
ar
X

iv
:n

lin
/0

01
00

41
v1

  [
nl

in
.S

I]
  2

5 
O

ct
 2

00
0 Complete integrability of the coupled KdV–mKdV system

Paul Kersten and Joseph Krasil′shchik

Abstract. The coupled KdV–mKdV system arises as the classical part of
one of superextensions of the KdV equation. For this system, we prove its
complete integrability, i.e., existence of a recursion operator and of infinite
series of symmetries.

Introduction

There are several supersymmetric extensions of the classical Korteweg–de Vries
equation (KdV) [5, 8, 9]. One of them is of the form (the so-called N = 2, A = 1
extension [3])

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1

+ 6ψϕ1w − 6ϕψ1w − 6ϕψw1,

ϕt = −ϕ3 + 3ϕu1 + 3ϕ1u− 3ψ2w − 3ψ1w1 + 3ϕ1w
2 + 6ϕww1,

ψt = −ψ3 + 3ψu1 + 3ψ1u+ 3ϕ2w + 3ϕ1w1 + 3ψ1w
2 + 6ψww1,

wt = −w3 + 3w2w1 + 3uw1 + 3u1w,

where u and w are classical (even) independent variables while ϕ and ψ are odd
ones (here and below the numerical subscript at an unknown variable denotes it
derivative over x of the corresponding order). Being completely integrable itself,
this system gives rise to an interesting system of even equations

ut = −u3 + 6uu1 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1,

wt = −w3 + 3w2w1 + 3uw1 + 3u1w, (1)

which can be considered as a sort coupling between the KdV (with respect to u)
and the modified KdV (with respect to w) equations. In fact, setting w = 0, we
obtain

ut = −u3 + 6uu1,

while for u = 0 we have

wt = −w3 + 3w2w1.
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In what follows, we prove complete integrability, cf. [2], of system (1) by estab-
lishing existence of infinite series of symmetries and/or conservation laws. Toward
this end we construct a recursion operator using the techniques of deformation
theory introduced in [4] and extensively described and exemplified in [5].

In the first section of the paper the theoretical background is introduced. The
second section deals with particular computations and description of basic results.

1. Geometrical and algebraic background

Here we briefly describe the geometrical theory of partial differential equations
[1, 6] and algebraic foundations of computational approach to recursion operators
[4, 5].

Let π : E → M be a locally trivial vector bundle and πk : J
k(π) → M , k =

0, 1, . . . ,∞, be the bundles of its k-jets. A (nonlinear) partial differential equation
(PDE) of order k is a submanifold E ⊂ Jk(π), k < ∞. Its lth prolongation is a
subset E l ⊂ Jk+l(π). There exist natural mappings πk+l+1,k+l : E

l+1 → E l, and E
is said to be formally integrable, if all E l are smooth manifolds while πk+l+1,k+l are
smooth fiber bundles. Below, only formally integrable equations are considered.

The inverse limit E∞ ⊂ J∞(π) of the system {E l, πk+l,k+l−1} is called the
infinite prolongation of E and we consider the bundle πE : E

∞ → M . This bundle
enjoys the following characteristic property:

Proposition 1 (see [6]). Let πi : Ei → M , i = 1, 2, be two locally trivial vec-

tor bundles and ∆: Γ(π1) → Γ(π2) be a linear differential operator acting from

sections of π1 to sections of π2. Then there exists a unique differential operator

C∆: Γ(π∗
E (π1)) → Γ(π∗

E (π2)) such that

j∞(s)∗ ◦ C∆ = ∆ ◦ j∞(s)∗ (2)

for any formal solution s of the equation E. The correspondence ∆ 7→ C∆ is

C∞(E∞)-linear and complies with the composition of differential operators :

C(∆2 ◦∆1) = C∆2 ◦ C∆1, (3)

where ∆1 : Γ(π1) → Γ(π2), ∆2 : Γ(π2) → Γ(π3) are linear differential operators,
π3 : E3 →M being a third vector bundle.

As a corollary of Proposition 1, we get

Proposition 2. The bundle πE possesses a natural flat connection.

Proof. It suffices to take the trivial bundle 1M : M × R → M for the bun-
dles π1 and π2 and an arbitrary vector field X for the operator ∆. Flatness is a
consequence of (3).

Let us denote by D(N) the C∞(N)-module of vector fields on a manifold N .

Definition 1. The connection C : D(M) → D(E∞) is called the Cartan con-

nection on E∞.

Denote by CD(E∞) ⊂ D(E∞) the horizontal distribution on E∞ with respect to
the Cartan connection (the Cartan distribution) and by DC(E

∞) the normalizer of
CD(E∞) in D(E∞). Then, since C is flat, CD(E∞) is integrable in a formal Frobenius
sense and thus CD(E∞) is an ideal in DC(E

∞).

Definition 2. The quotient Lie algebra sym E = DC(E
∞)/CD(E∞) is called

the algebra of higher symmetries of the equation E .
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The Cartan connection in πE determines the splitting

D(E∞) = Dv(E∞)⊕ CD(E∞), (4)

where Dv(E∞) denotes the module of πE -vertical vector fields, and for any coset S ∈
symE there exists a unique vertical representative. In its turn, such a representative
is uniquely determined by a section ϕ ∈ Γ(π∗

E(π)) (generating section) satisfying
the defining equation

ℓEϕ = 0 (5)

and vice versa. Here ℓE is the universal linearization operator for E restricted to
E∞. Due to this fact, we shall identify the solutions of (5) with higher symmetries
of E .

The connection form UE (the structural element of E) of the Cartan connection
C is an element of the module Dv(Λ1(E∞)) of Λ1(E∞)-valued vertical derivations.
Thus, we can introduce an operator ∂E : D

v(Λi(E∞)) → Dv(Λi+1(E∞)) defined by

∂EΩ = [[UE ,Ω]], Ω ∈ Dv(Λi(E∞)),

where [[·, ·]] is the Frölicher–Nijenhuis bracket. Since the Cartan connection is flat,
one has [[UE , UE ]] = 0, from where it follows that ∂E ◦ ∂E = 0. Thus we obtain
a complex (Dv(Λi(E∞)), ∂E ), whose cohomology is called the C-cohomology of E
and is denoted by H•

C(E). It is easy to see that H0
C(E) = symE , while H1

C(E), by
standard reasons, is identified with classes of nontrivial infinitesimal deformations
of UE (or, which is the same, of the equation structure).

If Ω and Θ are elements of Dv(Λi(E∞)) and Dv(Λj(E∞)) respectively, their
contraction Ω Θ is defined as an element of (Dv(Λi+j−1(E∞)) This operation is
inherited by the C-cohomology groups. In particular, if ϕ ∈ sym E and R ∈ H1

C(E),
then ϕ R = Rϕ is a symmetry again. In other words, the module H1

C(E) acts on
the Lie algebra of higher symmetries.

Let CΛ1(E∞) ⊂ Λ1(E∞) be the submodule of one-forms on E∞ vanishing on
the Cartan distribution. Then one has the direct sum decomposition

Λ1(E∞) = CΛ1(E∞)⊕ Λ1
h(E

∞)

dual to (4), where Λ1
h(E

∞) is the submodule of horizontal forms. This splitting is
also inherited by H1

C(E
∞) and an element R ∈ H1

C(E
∞) acts nontrivially on sym E if

only it corresponds to a derivation from Dv(CΛ1(E∞)). Moreover, it can be shown
that im ∂E ∩ Dv(CΛ1(E∞)) = 0 and consequently nontrivial actions can be found
by solving the equation

∂E(R) = 0. (6)

Solutions of (6) are called recursion operators for symmetries. Any recursion oper-
ator R is uniquely determined by an element ωR ∈ CΛ1(E∞)⊗ Γ(πE(π)) satisfying
the defining equation

ℓ
[1]
E (ωR) = 0, (7)

where ℓ
[1]
E is the extension of the operator ℓE to the module CΛ1(E∞)⊗Γ(πE(π)). If

ϕ ∈ Γ(π∗
E (π)) is a symmetry and Sϕ ∈ Dv(E∞) is the corresponding vertical vector

field, then the action of R on ϕ is given by

Rϕ = Sϕ ωR. (8)
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Local coordinates. Let U ⊂M be a coordinate neighborhood inM such that
the bundle π trivializes over U , x1, . . . , xn be local coordinates in U and u1, . . . , um

be coordinates along the fiber in a given trivialization. Then the adapted coordinates

in π−1
∞ (U) ⊂ J∞(π) are given by the functions ujσ, j = 1, . . . ,m, σ = i1 . . . ik,

1 ≤ iα ≤ n, uniquely defined by

j∞(f)∗(ujσ) =
∂|σ|f j

∂xi1 . . . ∂xik

for any local section f = (f1, . . . , fm) ∈ Γ(π|U ). Then the Cartan connection in
J∞(π) is given by

C

(

∂

∂xi

)

= Di =
∂

∂xi
+
∑

j,σ

ujσi
∂

∂ujσ
, (9)

where Di are the so-called total derivatives. The structural element in this case is
given by the formula

Uπ =
∑

j,σ

ωj
σ ⊗

∂

∂ujσ
, (10)

where ωj
σ = dujσ −

∑

i u
j
σi dxi are the Cartan forms constituting a basis in the

module CΛ1(J∞(π)). The forms ωj
σ may be rewritten as ωj

σ = dCu
j
σ, where dC is

the Cartan differential acting on f ∈ C∞(J∞(π)) by

dCf =
∑ ∂f

∂ujσ
ωj
σ.

This differential restricts to any submanifold E∞ ⊂ J∞(π) and for infinite prolon-
gations (10) transforms to

UE =
∑

I

dCuI ⊗
∂

∂uI
, (11)

where {uI} spans the set of internal coordinates in E∞.
If an equation E ⊂ Jk(π) is given by the system of equalities











F 1(x1, . . . , xn, . . . , u
j
σ, . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F r(x1, . . . , xn, . . . , u
j
σ, . . . ) = 0,

then its infinite prolongation is defined by

DσF
α = 0, α = 1, . . . , r, 0 ≤ |σ| <∞,

whereDσ = Di1◦· · ·◦Dik for σ = i1 . . . ik. Then the universal linearization operator
corresponding to this system is of the form

ℓF =

∥

∥

∥

∥

∥

∑

σ

∂Fα

∂ujσ
Dσ

∥

∥

∥

∥

∥

. (12)

The operator ℓE is obtained from (12) by rewriting it in internal coordinates.
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Example (Evolutionary 1 + 1 equations). Consider a system E of evolution-
ary equations











u1t = F 1(x, t, u1, . . . , umk ),

. . . . . . . . . . . . . . . . . . . . . . . .

umt = F r(x, t, u1, . . . , umk ),

(13)

where x = x1, t = x2 and ujl = ∂luj/∂xl. Then the functions x, t, . . . , ujl , · · · can
be taken for internal coordinates on E∞. The total derivatives are written down as

Dx =
∂

∂x
+
∑

l,j

ujl+1

∂

∂ujl
, Dt =

∂

∂t
+
∑

l,j

Dl
x(F

j)
∂

∂ujl

in these coordinates. The Cartan forms on E∞ are

ωj
l = dujl − ujl+1 dx−Dl

x(F
j) dt,

while the structural element for E is given by

UE =
∑

l,j

ωj
l ⊗

∂

∂ujl
. (14)

The restriction ℓE of the universal linearization operator to E∞ is of the form

ℓE =

∥

∥

∥

∥

∥

∥

∑

l,j

∂Fα

∂ujl
Dl

x −EDt

∥

∥

∥

∥

∥

∥

,

where E is the identity matrix. So, a vector function ϕ = (ϕ1, . . . , ϕm), ϕj =

ϕj(x, t, . . . , ujl , . . . ), is a symmetry of E if and only if

∑

l,j

∂Fα

∂ujl
Dl

xϕ
j = Dtϕ

α (15)

for all α = 1, . . . ,m. The corresponding vector field is given by the formula

Зϕ =
∑

l,j

Dl
x(ϕ

j)
∂

∂ujl
.

In a similar way, recursion operators are determined by vector-valued forms
ωR = (ω1

R, . . . , ω
m
R), where ωj

R =
∑

l,α ψ
jl
α ω

α
l , ψ

jl
α ∈ C∞(E∞), satisfying the equa-

tions
∑

l,j

∂Fα

∂ujl
Dl

xω
j
R = Dtω

α
R. (16)

To compute the left and right sides of (16), it suffices to note that

Dxω
j
l = ωj

l+1, Dtω
j
l = Dl

xdCF
j = Dl

x

∑

α,be

∂F j

∂uαβ
ωα
β .

Remark 1. Let ω = (ω1, . . . , ωm), ωj =
∑

l,α ψ
jl
α ω

α
l , be a vector-valued Car-

tan form on E∞. Then for any vector-valued function ϕ = (ϕ1, . . . , ϕm) on E∞ the
action Rω : ϕ 7→ Rωϕ is defined by Rωϕ = Зϕ ω. In local coordinates, this action
is expressed by the formula

(Rωϕ)
j =

∑

l,α

ψjl
αD

l
x(ϕ

α). (17)
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Operators of this type (i.e., expressed in terms of total derivatives) are called C-
differential (or total differential) operators.

Remark 2. As it was mentioned above, operators of the form (17), provided
ω satisfies (16), take symmetries of the equation at hand to symmetries of the same
equation. In other words, one has Rω : ker ℓE → ker ℓE . Under not very restrictive
conditions on the equation E , this is equivalent to the operator equality

ℓE ◦ Rω = A ◦ ℓE ,

where A is a C-differential operator. Taking formally adjoint, one obtains

R∗
ω ◦ ℓ∗E = ℓ∗E ◦ A∗,

which means, that A∗ is a recursion operator for generating functions of conserva-
tion laws [10].

Nonlocal setting. In practice, when solving (7), one usually finds no nontriv-
ial solutions, though the equation E may possess recursion operators.

Example (The Burgers equation). Consider the equation

ut = uxx + uux.

It is known to possess a recursion operator of the form

R = Dx +
1

2
u0 +

1

2
u1D

−1
x . (18)

Nevertheless, the only solution of the equation

ℓ
[1]
E ω ≡ (D2

x + u0Dx + u1 −Dt)ω = 0 (19)

for ω = ψ0ω0 + . . . ψkωk is αω0, α ∈ R, which provides the trivial action Rω : ϕ 7→
αϕ.

To resolve this apparent contradiction, let us extend the algebra C∞(E∞) with
an additional element u−1 and set

Dxu−1 = u0,

Dtu−1 = u1 +
1

2
u20,

dCu−1 ≡ ω−1 = du−1 − u0 dx−

(

u1 +
1

2
u20

)

dt. (20)

Then, solving (19) for ω = ψ−1ω−1 + ψ0ω0 + . . . ψkωk, we obtain a two-parametric
solution

ω = αω0 + βΩ, Ω = ω1 +
1

2
u0ω0 +

1

2
u1ω−1.

Then the action ϕ 7→ RΩϕ = Зϕ Ω coincides exactly with (18).

This example reflects a general scheme of computations which arises in a lot
of applications [5] and is used in Section 2. Namely, in search of recursion op-
erators for symmetries we extend the algebra C∞(E∞) with a new set of vari-
ables w1, . . . , wr, . . . (so-called nonlocal variables) and respectively extend the total
derivatives to vector fields

D̄i = Di +
∑

α

Xα
i

∂

∂wα
, i = 1, . . . , n, (21)
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in such a way that

[D̄i, D̄j] ≡ [Di, Xj] + [Xi, Dj ] + [Xi, Xj ] = 0, (22)

where Xl =
∑

αX
α
l ∂/∂w

α.
Having a solution X1, . . . , Xn of (21), we obtain an integrable distribution on

the space E∞ ×R
N , where N is the number of nonlocal variables (the case N = ∞

is included). The projection τ : E∞ = E∞ × R
N → E∞ is called a covering over

E and N is called its dimension (for an invariant geometrical definition see [7]).
Similar to the local case, we define the Lie algebra symτ E = DC(E∞)/CD(E∞) of
nonlocal τ -symmetries.

We introduce Cartan forms

θj = dwj −

n
∑

i=1

Xj
i dxi, j = 1, . . . , N,

corresponding to nonlocal variables on E∞. The module of all Cartan forms on
E∞ is denoted by CΛ1(E∞). We also extend the universal linearization operator ℓE
to E∞ just by changing the total derivatives Di to D̄i. Let us now consider two
equations, associated to this extension:

ℓ̄Eϕ = 0 and ℓ̄
[1]
E Ω = 0,

where ϕ ∈ Γ((πE ◦ τ)∗π) and Ω ∈ Γ((πE ◦ τ)∗π) ⊗ CΛ1(E∞). Solutions of the first
equation are called τ -shadows of nonlocal symmetries, while solutions of the second
one are said to be τ -shadows of recursion operators in the covering τ . The following
result establishes relations of shadows to symmetries and recursion operators:

Theorem 1 (see [5, 7]). Let τ : E∞ → E∞ be a covering. Then:

1. If ϕ is a τ-shadow, then there exists a covering

τ̄ : E∞ → E∞ τ
−→ E∞

such that ϕ reconstructs up to a nonlocal τ̄ -symmetry.

2. If ϕ is a nonlocal τ-symmetry and R is a recursion operator shadow, then
Rϕ is a symmetry shadow.

Remark 3. Among all one-dimensional coverings over a given equation there
exists a special class consisting of those ones, for which the fields X1, . . . , Xn in (22)
are independent of nonlocal variables (so-called abelian coverings). To any such a
covering, one can put into correspondence a differential form on E∞:

ωτ =

n
∑

l=1

Xldxl.

This form is closed with respect to the so-called horizontal differential dh = Cd
(cf. Proposition 1). Vice versa, to any such a form there corresponds a covering of
the above mentioned type. Moreover, two closed forms determine the same class
in the cohomology group H1(dh) if and only if the corresponding coverings are
equivalent. In particular, if n = 2, the group H1(dh) coincides with the group
of conservation laws of the equation E [10]. Thus, to construct a covering under
consideration is the same as to find a conservation law. This fact is used in the
computations below.
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2. Basic computations and results

In this section we shall discuss the complete integrability of the KdV–mKdV
system given in (1), i.e.,

ut = −u3 + 6uu1 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1,

wt = −w3 + 3w2w1 + 3uw1 + 3u1w. (23)

In order to demonstrate the complete integrability of this system, we shall construct
the recursion operator for symmetries of this coupled system, leading to infinite
hierarchies of symmetries and, most probably, of conservation laws. Due to the
very special form of the final results, it seems that integrability of this system,
which looks quite ordinary, has not been discussed before or elsewhere. In order to
do this, we shall discuss conservation laws in Subsection 2.1 leading to the necessary
nonlocal variables.

In Subsection 2.2 we shall discuss local and nonlocal symmetries of the system,
while in Subsection 2.3 we construct the recursion operator or deformation of the
equation structure (14).

2.1. Conservation laws and nonlocal variables. Here we shall construct
conservation laws for (23) in order to arrive at an abelian covering of the coupled
KdV–mKdV system as was shown for Burgers equation (20). So we construct
X = X(x, t, u, . . . , w . . . ), T = T (x, t, u, . . . , w . . . ) such that

Dx(T ) = Dt(X) (24)

and in a similar way we construct nonlocal conservation laws by the requirement

D̄x(T̄ ) = D̄t(X̄), (25)

where D̄∗ is defined by (9); moreover X̄, T̄ are dependent on local variables x,
t, u, . . . , w, . . . as well as the already determined nonlocal variables, denoted here
by p∗ or p∗,∗, which are associated to the conservation laws (X,T ) by the formal
definition

Dx(p∗) = (p∗)x = X,

Dt(p∗) = (p∗)t = T.

Proceeding in this way, we obtained the following set of nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5, (26)

where their defining equations are given by

(p1)x = u,

(p1)t = 3u2 + 3uw2 − u2 − 3ww2,

(p0,1)x = w,

(p0,1)t = 3uw + w3 − w2,

(p0,2)x = p1,

(p0,2)t = −6p3 − u1,

(p1,1)x = cos(2p0,1)p1w + sin(2p0,1)w
2,

(p1,1)t = cos(2p0,1)(3p1uw + p1w
3 − p1w2 + uw1 − u1w − w2w1)

+ sin(2p0,1)(4uw
2 + w4 − 2ww2 + w2

1),
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(p1,2)x = cos(2p0,1)w
2 − sin(2p0,1)p1w,

(p1,2)t = cos(2p0,1)(4uw
2 + w4 − 2ww2 + w2

1)

+ sin(2p0,1)(−3p1uw − p1w
3 + p1w2 − uw1 + u1w + w2w1),

(p2,1)x = (4 cos(2p0,1)p1,1w
2 − 4 sin(2p0,1)p1p1,1w + w(p21 − 2u+ w2))/2,

(p2,1)t = (4 cos(2p0,1)p1,1(4uw
2 + w4 − 2ww2 + w2

1)

+ 4 sin(2p0,1)p1,1(−3p1uw − p1w
3 + p1w2 − uw1 + u1w + w2w1)

+ 3p21uw + p21w
3 − p21w2 + 2p1uw1 − 2p1u1w − 2p1w

2w1 − 8u2w

− uw3 + 2uw2 − 2u1w1 + 2u2w + w5 + 3w2w2)/2,

(p3)x = (−u2 − uw2 + ww2)/2,

(p3)t = (−4u3 − 9u2w2 + 2uu2 − 3uw4 + 11uww2 − uw2
1 − u21 + u1ww1

+ 4u2w
2 + 6w3w2 + 3w2w2

1 − ww4 + w1w3 − w2
2)/2,

(p3,1)x = (cos(2p0,1)w(p
3
1 − 6p1u+ 39p1w

2 − 24p1,1p1,2w + 12p3 + 6u1)

+ 2 sin(2p0,1)w(12p1p1,1p1,2 + 18p1w1 + 2w3 + 3w2)

+ 6p1,2w(−p
2
1 + 2u− w2))/12,

(p3,2)x = (2 cos(2p0,1)w(12p1p1,1p1,2 − 18p1w1 − 2w3 − 3w2)

+ sin(2p0,1)w(p
3
1 − 6p1u+ 39p1w

2 + 24p1,1p1,2w + 12p3 + 6u1)

+ 6p1,1w(−p
2
1 + 2u− w2))/12,

(p4,1)x = (8 cos(2p0,1)w(p
3
1p1,2 + 12p1p

2
1,1p1,2 − 6p1p1,2u+ 3p1p1,2w

2

− 12p1,1p
2
1,2w + 18p1,1uw − 4p1,1w

3 − 6p1,1w2 + 12p1,2p3 + 6p1,2u1)

+ 8 sin(2p0,1)w(p
3
1p1,1 + 12p1p1,1p

2
1,2 − 6p1p1,1u+ 3p1p1,1w

2

+ 12p21,1p1,2w + 12p1,1p3 + 6p1,1u1 − 18p1,2uw + 4p1,2w
3 + 6p1,2w2)

+ w(−p41 − 24p21p
2
1,1 − 24p21p

2
1,2 + 12p21u− 6p21w

2 − 48p1p3

− 24p1u1 + 48p21,1u− 24p21,1w
2 + 48p21,2u− 24p21,2w

2

− 60u2 + 44uw2 + 24u2 − 13w4 + 6ww2))/48,

(p5)x = (12u3 + 24u2w2 − 6uu2 + 6uw4 − 30uww2 − 3u2w
2 − 8w3w2 + 6ww4)/6.

In the previous equations, we skipped explicit formulas for (p3,1)t, (p3,2)t,
(p4,1)t, and (p5)t, because they are too massive, though quite important for the
setting to be well defined and in order to avoid ambiguities. The reader is referred
to the Appendix for them.

It is quite a striking result that functions cos(2p0,1), sin(2p0,1) appear in the
presentation of the conservation laws and their associated nonlocal variables.

We should note that p1, p0,1, p3, p5 arise from local conservation laws and
we shall call p1, p0,1, p3, p5 nonlocalities of first order.

In a similar way we see that p0,2, p1,1, p1,2 arise from nonlocal conservation

laws, where their x- and t-derivatives are dependent on the first order nonlocalities.
For this reason p0,2, p1,1, p1,2 are called nonlocalities of second order.

Proceeding in this way p2,1, p3,1, p3,2, p4,1 constitute nonlocalities of third order.
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2.2. Local and nonlocal symmetries. In this section we shall present re-
sults for the construction of local and nonlocal symmetries of system (23). In order
to construct these symmetries, we consider the system of partial differential equa-
tions obtained by the infinite prolongation of (23) together with the covering by
the nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5.

So, in the augmented setting governed by (23), their total derivatives and the
equations given in Subsection 2.1 we construct symmetries Y = (Y u, Y w) which
have to satisfy the symmetry condition

ℓ̄EY = 0.

From this condition we obtained the following symmetries

Y0,1, Y1,1, Y1,2, Y1,3, Y2,1, Y3,1, Y3,2, Y3,3,

where generating functions Y u
∗,∗, Y

w
∗,∗ are given as

Y u
0,1 = 3t(6uu1 + 6uww1 + 3u1w

2 − u3 − 3ww3 − 3w1w2) + xu1 + 2u,

Y w
0,1 = 3t(3uw1 + 3u1w + 3w2w1 − w3) + xw1 + w,

Y u
1,1 = u1,

Y w
1,1 = w1,

Y u
1,2 = cos(2p0,1)(2uw − w2) + sin(2p0,1)(u1 + 2ww1),

Y w
1,2 = − cos(2p0,1)u − sin(2p0,1)w1,

Y u
1,3 = cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(−2uw + w2),

Y w
1,3 = − cos(2p0,1)w1 + sin(2p0,1)u,

Y u
2,1 = (2 cos(2p0,1)(p1,1u1 + 2p1,1ww1 − 2p1,2uw + p1,2w2)

+ 2 sin(2p0,1)(−2p1,1uw + p1,1w2 − p1,2u1 − 2p1,2ww1)

+ 2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3)/2,

Y w
2,1 = (2 cos(2p0,1)(−p1,1w1 + p1,2u) + 2 sin(2p0,1)(p1,1u+ p1,2w1)

− p1u+ u1 + ww1)/2,

Y u
3,1 = (6uu1 + 6uww1 + 3u1w

2 − u3 − 3ww3 − 3w1w2)/3,

Y w
3,1 = (3uw1 + 3u1w + 3w2w1 − w3)/3,

Y u
3,2 = (cos(2p0,1)(−2p21uw + p21w2 − 4p1uw1 − 6p1u1w − 4p1w

2w1 + 2p1w3

+ 8p1,1p1,2u1 + 16p1,1p1,2ww1 − 8p21,2uw + 4p21,2w2 − 4p2,1u1 − 8p2,1ww1

+ 10u2w + 6uw3 − 8uw2 − 14u1w1 − 8u2w − 11w2w2 − 14ww2
1 + 2w4)

+ 2 sin(2p0,1)(−8p1,1p1,2uw + 4p1,1p1,2w2 − 2p21,2u1 − 4p21,2ww1 + 4p2,1uw

− 2p2,1w2 + 6uu1 + 10uww1 + 3u1w
2 − u3 + 2w3w1 − 3ww3 − 5w1w2)

+ 4p1,2(2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3))/8,

Y w
3,2 = (cos(2p0,1)(p

2
1u− 2p1u1 − 2p1ww1 − 8p1,1p1,2w1 + 4p21,2u+ 4p2,1w1

− 4u2 − 3uw2 + 2u2 + 4ww2 + 2w2
1)

+ 2 sin(2p0,1)(4p1,1p1,2u+ 2p21,2w1 − 2p2,1u− 3uw1 − 3u1w − 3w2w1 + w3)

+ 4p1,2(−p1u+ u1 + ww1))/8,
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Y u
3,3 = (2 cos(2p0,1)(2p

2
1,1u1 + 4p21,1ww1 − 4p2,1uw + 2p2,1w2 − 6uu1

− 10uww1 − 3u1w
2 + u3 − 2w3w1 + 3ww3 + 5w1w2)

+ sin(2p0,1)(−2p21uw + p21w2 − 4p1uw1 − 6p1u1w − 4p1w
2w1 + 2p1w3

− 8p21,1uw + 4p21,1w2 − 4p2,1u1 − 8p2,1ww1 + 10u2w + 6uw3

− 8uw2 − 14u1w1 − 8u2w − 11w2w2 − 14ww2
1 + 2w4)

+ 4p1,1(2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3))/8,

Y w
3,3 = (2 cos(2p0,1)(−2p21,1w1 + 2p2,1u+ 3uw1 + 3u1w + 3w2w1 − w3)

+ sin(2p0,1)(p
2
1u− 2p1u1 − 2p1ww1 + 4p21,1u+ 4p2,1w1 − 4u2

− 3uw2 + 2u2 + 4ww2 + 2w2
1)

+ 4p1,1(−p1u+ u1 + ww1))/8.

2.3. Recursion operator. Here we present the recursion operatorR for sym-
metries for this case obtained as a higher symmetry in the Cartan covering of system
of equations (1) augmented by equations governing the nonlocal variables (26). As
explained in the previous section, the recursion operator is in effect the a deforma-
tion of the equation structure (11).

As demonstrated there, this deformation is a form-valued vector field (or a
vectorfield-valued one-form) and has to satisfy

ℓ̄
[1]
E R = 0. (27)

In order to arrive at a nontrivial result as was explained for Burgers’ equation too
(c.f. Example 1), we have to introduce nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5

and their associated Cartan contact forms

ωp0,1
, ωp0,2

, ωp1
, ωp1,1

, ωp1,2
, ωp2,1

, ωp3
, ωp3,1

, ωp3,2
, ωp4,1

, ωp5
.

The final result, which is dependent on the nonlocal Cartan forms

ωp0,1
, ωp1

, ωp1,1
, ωp1,2

,

is given by

R = Ru ∂

∂u
+Rw ∂

∂w
+ . . . , (28)

where the components Ru, Rw are given by

Ru = ωu2
(−1) + ωu(4u+ w2) + ωw2

(−2w) + ωw1
(−w1) + ωw(3uw − 2w2)

+ ωp1,2
(− cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(2uw − w2))

+ ωp1,1
(cos(2p0,1)(−2uw + w2)− sin(2p0,1)(u1 + 2ww1))

+ ωp1
(2u1 + ww1) + ωp0,1

(2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3),

Rw = ωw2
(−1) + ωw(2u+ w2) + ωu(2w)

+ ωp1,2
(cos(2p0,1)w1 − sin(2p0,1)u)

+ ωp1,1
(cos(2p0,1)u+ sin(2p0,1)w1)

+ ωp1
(w1) + ωp0,1

(−p1u+ u1 + ww1). (29)
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We shall now present this result in a more conventional form which appeals
to expressions using operators of the form Dx and D−1

x . In order to do this, we
first split (29) into the so-called local part and nonlocal parts, consisting of terms
associated to ωu2

, ωu, ωw2
, ωw1

, ωw and those associated to ωp1,2
, ωp1,1

, ωp1
, ωp0,1

respectively. The first part will account for Dx presentation, while the second one
accounts for the D−1

x part.
Due to the action of contraction Зϕ R, the local part is given by the following

matrix operator:
[

−D2
x + 4u+ w2 −2wD2

x − w1Dx + 3uw − 2w2

2w −D2
x + 2u+ w2

]

.

The nonlocal part will be split into parts associated to ωp1
, ωp0,1

and ωp1,2
, ωp1,1

,
respectively. The first one is given as

[

(2u1 + ww1)D
−1
x (2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3)D

−1
x

w1D
−1
x (−p1u+ u1 + ww1)D

−1
x

]

.

To deal with the last part, let us introduce the notation:

A1 = cos(2p0,1)(−2uw + w2)− sin(2p0,1)(u1 + 2ww1),

A2 = cos(2p0,1)u + sin(2p0,1)w1,

B1 = − cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(2uw − w2),

B2 = cos(2p0,1)w1 − sin(2p0,1)u,

being the coefficients at ωp1,1
and ωp1,2

in (29).
According to the presentations of (p1,1)x and (p1,2)x, i.e.,

(p1,1)x = cos(2p0,1)p1w + sin(2p0,1)w
2

(p1,2)x = cos(2p0,1)w
2 − sin(2p0,1)p1w,

we introduce their partial derivatives with respect to p0,1, p1, and w as

α1 = −2p1w sin(2p0,1) + 2w2 cos(2p0,1),

α2 = w cos(2p0,1),

α3 = p1 cos(2p0,1) + 2w sin(2p0,1),

β1 = −2w2 sin(2p0,1)− 2p1w cos(2p0,1),

β2 = −w sin(2p0,1),

β3 = 2w cos(2p0,1)− p1 sin(2p0,1).

From this we arrive in a straightforward way at the last nonlocal part of the recur-
sion operator, i.e.,
[

A1D
−1
x α2D

−1
x A1D

−1
x (α1D

−1
x + α3)

A2D
−1
x α2D

−1
x A2D

−1
x (α1D

−1
x + α3)

]

+

[

B1D
−1
x β2D

−1
x B1D

−1
x (β1D

−1
x + β3)

B2D
−1
x β2D

−1
x B2D

−1
x (β1D

−1
x + β3)

]

So, in the final form we obtain the recursion operator as

R =

[

−D2
x + 4u+ w2 −2wD2

x − w1Dx + 3uw − 2w2

2w −D2
x + 2u+ w2

]

+

[

(2u1 + ww1)D
−1
x (2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3)D

−1
x

w1D
−1
x (−p1u+ u1 + ww1)D

−1
x

]

+

[

A1D
−1
x α2D

−1
x A1D

−1
x (α1D

−1
x + α3)

A2D
−1
x α2D

−1
x A2D

−1
x (α1D

−1
x + α3)

]
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+

[

B1D
−1
x β2D

−1
x B1D

−1
x (β1D

−1
x + β3)

B2D
−1
x β2D

−1
x B2D

−1
x (β1D

−1
x + β3)

]

.

3. Conclusion

We gave an outline of the theory of deformations of the equation structure of
differential equations, leading to the construction of recursion operators for sym-
metries of such equations. The extension of this theory to the nonlocal setting of
differential equations is essential for getting nontrivial results. The theory has been
applied to the construction of the recursion operator for symmetries for a coupled
KdV–mKdV system, leading to a highly nonlocal result for this system. Moreover
the appearance of nonpolynomial nonlocal terms in all results, e.g., conservation
laws, symmetries and recursion operator is striking and reveals some unknown and
intriguing underlying structure of the equations.

Appendix

Here we present explicit formulas for (p3,1)t, (p3,2)t, (p4,1)t, and (p5)t:

(p3,1)t = (cos(2p0,1)(3p
3
1uw + p31w

3 − p31w2 + 3p21uw1 − 3p21u1w − 3p21w
2w1

− 24p1u
2w + 105p1uw

3 + 6p1uw2 − 6p1u1w1 + 6p1u2w + 39p1w
5

− 27p1w
2w2 − 96p1,1p1,2uw

2 − 24p1,1p1,2w
4 + 48p1,1p1,2ww2

− 24p1,1p1,2w
2
1 + 36p3uw + 12p3w

3 − 12p3w2 − 12u2w1

+ 48uu1w + 39uw2w1 + 3u1w
3 − 6u1w2 + 6u2w1

− 6u3w − 9w4w1 − 12w2w3 − 18ww1w2 + 6w3
1)

+ 2 sin(2p0,1)(36p1p1,1p1,2uw + 12p1p1,1p1,2w
3 − 12p1p1,1p1,2w2

+ 54p1uww1 + 54p1u1w
2 + 54p1w

3w1 − 18p1ww3 + 12p1,1p1,2uw1

− 12p1,1p1,2u1w − 12p1,1p1,2w
2w1 − 9u2w2 + 18uw4 + 27uww2 − 9uw2

1

+ 9u1ww1 + 3u2w
2 + 2w6 − 11w3w2 + 12w2w2

1 − 3ww4 + 3w1w3 − 3w2
2)

+ 6p1,2(−3p21uw − p21w
3 + p21w2 − 2p1uw1 + 2p1u1w + 2p1w

2w1

+ 8u2w + uw3 − 2uw2 + 2u1w1 − 2u2w − w5 − 3w2w2))/12,

(p3,2)t = (2 cos(2p0,1)(36p1p1,1p1,2uw + 12p1p1,1p1,2w
3 − 12p1p1,1p1,2w2

− 54p1uww1 − 54p1u1w
2 − 54p1w

3w1 + 18p1ww3 + 12p1,1p1,2uw1

− 12p1,1p1,2u1w − 12p1,1p1,2w
2w1 + 9u2w2 − 18uw4 − 27uww2 + 9uw2

1

− 9u1ww1 − 3u2w
2 − 2w6 + 11w3w2 − 12w2w2

1 + 3ww4 − 3w1w3 + 3w2
2)

+ sin(2p0,1)(3p
3
1uw + p31w

3 − p31w2 + 3p21uw1 − 3p21u1w − 3p21w
2w1

− 24p1u
2w + 105p1uw

3 + 6p1uw2 − 6p1u1w1 + 6p1u2w + 39p1w
5

− 27p1w
2w2 + 96p1,1p1,2uw

2 + 24p1,1p1,2w
4 − 48p1,1p1,2ww2

+ 24p1,1p1,2w
2
1 + 36p3uw + 12p3w

3 − 12p3w2 − 12u2w1 + 48uu1w

+ 39uw2w1 + 3u1w
3 − 6u1w2 + 6u2w1 − 6u3w − 9w4w1 − 12w2w3

− 18ww1w2 + 6w3
1) + 6p1,1(−3p21uw − p21w

3 + p21w2 − 2p1uw1 + 2p1u1w

+ 2p1w
2w1 + 8u2w + uw3 − 2uw2 + 2u1w1 − 2u2w − w5 − 3w2w2))/12,
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(p4,1)t = (8 cos(2p0,1)(3p
3
1p1,2uw + p31p1,2w

3 − p31p1,2w2 + 3p21p1,2uw1

− 3p21p1,2u1w − 3p21p1,2w
2w1 + 36p1p

2
1,1p1,2uw + 12p1p

2
1,1p1,2w

3

− 12p1p
2
1,1p1,2w2 − 24p1p1,2u

2w − 3p1p1,2uw
3 + 6p1p1,2uw2 − 6p1p1,2u1w1

+ 6p1p1,2u2w + 3p1p1,2w
5 + 9p1p1,2w

2w2 + 12p21,1p1,2uw1 − 12p21,1p1,2u1w

− 12p21,1p1,2w
2w1 − 48p1,1p

2
1,2uw

2 − 12p1,1p
2
1,2w

4 + 24p1,1p
2
1,2ww2

− 12p1,1p
2
1,2w

2
1 + 72p1,1u

2w2 + 18p1,1uw
4 − 54p1,1uww2 + 18p1,1uw

2
1

− 18p1,1u1ww1 − 24p1,1u2w
2 − 4p1,1w

6 − 32p1,1w
3w2 − 24p1,1w

2w2
1

+ 6p1,1ww4 − 6p1,1w1w3 + 6p1,1w
2
2 + 36p1,2p3uw + 12p1,2p3w

3

− 12p1,2p3w2 − 12p1,2u
2w1 + 48p1,2uu1w + 39p1,2uw

2w1 + 3p1,2u1w
3

− 6p1,2u1w2 + 6p1,2u2w1 − 6p1,2u3w − 9p1,2w
4w1 − 12p1,2w

2w3

− 18p1,2ww1w2 + 6p1,2w
3
1)

+ 8 sin(2p0,1)(3p
3
1p1,1uw + p31p1,1w

3 − p31p1,1w2 + 3p21p1,1uw1 − 3p21p1,1u1w

− 3p21p1,1w
2w1 + 36p1p1,1p

2
1,2uw + 12p1p1,1p

2
1,2w

3 − 12p1p1,1p
2
1,2w2

− 24p1p1,1u
2w − 3p1p1,1uw

3 + 6p1p1,1uw2 − 6p1p1,1u1w1 + 6p1p1,1u2w

+ 3p1p1,1w
5 + 9p1p1,1w

2w2 + 48p21,1p1,2uw
2 + 12p21,1p1,2w

4 − 24p21,1p1,2ww2

+ 12p21,1p1,2w
2
1 + 12p1,1p

2
1,2uw1 − 12p1,1p

2
1,2u1w − 12p1,1p

2
1,2w

2w1

+ 36p1,1p3uw + 12p1,1p3w
3 − 12p1,1p3w2 − 12p1,1u

2w1 + 48p1,1uu1w

+ 39p1,1uw
2w1 + 3p1,1u1w

3 − 6p1,1u1w2 + 6p1,1u2w1 − 6p1,1u3w

− 9p1,1w
4w1 − 12p1,1w

2w3 − 18p1,1ww1w2 + 6p1,1w
3
1 − 72p1,2u

2w2

− 18p1,2uw
4 + 54p1,2uww2 − 18p1,2uw

2
1 + 18p1,2u1ww1 + 24p1,2u2w

2

+ 4p1,2w
6 + 32p1,2w

3w2 + 24p1,2w
2w2

1 − 6p1,2ww4

+ 6p1,2w1w3 − 6p1,2w
2
2)− 3p41uw − p41w

3 + p41w2 − 4p31uw1 + 4p31u1w

+ 4p31w
2w1 − 72p21p

2
1,1uw − 24p21p

2
1,1w

3 + 24p21p
2
1,1w2 − 72p21p

2
1,2uw

− 24p21p
2
1,2w

3 + 24p21p
2
1,2w2 + 48p21u

2w + 6p21uw
3 − 12p21uw2 + 12p21u1w1

− 12p21u2w − 6p21w
5 − 18p21w

2w2 − 48p1p
2
1,1uw1 + 48p1p

2
1,1u1w

+ 48p1p
2
1,1w

2w1 − 48p1p
2
1,2uw1 + 48p1p

2
1,2u1w + 48p1p

2
1,2w

2w1 − 144p1p3uw

− 48p1p3w
3 + 48p1p3w2 + 48p1u

2w1 − 192p1uu1w − 156p1uw
2w1

− 12p1u1w
3 + 24p1u1w2 − 24p1u2w1 + 24p1u3w + 36p1w

4w1 + 48p1w
2w3

+ 72p1ww1w2 − 24p1w
3
1 + 192p21,1u

2w + 24p21,1uw
3 − 48p21,1uw2

+ 48p21,1u1w1 − 48p21,1u2w − 24p21,1w
5 − 72p21,1w

2w2 + 192p21,2u
2w

+ 24p21,2uw
3 − 48p21,2uw2 + 48p21,2u1w1 − 48p21,2u2w − 24p21,2w

5

− 72p21,2w
2w2 − 48p3uw1 + 48p3u1w + 48p3w

2w1 − 252u3w − 36u2w3

+ 60u2w2 − 144uu1w1 + 240uu2w − 7uw5 + 342uw2w2 + 24uww2
1

+ 144u21w + 228u1w
2w1 + 94u2w

3 − 24u2w2 + 24u3w1 − 24u4w

− 13w7 + 47w4w2 − 4w3w2
1 − 78w2w4 − 60ww1w3
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− 120ww2
2 + 60w2

1w2)/48,

(p5)t = (54u4 + 180u3w2 − 72u2u2 + 126u2w4 − 282u2ww2 − 12u2w2
1

− 84uu1ww1 − 174uu2w
2 + 6uu4 + 18uw6 − 300uw3w2 − 90uw2w2

1

+ 66uww4 + 6uw1w3 + 48uw2
2 + 42u21w

2 − 6u1u3 + 12u1w
3w1

+ 42u1ww3 − 48u1w1w2 + 6u22 − 39u2w
4 + 162u2ww2 − 48u2w

2
1

+ 48u3ww1 + 21u4w
2 − 42w5w2 − 12w4w2

1 + 35w3w4 + 120w2w1w3

+ 195w2w2
2 + 120ww2

1w2 − 6ww6 − 30w4
1 + 6w1w5 − 6w2w4)/6.

References

[1] A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor′kova, I. S. Krasil′shchik, A. V.
Samokhin, Yu. N. Torkhov, A. M. Verbovetsky, and A. M. Vinogradov, Symmetries and Con-

servation Laws for Differential Equations of Mathematical Physics. American Mathematical
Society, Providence, RI, 1999. Edited and with a preface by Krasil′shchik and Vinogradov.

[2] R. K. Dodd, J. C. Eilbeck, J. D. Gibbons, and H. C. Morris. Solitons and Nonlinear Wave

Equations. Academic Press, 1982.
[3] P. H. M. Kersten. Supersymmetries and recursion operators for N = 2 supersymmetric KdV-

equation, RIMS Kokyuroku, 1150, Kyoto Uniniv., Kyoto, Japan, 2000, pp. 153–161.
[4] I. S. Krasil′shchik. Some new cohomological invariants for nonlinear differential equations.

Differential Geom. Appl., 2 (1992) no. 4, 307–350.
[5] I. S. Krasil’shchik and P. H. M. Kersten, Symmetries and Recursion Operators for Classical

and Supersymmetric Differential Equations, Kluwer Acad. Publ., Dordrecht/Boston/London,
2000.

[6] I. S. Krasil′shchik, V. V. Lychagin, and A. M. Vinogradov, Geometry of Jet Spaces and

Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.
[7] I. S. Krasil′shchik and A. M. Vinogradov. Nonlocal trends in the geometry of differential

equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math.,
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