.

2.

29.

PROGRAM COMPLETION VS. GENERATION / 285

K. Ehrlich and E. Soloway, An Empirical Investigation of The Tacit Plan Knowledge
in Programming, in Human Factors in Computer Systems, J. Thomas and M. L.
Schneider (eds.), Ablex Publishing Corporation, Norwood, New Jersey, pp. 113-133,
1984.

E. Soloway, From Problems to Programs via Plans: The Content and Structure of
Knowledge for Introductory LISP Programming, Journal of Educational Computing
Research, 1:2, pp. 157-172, 1985.

. N. Dale and D. Orschalick, Introduction to Pascal and Structured Design, D. C. Heath

and Company, Lexington, 1983,

D. V. Moffat, Common Algorithms in Pascal, Academic Press, New York, 1984.

N. M. Webb, Microcomputer Learning in Small Groups: Cognitive Requirements and
Group Processes, Journal of Educational Psychology, 76:6, pp. 1076-1088, 1984.

H. P. M. Krammer, IND1.PAS en IND2.PAS: Twee programma’s voor het matchen als
exacte maiching onmogelijkis [IND1.PAS and IND2.PAS: Two programs for matching
when exact matching is impossible], Technical Report Number IST-MEMO-86-03,
University of Twente, Enschede, The Netherlands, 1986.

B. R. Christensen, Beginning COMAL, Ellis Horwood, Chichester, 1982.

1.). G. Van Merriénboer, Leren programmeren in COMAL: Experimentele werkboeken
1 en 2 [Learning to program in COMAL: Experimental workbooks 1 and 2], University
of Twente, Enschede, The Netherlands, 1987.

J. R. Anderson, C. F. Boyle, A. Corbett, and M. Lewis, Cognitive Modelling and
Intelligent Tutoring, Technical Report Number ONR-86-1, Carnegie-Mellon Univer-
sity, Pittsburgh, 1986.

Direct reprint requests to:

Dr. Jeroen J. G. van Merriénboer
Department of Instructional Technology
University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

https://www.researchgate.net/publication/312990037

