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In this paper we consider the stability of a gas cell embedded in an infinite elastic medium. The stability
criterion obtained extends the classical result by Gibbs, γ < 2E, to include the shear modulus of the elastic
material. Interestingly, besides the shear modulus another parameter appears which is a measure of
supersaturation and relates the pressure and the gas concentration at the far field. If it is less than a
critical value then any bubble size corresponding to a steady state is stable; above this critical value a
condition must be satisfied which is a function of the surface dilatational modulus, the shear modulus,
the surface tension, the supersaturation, and the bubble radius, and simplifies to the classical result when
the shear modulus is zero. Calculations based on an initial cell size of 10-5 m showed that shrinkage of
a cell is inhibited by a higher dilatational or bulk modulus. For small values of superstaturation there is
a single stable steady state corresponding to a shrinking gas cell while for moderate values of supersaturation
there are two steady states, one stable and one unstable; excessive supersaturation leads to unbounded
bubble growth.

I. Introduction

The shrinkage and growth of bubbles is of interest from
several points of view. Bubble growth is of importance for
phenomena such as cavitation, boiling, foam molding, and
extrusion, while bubble shrinkage is of importance for
the removal of entrapped bubbles and the dissolution of
a gas in a liquid. In the food industry there is a great
interest in manufacturing low-density foods such as bread,
cakes, or desserts by entrapping large amounts of gas in
the product in the form of small gas cells. The gas cell
size1 may range from 10-5 to 10-3 m. Gas cell size may
have a significant influence on consumer sensory char-
acteristics and consequently is of great importance to the
food industry. Therefore it is important to understand
how bubbles can be stabilized against coalescence and
Ostwald ripening. In foam studies it was shown that, for
viscous interfaces, an increase in the gas solubility leads
to a more rapid coarsening of the foam.2 However, if a
protein able to form elastic interfaces was used, the
accelerating effect of the gas solubility was suppressed.3
Continuation of Ostwald ripening caused the formation
of a bimodal bubble size distribution which indicates that
the shrinking bubbles are stabilized, suggesting either
an important retarding effect of surface elasticity on
Ostwald ripening or that the adsorbed protein layers alter
the gas permeability of the film. Another parameter that
was not considered is the degree of gas supersaturation
which, as it is shown in this theoretical study, plays an
important role in bubble growth and shrinkage.

The driving force for Ostwald ripening is the pressure
difference between bubbles leading to differences in local
gas concentration and therefore to gas diffusion. The
pressure difference may arise from interfacial and bulk
rheological properties. The effect of surface elasticity on
bubble growth/shrinkage was first treated by Gibbs4-6 for
a system of two equally sized bubbles of which one will
grow and one will dissolve. This system is stable if the
change in bubble pressure due to a change in radius is
positive. Combining this criterion with the definition for
Gibbs elasticity E

where γ is the interfacial tension and A the surface area,
yields the Gibbs stability criterion for a completely elastic
interface

Experimental data show that indeed high surface
elasticities are able to significantly reduce the Ostwald
ripening process. Especially the use of small adsorbing
particles to increase the elastic modulus is very effective
in reducing Ostwald ripening.5 Ronteltap7 showed that
the presence of a finite surface viscosity may retard bubble
dissolution but will not stop the process. There are several
papers that describe the effect of rheological parameters
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in all studies the surface tension is assumed to be constant,
and therefore no surface elasticity is present. Initial
theoretical studies mainly focused on the effect of mass
transfer and neglected the effects of hydrodynamic
interaction between liquid and gas.8,9 Barlow and Lan-
glois10 took intoaccount thepresenceofaNewtonian liquid.
Street11 incorporated fluid elasticity (Oldroyd liquid)
and showed that elasticity caused a slow down of bubble
shrinkage. Other rheological models for fluids were also
considered12-16 and one of the last rigorous analyses was
carried out by Venerus et al.17 The presence of increased
viscosity retards bubble growth or shrinkage, whereas
the introduction of an elastic component in the liquid
allows the instantaneous growth or shrinkage of a bubble
which overcomes viscous retardation.

In this paper we will focus on the relative importance
of the role of bulk and interfacial rheological elastic
properties on the stabilization of a gas cell. We will only
consider the quasi steady state problem, suppressing any
explicit dependence on time.

II. Theory

The theoretical section consists of two parts. They are
the mechanical problem, associated with the elasticity
problem due to the finite deformation of an elastic shell;
and the mass transport problem, associated with gas
transport in the elastic medium (Figure 1).

II.A.MechanicalProblem. The analysis of this section
closely follows the notation and definitions given in
Macosko.18

Consider a spherical thick shell with inner radius r )
R′ which is deformed symmetrically to r ) R. Due to
incompressibility the displacement functions become

where prime (′) denotes the undeformed state. Applying
these, we can determine the deformation gradient tensor
(F) and the Finger strain tensor (B) in spherical coordi-
nates

To obtain the stress distribution inside the elastic material
a stress/strain relation is required. A constitutive equation
that is valid for large deformations and provides a good
fit to rubber samples is the Neo-Hookean solid

where G is the shear modulus and τ the local stress tensor.
Assuming that the body is in static equilibrium the
θ-component of the momentum equation leads to τθθ ) τφφ,
while the r-component leads to a differential equation for
p

The solution is

which gives the following expression for the total radial
stress

The constant c ) 5G/2 + p∞ is set by the boundary condi-
tion at infinity Trr(r f ∞) ) -p∞.

The pressure inside the cell (P) is given by the difference
between the Laplace pressure and the radial stress
evaluated at the interface Trr(r ) R):

II.B. Mass Transfer Problem. The solution of the
steady state diffusion problem assuming spherical sym-
metry is straightforward

To obtain this relation we use that C(r f ∞) ) C∞ (boundary
condition at infinity) and C(r ) R) ) PS (boundary
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Figure 1. Schematic representation of the conceptual physical
model along with boundary conditions. The gas cell deforms
spherically from R′ to R.

r3 ) r′3 + (R3 - R′3) θ ) θ′ and φ ) φ′

F ) ((r′/r)2 0 0
0 r/r′ 0
0 0 r/r′ )

B ) FFT ) ((r′/r)4 0 0
0 (r/r′)2 0
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condition at the cell interface), where S is the solubility
of the gas (Henry’s law) at a pressure of 1 atm and C is
the solubility at pressure P.

Using above expression for the concentration field the
rate of mass transport through the interface leads to an
expression for the rate of change of moles in the bubble

where D is the diffusion coefficient of the gas in the elastic
material.

Assuming that the gas inside the cell can be described
by the ideal gas law we can obtain another expression for
the rate of change of moles by a time differentiation of n
) (4πR3P(R))/(3RuT):

where Ru is the universal gas constant, T the temperature
of the gas, and Ṙ ≡ dR/dt.

Combining eqs 2.2 and 2.3 and solving for Ṙ we obtain
a nonlinear ordinary differential equation governing the
evolution of R

The assumption underlying above equation is the quasi
steady state approximation for the stress and concentra-
tion fields.

II.C. Stability Analysis. Equation 2.4 has a readily
obtained steady state solution,

where Rh denotes the bubble radius that satisfies this
algebraic equation. Requiring that the equilibrium point
R ) Rh is asymptotically Liapunov-stable19 we obtain two
conditions either of which should be satisfied

Making use of the dilatational modulus E (or Gibbs’
elasticity, see Edwards, Brenner & Wasan20) defined
as

we obtain

To recapitulate the results obtained in this section

where z ) R′/Rh .
A necessary and sufficient condition for the existence

of a steady state solution is that

where SS ) C∞/S - p∞ and is a measure of supersatu-
ration.

To obtain conditions regarding the stability of the steady
state we need to consider the inequalities 2.7. Solving eq
2.6 for z (keeping z4) and substituting in condition 1 of
inequality 2.7 we get

which does not lead to any stability criterion because above
expression is always positive (note that z and E are always
positive).

Solving eq 2.6 for z (keeping z4) and substituting in
condition 2 of inequality 2.7 we obtain

If

then it can be easily deduced that the relevant bubble size
(Rh ) is stable. Combining inequalities 2.8 and 2.9, we
observe that if SS < 5G/2, then all bubble sizes can exist.

Alternatively, solving eq 2.6 for z4 (keeping z) and
substituting in condition 2 of inequality 2.7 we obtain

Substituting the above inequality back in condition 2, we
obtain a sufficient condition for stability

valid when SS > (4E/Rh ) + 5G/2.
For no deformation z ) 1 the steady state bubble radius

is Rh ) 2γ/SS and the stability criterion (eq 2.10) becomes

The above equation simplifies to Gibbs condition, γ < 2E,
for G ) 0. A comparison between present results and Gibbs’
stability condition can be displayed on a master curve
(Figure 2), noticing that eq 2.6 and condition 2 of

(19) Greenberg, M. D. Foundations of Applied Mathematics; Prentice-
Hall: New York, 1978.

(20) Edwards, D. A.; Brenner, H.; Wasan, D. T. Interfacial Transport
Processes and Rheology; Butterworth-Heinemann: Woburn, MA,
1991.
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inequality 2.7 represent the parametrization of a curve
where the parameter is z ∈ (0,∞). For zero G, which is a
singular limit, the stability region is limited to the upper-
left quarter while for nonzero G it includes a portion of
the lower-left quarter.

III. Model Calculations
A bubble of initial radius R0 will start to grow or shrink

which would result in a change in R, z and also γ in the
case of a nonzero surface elasticity E. Consequently, it is
more convenient to rewrite eq 2.6 and condition 2 of
inequality 2.7 so that surface tension only depends on the
bubble radius (R) and the initial surface tension (γ0). To
achieve this we assume the surface elasticity to be
independent of surface area and integrate expression 2.5
with respect to time to obtain

In what follows, we also assume that R0 ) R′ and that at
R ) R0 no bulk stresses are present.

A physical explanation of eq 2.6 and condition 2 of
inequality 2.7 can be obtained by identifying the three
terms

and SS (supersaturation). Equation 2.6 takes the form Pi
+ Pb ) SS and the stability condition (inequality 3.2) can
be expressed as d(Pi + Pb)/dz < 0. The sign of dPi/dz depends
on the relative values of E, γ0, and z. For z < exp[γ0/(2E)
- 1] the sign of dPi/dz is positive.

Equation 2.6 and condition 2 of inequality 2.7 may also
be rearranged in the form

In what follows we use eq 3.1 to calculate E for given
values of G, R0, SS, and z and inequality 3.2 to determine
whether the steady state is stable.

III.A. SS ) 0. Figure 3 shows the stability plot of a
saturated system (SS ) 0). When G ) 0, a bubble will
shrink more before it is stabilized with decreasing E.
Additional shrinkage of the bubble will compress the
surface which will lead to a decrease in interfacial tension.
The bubble will be stabilized at the moment the Laplace
pressure has become small enough. For finite G the
dependence of E on z initially follows the same curve. At
a certain deformation the bulk contribution takes over. If
the bubble decreases more in size, the bulk stress becomes
sufficient to compensate for the interfacial contribution
and bubble stability is independent of the surface elastic-
ity. Equation 3.1 shows that for G ) 0 and SS ) 0, every
bubble will be stabilized as soon as the radius of the bubble
is R0exp(-2E/γ0). This shows that stabilization is only
achieved on shrinkage. If furthermore E ) 0, a bubble
would completely dissolve.

Figure 4 shows the effect of the initial radius for SS )
0 with respect to the surrounding (p∞). If the shear modulus
is 0 the initial radius has no effect; for a given surface
elasticity the bubble is stabilized at the same z-value.
This can also be seen from eq 3.1 and inequality 3.2, where
the stabilizing combination of E and z is only determined
by the value of the initial surface tension. For nonzero
(positive) values of G one has to distinguish between
shrinkage (z > 1) and growth (z < 1). For growth, the
second part of the right-hand term in eq 3.1 is always
positive and will increase with increasing initial radius.
The first part of the right-hand term in eq 3.1 is always
negative and will therefore lead to negative values of E

Figure 2. A master curve that shows the region where a gas
cell is stable. In the right half-plane no solution exists. When
the shear modulus G is zero the stability region is restricted
to the upper-left quarter and the stability criterion simplifies
to γ < 2E, i.e. Gibbs’ stability criterion. The asymptote (dashed
line) is the curve y ) x + 3|x|1/4.

γ(R) ) γ0 + 2E ln
R(t)
R0

) γ0 - 2E ln z

Pi )
2γ0 z - 4Ez ln z

R0
(interfacial pressure)

Pb ) G(52 - 2z - z4

2 ) (bulk pressure)

Figure 3. The value of the surface elasticity at which a stable
steady state is achieved. The value of the parameters are R0
) 10-5 m, γ0 ) 30 mN/m, SS ) 0 N/m2, while G is indicated on
the figure. The thick dashed line corresponds to zero shear
modulus while the thin (vertical) dashed line corresponds to
infinite shear modulus.

E )
γ0

2 ln z
-

R0

8z ln z
(2SS + G(z4 + 4z - 5)) (3.1)

2E(1 + ln z) - γ0

GR0
+ 1 + z3 > 0 (3.2)
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which is unrealistic. This explains why there is no steady
state in the case of bubble growth. In the case of shrinkage
both terms of eq 3.1 are positive and would therefore
yield realistic E-values. Whether the stable steady state
criterion (inequality 3.2) is fulfilled, depends on the
difference between γ0 and GR0(1 + z3). This difference is
smaller for larger values of R0 which explains that in the
case of shrinkage for a constant z-value a larger E is needed
to stabilize a smaller bubble. The same rationale can be
used to explain that a larger E is needed to stabilize a
system with a smaller shear modulus at the same z-value.
How does this work out in practice: assume that γ0 ) 40
mN/m and E ) 50 mN/m and that the bubble is allowed
to shrink to half its initial size (z ) 2). According to
inequality 3.2 bubbles of initial radii 10-3, 10-4, and 10-5

m are stabilized at shear moduli larger than 3, 30, and
300 Pa, respectively. If the bubbles are allowed to shrink
only 10% of their initial size the shear moduli should be
larger than 8, 80, and 800 Pa, respectively. This shows
that not very large moduli are needed to stabilize small
bubbles. These moduli are for instance found in aerated
desserts.

III.B. SS < 0. For a sub-saturated system (SS < 0)
the same trends are observed as for SS ) 0, the only
difference being that higher E-values are needed to
stabilize the bubble at the same z-value. This is also clear
from eq 3.1; SS only enters the calculation in a linear
way and has no effect on the stable steady state criterion.
Physically, it can be explained by a larger difference
between the system pressure and the bubble pressure
which can only be counteracted by either a larger E or a
larger shear modulus.

III.C. SS > 0. Figures 5 and 6a show the effect of
supersaturation (SS > 0). For moderate values of SS (SS
< Laplace pressure, Figure 5), there is qualitative
agreement with the saturated case in the shrinkage region
(z > 1). However, in addition, there is a steady state
corresponding to a growing bubble (z < 1), which is
unstable; given a small disturbance the cell would either
shrink to the stable steady state or grow. For higher
values of supersaturation (Figure 6) the stability picture
changes drastically since there are two steady states for
a shrinking bubble, one of them being unstable, which
disappear at large values of the shear modulus. Further-
more, the steady state corresponding to a growing bubble
can be stable.

Equation 3.1 clearly indicates that there is a linear
dependence between the surface elasticity, the shear
modulus (G) and surface tension (γ0). For a shrinking

bubble, a higher initial surface tension leads to higher
values for the surface elasticity needed to stabilize a
bubble; an initial higher surface tension causes a higher
Laplace pressure which needs to be compensated by a
larger surface elasticity. The opposite holds for an
expanding bubble.

III.D. Stability Diagrams. Figures 3-6 suggest that
the problem of the stability of a gas cell in an elastic
medium is characterized by an intricate coupling between
bulk stresses and gas diffusion that results to multiple
steady states with a complicated stability. Furthermore,
the number of free parameters involved (six in total), does
not allow for any concise result that would relate the steady
states with their stability. In this section we show
diagrams that elucidate the structure of the different
stability regions.

Using R0 and G for nondimensionalization, eq 3.1 and
inequality 3.2 take the form

Figure 4. A plot that illustrates the influence of the initial
radius. The parameters are the same as in Figure 3 except for
the initial radius; the solid line corresponds to R0 ) 10-4 m and
the dashed-dot curve to R0 ) 10-3 m. For further explanation
see text.

Figure 5. Similar plot as Figure 3 except that SS ) 1000
N/m2.Thevalueof G is indicated.Thesteady state corresponding
to an expanding gas cell (z < 1) is unstable.

Figure 6. Similar plot as Figure 3 except that SS ) 10 000
N/m2. Figure 6b shows the steady state curves while Figure 6a
the sections corresponding to a stable steady state (see text).
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respectively, where SS * ) SS /G, γ0
/ ) γ0/(R0G) and E* )

E/(R0G). An analysis of the above equations showed that
the structure of the stability regions changes at the values
of γ0

/ ) 1 and 2.
In Figures 7-9 we show stability diagrams for three

different values of γ0
/ within the regions mentioned above.

The straight lines on Figures 7-9 correspond to z ) 0
(SS * ) 2.5) and z ) 1 (SS * ) 2γ0

/); the top curve shows
the maximum value of SS * above which no steady state
solution exists and the cell will keep growing and actually,
z f 0 in finite time. Below the maximum value and for
values of SS * > 2.5 there are two steady states, one stable
and one unstable. For values of SS * < 1 there is a single
stable steady state corresponding to a shrinking gas cell.

Given two stable steady states corresponding to shrink-
age, the one with the higher value of SS * (everything else
being the same) has a higher value of z (smaller shrinkage)
while the opposite holds for two stable steady states
corresponding to growth, the one with the higher value
of SS * (everything else being the same) has a smaller
value of z (bigger growth).

IV. Conclusions
The stability of a gas cell embedded in an infinite elastic

medium has been investigated. We have assumed that
the cell deforms spherically and finitely and that the elastic
medium surrounding the cell corresponds to a Neo-
Hookean solid. The expansion/contraction of the cell is
controlled by diffusion mass transfer in the medium. The
driving force for the mass transfer is the concentration
difference between the cell interface, given by Henry’s
law, and the concentration at infinity. The system is stable
if the change in bubble pressure due to a change in radius
is positive. The stability criterion obtained extends the
classical result by Gibbs, γ < 2E, to include the shear
modulus of the elastic material. Besides the shear modulus
another parameter appears which is a measure of su-
persaturation and relates the pressure and the concen-
tration at the far field. If it is less than 4E/Rh + 5G/2 then
the bubble size is stable; above this critical value a
condition must be satisfied which is a function of the
surface dilatational modulus, the shear modulus, the
surface tension, the supersaturation, and the bubble
radius, and simplifies to the classical result when the shear
modulus is zero.

Above results are based on the steady state gas cell size
(Rh ) and surface tension (γ). Calculations based on an initial
cell size of R0 ) 10-5 m and an initial surface tension γ0
) 30 mN/m showed that shrinkage of a cell is inhibited
by higher dilatational or bulk modulus. Stabilization
against growth can be achieved by applying either a high
surface elasticity in combination with a supersaturation
or by using a bulk with high shear modulus.

Stability analysis showed that above a critical value of
the dimensionless supersaturation (SS *) no steady state
solution exists and the cell will keep growing and actually

reach an infinite size in finite time. Below this maximum
value and for values of SS * > 2.5 there are two steady
states, one stable and one unstable. For values of SS * <
1 there is a single stable steady state corresponding to a
shrinking gas cell.
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the stability diagrams.
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SS * )
5 - 4z + 4γ0

/z - z4 - 8E*z ln z
2

(3.3)

2E*(1 + ln z) - γ0
/ + 1 + z3 > 0 (3.4)

Figure 7. Stability diagram for γ0
/ ) 10 which shows the

states of the gas cell; ss: stable shrinkage, us: unstable
shrinkage, sg: stable growth, ug: unstable growth, and ns: no
steady state. In the ns region the gas cell will burst.

Figure 8. Similar plot as Figure 7 except that γ0
/ ) 1.6.

Figure 9. Similar plot as Figure 7 except that γ0
/ ) 0.5.
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