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Abstract. A generalized thermodynamic theory is presented which may be applied to microrheological 
models. The purpose of this theory is to offer a simple framework for many types of modelling at various 
levels of description. 

The essential elements of our approach are: a specification of the subsystem in which the reversible 
storage of energy takes place, the way of coupling of this subsystem to the environment and a proper 
definition of reversible and irreversible variables. The resulting set of equations, containing a stress tensor 
expression a microscopic evolution equation and a microscopic equation of state are expressed in a matrix 
form. 

Some applications of the theory to well known micro-theological models are discussed and directions for 
further developments are indicated. 

1. Introduction 

Microrheo log ica l  models  are used in o rder  to s tudy the re la t ion between the flow 

proper t ies  of  mater ia l s  and  their  micros t ructure .  Since there exist m a n y  different types 

of model l ing,  a large number  of appa ren t ly  different app roaches  are known.  

In add i t i on  there is the poss ibi l i ty  to t rea t  a single system at var ious  levels of 

descr ipt ion.  W e  will speak  of  a low level of descr ip t ion  if m a n y  detai ls  of the 

mic ros t ruc tu re  are  t aken  into account  and  of a high level of  descr ip t ion  in the case of a 

more  g lobal  representa t ion.  A descr ip t ion  in terms of the coord ina tes  and  m o m e n t a  of  

the ind iv idua l  part icles,  for instance,  is at  a low level and  a descr ip t ion  based upon  

conf igura t iona l  d i s t r ibu t ion  functions at  a higher  level of descript ion.  

The pu rpose  of the present  pape r  is to show how in the wide var ie ty  of  types of  

mode l l ing  a cons iderable  unif icat ion m a y  be achieved, by using some kind  of 

t h e r m o d y n a m i c  approach .  In  the next  sect ion a general  out l ine of this a p p r o a c h  will 

be given and after that  some appl ica t ions  will be discussed. 

2. Theory 

In the flow or  de fo rmat ion  of a mate r ia l  the mechanica l  power,  suppl ied to it is par t ly  

s tored  and  pa r t ly  dissipated.  In  general  a cer ta in  subsys tem m a y  be defined in which 

the s torage  of  power  takes  place. The  reversible s torage  of energy under  i so thermal  

condi t ions  is de te rmined  then by the free energy funct ion or  funct ional  A = A((I)). 

Here,  • is a (set of) state variable(s) or  function(s). This set should  be comple te  in the 
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sense that  - also under  non-equi l ibr ium condit ions - the 
determined by @. 

We also introduce a (set of) t he rmodynamic  force(s): 

free energy is fully 

~A 
FI - 6 0 "  (2.1) 

(The type of the derivative in this expression depends upon  the character  of the 

variable @.) The rate of change of free energy then becomes 

j = I I .  +. (2.2) 

This is the reversible s torage of mechanical  power  in the selected subsystem. 
On  the other  hand the power  supply to the system is given by 

W = Z- ["  (2.3) 

in which Y~ is a (set of) external force(s) and [~ a (set of) rates of displacement variables. 

The  type of mult ipl icat ion (contraction) in (2) m a y  differ f rom the one used in (3). In 
this section however  we use the same nota t ion  in bo th  cases. The relations between the 
force and displacement  variables depends upon  specific propert ies  of the system. Some 
general condit ions upon  these relations will be discussed below. 

In order  to illustrate the concepts  in t roduced so far, consider the mechanical  model  
shown in Fig. 1. In  that  case the free energy function becomes A = l k ~ 2  in which k is 
the spr ing-modulus  and I I  = kq~ is the reversible force. The relation between the 
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Fig. 1. Mechanical model, illustrating the differences between the variables N and F, by which the power 
supply taken place and the variables H and + occurring in the expression (2.2) for the reversible rate of 
storage of energy. The coupling between Z, gl, 1 ~ and ~) is given by the relations (2.10). " 
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variables Z, H, F and + becomes 

1 
= ~ + - - H ,  (2.4) 

r/2 

Z = FI + ~/1 ['. (2.5) 

In these expressions, ~/1 and t/2 are the viscosities of the dashpots, shown in Fig. 1. It is 
important  to note that the structure of these equations reflects the way in which the 
substructure in which storage takes place (the spring) is connected to the environment. 

Returning again to the general case, we will discuss now the general structure of 
equations of the type (2.4) and (2.5). To that end we first note that by (2.2) and (2.3) the 

rate of dissipation A = W - A is given by 

k = Z.1  e - I I . + .  (2.6) 

In order to distinguish 'reversible' and 'dissipative' parts of the variables in this 

expression we consider the parity of variables under the transformation [" ~ - F .  This 
transformation will be called a 'macroscopic time reversal'. A variable • may be 
decomposed as 

'P = • + + ~'  with • + = ~(~(F) + q f f -  F)) 

and 

= ~ ( ~ ( ~ )  - ~ ( - / - ) ) .  

By definition we have [" = [ ' -  and since H is a state variable: H = H +. Furthermore 

A = A +, since A >~ 0, by the second law of thermodynamics. From the dissipation 
expression (2.6) we now obtain 

k + = Z - - f ' - H . d )  + />0 ,  (2.7) 

A-  = x : + . f ~ - I I . ~ b  = 0 .  (2.8) 

The quantities Z -  and d) +, occurring in (2.7) will be called 'dissipative' and denoted by 
Z D and d) D and the quantities Z + and d~- in (2.8), 'reversible' and denoted by Z R and 
+R, respectively. 

By considering the parity of the variables in (2.7) and (2.8) it can be shown (see 
Appendix A) which couplings between them are admissible. We restrict ourselves to 
the case that 2 and H depend linear on F. In that case the admissible couplings may be 
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summarized in the following matrix expressions: 

[0 fl]I_ii ]. (2.9) 
In the case of tensorial variables the appropriate contractions should be taken into 
account. The transposed A r is defined by (A,  Z). Y = (A r .  Y)* Z in which • and • 
denote the appropriate contractions. In the case that the variables are functions the 
matrix elements should be considered as operators. By addition of the two expressions 
(2.9) we get 

This result may be considered as the set of rate equations, corresponding to the 
dissipation expression (2.6) according to the usual procedures of nonequilibrium 
thermodynamics [7]. Note that in (2.10) the Onsager-Casimir reciprocal relations are 
obeyed. From (2.1) and (2.9) we obtain 

6~ R 6A 
~ R  = . ( 2 . 1 1 )  

af" 5,I, 

This corresponds to a general expression for the reversible part of the stress tensor 
originally obtained by Grmela [5] in a general bracket formulation of convection and 
diffusion equations. 

The equations (2.4) and (2.5) corresponding to the example of Fig. 1, displayed in 
the form (2.10) read 

- 1  /- 
(2.12) 

so in that case we have A = 1. 
A mechanical model, corresponding to the case with A ~ 1 is shown in Fig. 2. 

Because of its shape we will call this model the 'Triangle Model'. It may be considered 
as a symbolic representation of our general result (2.10). 

3. Applications 

We will now give a brief outline of some applications of the theory described in 
Section 2 to rheological models, in order to show its capability of treating several 
types of microrheological models at various levels of description. We will omit most of 
the details and merely present the most important results. For further information 
about the rheological models we refer to the review paper [8]. 
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Fig. 2. The triangle model. In this construction the external force 5? is split into a dissipation part Z D and a 
reversible part 2 R = A r- 17 which is different from the thermodynamic force II. 

First we consider the 'elastic dumbbell model'. In this model, which is used for 
polymeric liquids, a polymer molecule is represented by a dumbbell consisting of two 
beads connected by a spring immersed in a viscous fluid. 

The relevant equations for this model are [1] the stress tensor expression 

T=2tlD+nkTf ~ ~q (ln ~o) q dq3 (3.1) 

and the diffusion equation 

at - aq (OL" q) + - ~  ~?q" ¢ in . (3.2) 

In these equations ~ = ~(q,t) is the configuration distribution function, ~0 the 
equilibrium distribution, q the dumbbell vector, L the velocity gradient tensor, 
D = ~ L  + L r) the rate-of-strain tensor, T the stress tensor, n the number density of 
dumbbells, k Boltzmann's constant, T the temperature, r/the fluid viscosity and ~ a 
friction modulus. 

It turns out that the equations (3.1) and (3.2) can be brought into the form (2.10) by 
introducing the free energy functional I-2] 

A{~9} = nkT f f f l n ~ d q  3 (3.3) 
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and the corresponding thermodynamic force 

# = ~ = n k T  l + l n  . (3.4) 

The matrix representation then becomes 

6-- ~ (0q): - 2  a 0 2  - #  
n¢ bq aq 

(3.5) 

with Iijkm = ~(6ikama + (~im(~kj) and (...) *(...) ~ S(...)(..-)d3q. 
As has been mentioned already in the introduction, in many cases a description is 

possible at various levels of description. In the present case we just have considered 
the level based upon the distribution function ~. A next higher level is based upon the 
configuration tensor S = (qq)  (the brackets denote an average with respect to ~). In 
that case we have instead of (3.1) and (3.2): 

T = - n k T 1  + 2tlD + nxS, (3.6) 

in which • is the spring constant, and 

v 4kT 4~c S (3.7) S = - - ~ - 1  - - T  ' 

v 
with S = S -  L - S -  S ' L  r the so-called upper-convected derivative of S. These 
equations may be written in the matrix form (2.10) by introducing the free energy 
function [6] 

A = 1/2nkTlog(detS)+ 1/2nktr S, 

with the associated thermodynamic force 

(?A 1/2n~c ( 1 - k T s - 1 )  M =  ~ - g =  ~c " 

The matrix representation then becomes 

--A r L 

(3.8) 

(3.9) 

(3.m) 
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4 
Aijkm = Sikg~,,j + Sim6jk, II = t/I and fl = ~ A .  

This equation may be generalized by modifying the expressions for M(S) and II. The 
so-called Giesekusmodel [3,4] for instance, may prove to correspond to the case 
[~ = B-A and M = 1 /2#(1-  S-1) with B a 'generalized mobility tensor' and # an 
elasticity-modulus. 

From the 0-level one may also go to a lower level of description, by considering the 
forces and mean fluxes at a point in configuration space, we have the balance of forces 
(see also Fig. 3): 

o r  

f u  + fB _ f l  = 0, (3.11) 

in which d = L.q, the relative fluid velocity at the two beads, fH = 1/2~(d -- 4), the 
hydrodynamic force, fB the so-called Brownian force and f l  the spring force (see [1], 
p. 15). For the flux 4 we also have 

2kT 0 0 (3.12) q=d T uqln Oo" 

These equations may be expressed in the form (2.10) by introducing a local free energy 
in configuration space: 

= k r l n ~ o  ° (3.13) a 

and the associated thermodynamic force 

_ _ f B  + f , .  (3.14) m 8q 

The matrix formulation then becomes [0, 
I f ; I =  ~ I  [ - ~ 1 "  (3.15) 
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In the case of a rigid dumbbell the force f1 is a constraining force, determined by the 
hydrodynamic forces on the beads and the thermodynamic force m only consists of a 
Brownian force, which in this case is always perpendicular to q. This may be expressed 
by using the projection operator P = (1 - ee) with e = q/Iql. Instead of (3.15) one then 
obtains 

~ ( 1 - e )  - P  

2 
(3.16) 

In Fig. 4 the equilibrium of forces is sketched. Note that in this case there is no longer 
a direct coupling between the hydrodynamic force f n  and the thermodynamic force 
m. This is also clear from the expression (3.16). 

We have illustrated some applications of the present theory to the dumbbell model. 
The theory may also be applied to other rheological models like reptation theories 
and transient network models. Some examples are given in [8], other applications will 
be published elsewhere. 

4. Discussion 

The general theory, presented in Section 2 was applied in Section 3 to the elastic 
dumbbell model and some related models. The important steps in these applications 
were: the selection of a level of description, and the corresponding system variables 

f~ f~ 

Fig. 3. Equilibrium of forces in the elastic dumb-bell model 
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Fig. 4. Equilibrium of forces in the rigid dumb-bell model. 
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(~, 2, F) and the determination of the free energy function (functional) A(~) with the 
associated thermodynamic force YI(~). From the evolution equations and the stress 
tensor expressions (or - at a lower level of description - the balance of forces) the 
matrix elements r/, fl, and A of the expression (2.10) are then obtained. In applications 
to systems for which a rheological model is not yet available the same method may be 
used in order to construct such a model. The advantage of this approach is that a clear 
distinction is made between some isolated parts of the problem: the choice of a level of 
description, the free energy function, the dissipativa (~ and fl) and reversible (A) 
couplings etc., while the consistency of the whole model remains assured. 

Appendix A 

In this appendix the derivation of the equations (2.9) will be discussed. We first 
consider the case of sealar variables. The dissipation form (2.6) then becomes 

A = A7 + pB, (A.1) 

in which A, 7, P and B are scalar quantities corresponding to 2, F, - H  and ~) of (2.6), 
respectively. So 7 has an odd and p and even parity with respect to 'macroscopic time 
reversal'. We decompose A and B in their even and odd parts: 

A = a + ~, B = b + fi, (A.2) 

with a = A +, b = B +, ~ = A- ,  fl = B- .  From (2.7) and (2.8) we then obtain: 

~7 + pb >~ O, (A.3) 

a7 + pfl = 0. (A.4) 



126 R.J.J. Jongschaap 

The constitutive relations between the quantities A, B, 7 and p should be formulated in 

such a way that the equations (A.3) and (A.4) are obeyed for arbitrary processes 
compatible with the constitutive equations. We take ? and p as independent variables 

and consider constitutive equations which may be expressed in matrix form. So from 
(A.3) we have 

The inequality (A.3) then becomes 

x7 z + yp2 + (u + v)p7 >~ O. (A.6) 

We will only consider here the case of matrix elements which are independent of 7. 
Then, all matrix elements in (A.5) are even quantities and from the parity of the other 
variables in (A.5) it follows that u = v = 0. So from (A.6) we have x t> 0, y >~ 0 and 

0 7 [:]I0 LI 
We now return to the equation (A.4). The corresponding matrix expression analogues 
to (A.5) becomes 

Then, from (A.4) we obtain 

X,72 q_ y, pZ + (u' + v')p? = 0. (A.9) 

Again, we assume no dependence of the matrix elements upon 7, so we obtain x' = 0 

and y' = 0 and since (A.9) has to be obeyed for arbitrary 7 and p we have: u' = - v'. So 
(A.8) becomes 

[o :?[,p] 
with Z = v'. From (A.2), (A.8) and (A.10) we finally obtain 

- Z  ? #el 

(A.10) 

(A.11) 
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in which X = x, Y = y. This completes the proof  of expression (2.10) for the case of 

scalar variables. 
Note that in the derivation we have assumed that all matrix elements were 

constants. Since, however p is an even quantity r dependence upon p - or any other 
thermodynamic variable of state - will not invalidate our results. A dependence upon 
Y, however will change the conclusions derived from (A.4). This will not be discussed 
here further. So we will restrict ourselves to systems in which the matrix elements in 
the final expression (A.11) may depend upon thermodynamic variables at state but are 

independent of 7. 

Finally we will discuss some aspects of the general case in which arbitrary tensioral 
or even functional quantities arise. 

In general, the dissipation equation then becomes (cf. (2.6)) 

A = Z.1 ~ -  l - I ,+ .  (A.12) 

The • and the • in this expression denote the appropriate inner products in the spaces 
in which Z, F, respectively 11, + are defined. (Contrary to (2.6) we now explicitly 

distinguish two types of inner products.) Just as in the case of Cartesian tensors, for 
which the " '  operator in v = A. b in which A is a second-order-tensor, corresponds to 

the operator ' . '  in the inner product ¢ = a. b we use the inner product operators in 
(A.12) also in matrix expressions like (2.10). So, corresponding to (A.12) we write 

[ ~ ] = [ 2 - A t * l i f t *  J l_-FIII"  (A.13) 

(In some cases (like equation (3.5)) operators '.' or '*' may be expressed in a different 
form.) The reason that the transposed (or in general the adjoint) A r occurs in this 

expression is that in a derivation similar to that of (A.9) one obtains an identity of the 

type 

( u ,  r ) . P  + (v- f-), v = o, (A. 14) 

in which U and V correspond to u' and v' in (A.9). On using the definition of the 
transposed (adjoint) U r of U one obtains 

(u~-P) ,  r + ( v . P ) , r  = o, (A.15) 

so V = - U r - A, in accordance with (2.10). 
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