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Abstract: We propose a long-term parameterization scheme for two critical parameters, zero-plane
displacement height (d) and aerodynamic roughness length (z0m), that we further use in the Surface
Energy Balance System (SEBS). A sensitivity analysis of SEBS indicated that these two parameters
largely impact the estimated sensible heat and latent heat fluxes. First, we calibrated regression
relationships between measured forest vertical parameters (Lorey’s height and the frontal area index
(FAI)) and forest aboveground biomass (AGB). Next, we derived the interannual Lorey’s height
and FAI values from our calibrated regression models and corresponding forest AGB dynamics
that were converted from interannual carbon fluxes, as simulated from two incorporated ecological
models and a 2009 forest basis map These dynamic forest vertical parameters, combined with
refined eight-day Global LAnd Surface Satellite (GLASS) LAI products, were applied to estimate
the eight-day d, z0m, and, thus, the heat roughness length (z0h). The obtained d, z0m and z0h were
then used as forcing for the SEBS model in order to simulate long-term forest evapotranspiration
(ET) from 2000 to 2012 within the Qilian Mountains (QMs). As compared with MODIS, MOD16
products at the eddy covariance (EC) site, ET estimates from the SEBS agreed much better with EC
measurements (R2 = 0.80 and RMSE = 0.21 mm¨day´1).

Keywords: roughness length; forest vertical parameters; Surface Energy Balance System (SEBS);
evapotranspiration; remote sensing

1. Introduction

In addition to the terrestrial carbon cycle, the hydrological cycle is also critical for the
functionality and sustainability of terrestrial ecosystems [1]. As the principle component of
terrestrial hydrology, evapotranspiration (ET), which is composed of evaporation and transpiration,
is affected by both biophysical and environmental processes at the interface of soils, vegetation,
and the atmosphere, thereby linking hydrological, energy, and carbon processes [2–4]. Globally,
ET returns approximately 60% of land-based precipitation to the atmosphere [5,6] and consumes
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more than 50% of the solar radiation absorbed by the land’s surface [7]. Within the atmospheric
surface layer, ET affects environmental conditions through the turbulent exchange of momentum,
heat, and moisture [8–10]. In return, environmental variation controls diverse physical and
physiological processes within terrestrial ecosystems and, finally, alters the mass and energy
exchange of land-atmosphere interactions, leading to direct climate impacts [3,11–13]. Considering
the importance of ET, the characterization of spatiotemporal variability is critical for better
understanding interactions between the land and the atmosphere, the sustainable management of
water resources, and the response of terrestrial ecosystems under climate change [14–18].

As one of the most important parts of the terrestrial ecosystem, global forests account for
approximately 45% of total terrestrial ET [5]. Therefore, forest ET is considered to be an important
indicator of water availability in natural ecosystems, as well as for human needs [19]. The routine
monitoring of ET from forests in the headwaters of basins is particularly critical because these
headwaters often provide water to ecosystems downstream. Knowledge of the dynamics of the
headwaters is, therefore, often relevant for the sustainable development of an entire basin. The Heihe
River Basin (HRB), located in the cold and arid environment of northwest China, is entirely dependent
on headwaters. Water conflicts in this area are severe and information regarding forest processes is
urgently needed.

In situ measurements using weighing lysimeters, Bowen ratios, sap flow meters, eddy covariance
(EC), and scintillometers are considered reliable for quantifying ET at individual sites or for small
footprints [4,20,21]. However, these types of measurements are unsuitable at large scales. An
alternative approach is to use remote sensing information for characterizing spatiotemporal land
surface information over large areas. With the incorporation of meteorological and other auxiliary
data, remote sensing-based methods can be used to map various large-scale patterns of ET in a
globally consistent and economically feasible manner by linking surface parameters and energy
balance with ET [22–25]. In general, land surface parameters retrieved using remote sensing data
such as the Normalized Difference Vegetation Index (NDVI), the Leaf Area Index (LAI), Albedo,
temperature, and emissivity have been used to drive ET models [16,26].

The following four types of remote sensing-based ET models having been developed in recent
decades: (1) surface energy balance models [23,27–29]; (2) empirical statistical models [30]; (3)
physical models [31,32]; and (4) water balance models [33,34]. Although they have been applied over
a number of study areas, uncertainties related to the disadvantage of these models and their inputs,
and parameterization and scaling schemes still exist [4,35–38]. As far as remote sensing techniques
are concerned, the availability of measurements and estimations of land surface and atmospheric
parameters have increased over time, and the improvement of model performance through the
integration of various techniques and data sources has received renewed global interest.

As one of the most widely used and validated ET models, the Surface Energy Balance System
(SEBS) developed by Su [23] estimates turbulent heat fluxes by means of Moni-Obukhov Similarity
(MOS) theory [39,40]. Several important parameters are a part of the MOS and SEBS, including
zero-plane displacement (d), roughness height (z0m), and heat roughness height (z0h). The scalar
z0h can be calculated from z0m using the kB´1 model that provides excess resistance for heat
transportation. For d and z0m, experimental methods based on measurements of turbulent fluxes
can provide estimates but are only locally valid and cannot be scaled to larger areas. Alternatively,
remotely sensed methods have been developed for these parameters using the functions of vegetation
structural parameters (i.e., LAI, [41], frontal area index (FAI) [42], both LAI and FAI [43], stand density
(SD) (trees¨ha´1), and stem-branch-leaf distributions [44]). For the kB´1 model, some studies have
improved parameterization [38,45,46]. However, few have focused on forests.

Our previous study [47] demonstrated the advantages and disadvantages of four notable models
for retrieving d and z0m values in forests located within the Qilian Mountains (QMs), the headwater
area of the HRB. A key parameter needed for d and z0m estimates is forest height. Other vegetation
structure parameters further affect the ratios of d or z0m over forest height (d/h or z0m/h). In
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combination with forest measurements, remote sensing is capable of providing reliable instantaneous
retrievals of forest height that can be used to parameterize d and z0m models for those time intervals
when forest structural parameters (height, LAI, FAI, etc.) and, thus, d/h or z0m/h are assumed to be
unchanged. For long-term parameterization, LAI can easily be obtained from moderate resolution
remote sensing data (i.e., MODIS) over a fine time resolution. However, time-series retrieval for
other parameters is a problem, especially for young and immature forests. Normally, the structure
(including the height and FAI) of young and immature forests changes markedly over a few years.
If constant structural information is used to parameterize d, z0m, and z0h, uncertainties will be
propagated into ET due to the sensitivity of ET to parameters such as these in models such as
the SEBS.

Despite having the ability to estimate surface turbulent heat fluxes within various ecosystems,
uncertainties in the SEBS arise that result from parameterizations of land surface input data
(vegetation height, z0m, LAI, land surface temperature (LST), etc.) and from inherent errors in
meteorological parameters. A few studies [38,48–50] have conducted sensitivity analyses for the
SEBS. However, more investigations over heterogeneous forests (for example, forests located in cold
and arid areas, as in our study area) are necessary.

The objectives of the present study are therefore (1) to investigate the effects of major input
variables (including d and z0m) and their changes over a 13 year long period on sensible heat flux as
estimated with SEBS, and (2) to obtain a 13 year time series of forest ET in the headwater of the HRB.
Below, after discussing our sensitivity data, we propose a time-series parameterization scheme for d,
z0m, and z0h using a combination of forest AGB dynamics and remote sensing data. Specifically, the
use of regression relationships for forest vertical parameters (the Lorey’s height [51] and FAI) versus
forest AGB was established based on measurements. Thus, interannual vertical parameters from 2000
to 2012 were connected using the corresponding interannual forest AGB dynamics. AGB dynamics
were obtained by incorporating simulations derived from two ecological models (the MODIS MOD17
(MOD_17) GPP and the Biome-BioGeochemical Cycles (Biome-BGC) models) using the 2009 forest
basis map generated using Landsat Thematic Mapper 5 (TM) data [52]. Using Global LAnd Surface
Satellite (GLASS) LAI products, vertical parameters were applied in order to parameterize d, z0m,
and, then, z0h using the outperformed roughness model determined from our previous study [47]
and the kB´1 model. Afterward, original MODIS products (NDVI and land LST), refined GLASS
Albedo products, and downscaled weather research and forecasting (WRF) estimates were applied
for driving the SEBS over the mountainous forests using the forest dynamics parameterization
scheme. Based on this procedure, estimates were obtained for forest ET over the QMs from 2000
to 2012. Finally, two-year (2010–2011) comparisons were performed amongst MODIS MOD16 ET
products, SEBS ET outputs, and EC measurements to investigate the applicability and feasibility of
the SEBS over heterogeneous forests.

2. Study Area and Observations

The headwater QMs of the HRB (97˝241E–102˝101E and 37˝411N–42˝421N) were selected as the
study area because it is ecologically and hydrologically important for agricultural irrigation within
the middle reaches (Hexi Corridor) and maintains ecological viability within the lower reaches
(northern Alxa Highland). Geographically, the landscapes are diverse and include glaciers, frozen
soils, alpine meadows, and the forests of the QMs; irrigated crops within the Hexi Corridor; and
riparian ecosystems, deserts, and Gobi within the Alax Highlands (Figure 1). The land use map
in Figure 1 was first generated using TM data acquired in 2009 [53]. The map was upscaled to
1 km in order to maintain the same resolution as the driving data (i.e., the MODIS products and
the downscaled WRF estimates) for the ET model.

Spanning an area of 10,400 km2 and with altitudes from 1500 to 6000 m above sea level, the
vegetation types of the QMs vary from high to low altitudes in the following sequence: alpine
meadows, subalpine meadows and shrubbery, forests, and drying shrubbery and desert steppes.
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Forests in the area are largely composed of Picea crassifolia mixed with a fairly small fraction of Sabina
przewalsk that only survives on shady slopes (from altitudes of 2500–3300 m) and that occupies 2.97%
of the total area.

Lying along the northeastern margin of the Tibetan Plateau, the QMs have a temperate
continental mountainous climate with a warm and humid summer and a cold and dry winter. Mean
annual precipitation and mean annual temperature display a decreasing trend from the southeast
to the northwest. Mean annual precipitation (with approximately 90% occurring during May
and October) decreases from approximately 600 mm to less than 200 mm. The mean annual air
temperature is ~6 degrees (Celsius) at low altitudes and ~´10 degrees (Celsius) at high altitudes.

To improve the observability, understanding, and predictability of eco-hydrological processes
on the catchmental scale, the Water Allied Telemetry Experimental Research (WATER) campaign
that spanned from 2007 to 2011 conducted multi-scale and simultaneous airborne, space-borne, and
ground-based remotely sensed experiments within the HRB [54,55]. A network of automatic weather
stations (AWS), surface meteorological towers, and EC stations were established by WATER. Only
observations from the mountainous forest site (Guantan, 100˝151E, 38˝321N, 2835 m) were used in this
study. The forest EC system contained a three-dimensional sonic anemometer (CSAT-3, Campbell,
Inc., Logan, UT, USA), a CO2 and H2O gas analyzer (LI-7500, LI-COR, Inc., Lincoln, NE, USA), a heat
flux plate (HFP01, Campbell, Inc., USA), a four-component radiometer (CM3 and CG3, Campbell,
Inc., USA), a temperature and relative humidity probe (HMP45C, Vaisala, Inc., Helsinki, Finland), a
wind speed sensor (014A and 034B, Met One Instruments, Inc., Grants Pass, OR, USA), and a data
logger (CR5000, Campbell, Inc., USA).

Data quality control processes were applied to the raw 10 Hz EC data in order to obtain
half-hourly flux data [56]. Processing steps included despiking, coordinate rotation, a time lag
correction, a frequency response correction, a WPL correction, and gap filling [56–58]. The gap-filling
process was based on two methods: (1) a Look Up Table (LUT) when only EC data were missing,
and (2) Mean Diumal Variations (MDV) when both EC and AWS data were missing. Due to
low data quality and data gaps, measurements obtained from 2008–2009 were used for this study.
Measurements obtained from 2010–2011 at the mountainous forest site were used to compare ETs
obtained from the SEBS.

Two forest inventory surveys were conducted from June to August during 2007 and 2008. The
first survey was conducted in 16 permanent forest plots (25 m ˆ 25 m) and in 69 rectangular forest
plots that had two sizes (20 m ˆ 20 m and 25 m ˆ 25 m). The second survey was conducted in
58 circular forest plots (with diameters ranging from 10 to 28 m). Obtained measurements included
LAI, tree height (m), first branch height (FBH), the diameter at breast height (DBH) (cm), etc. A
total of 133 forest plots measurements were used for this study. The 133 plots included a variety of
different terrains (slope, aspect, altitude) and stand (age, crown coverage, AGB level) situations that
represented local ecological gradients. According to inventory records, Picea crassifolia comprised
99.39% of the total measured trees (8667 trees). Therefore, the Picea crassifolia allometric equations of
Wang et al. [59] were used for our analyses.

The major input variables for SEBS include meteorological data (air temperature, wind speed,
air and vapor pressures, and downwelling shortwave and long-wave radiation) and land surface
parameters (LAI, LST, emissivity, Albedo, and NDVI). Meteorological forcing data for the HRB
downscaled from estimates of the WRF model, based on the meteorological model (MicroMet) [60],
were used in this study. WRF estimates were validated at 15 surface meteorological stations
maintained by the China Meteorological Administration (CMA) and seven intensive observation
stations setup by the WATER project. Based on past experiments, the data have been proven
to be reliable [61,62]. Land surface parameters were derived from MODIS data. Innovative
MODIS products including LAI and Albedo were obtained from GLASS [63,64]. Other parameters
including NDVI and LST were downloaded from the National Aeronautics and Space Administration
(NASA) [65]. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
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Global Digital Elevation Map (GDEM) version-2 was downloaded from the Japan Aerospace
Exploration Agency (JAXA) [66]. To perform multiple comparisons amongst the SEBS, EC, and
MODIS ET estimates, 1 km, eight-day MODIS MOD16 ET (MOD16-ET) products obtained from 2000
to 2012 were downloaded from the Numerical Terradynamic Simulation Group (NTSG) [67] of the
University of Montana.
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3. Methodology

3.1. The Surface Energy Balance System (SEBS)

The SEBS is an advanced single source model developed by Su [23] for estimating turbulent heat
fluxes based on energy balance (EB) and employs an evaporative fraction (ETF) for estimating actual
ET (AET) by accounting for water limiting (wet-limit and dry-limit) cases (wetness and dryness).
Briefly, the SEBS consists of the functions of land surface parameters derived from remote sensing
data, a model of dynamic roughness lengths with a reference to heat transfer, and the determination
of ETF. Abiding by the theories of EB, bulk atmospheric similarity (BAS) [68] and MOS [39], based
on a combination of physical land surface parameters obtained from remote sensing data and
meteorological forcing data, the SEBS has been proven to be a reliable remote sensing-based ET model
in numerous studies conducted over multiple ecosystems and under various climate and landscape
conditions [69–74]. However, few studies have focused on forests [75–77], especially those located in
cold and arid regions.

15826



Remote Sens. 2015, 7, 15822–15843

A concise description of the SEBS algorithm is provided below. Details can be found in Su [23].
Basically, the surface energy balance is expressed as follows:

Rn “ G0 ` H ` λE (1)

where G0 is the soil heat flux, Rn is the net radiation, H is the sensible heat flux, and λE is the latent
heat flux (λ is the latent heat of vaporization (J¨g´1) and E is the AET). Surface available energy
(H + λE) is generally used to partition the energy exchange for heat and water vapor. The unit for
Equation (1) is watts per square meter (W¨m´2).

To derive sensible and latent heat fluxes, the theory of BAS (for the mixed layer of the
atmosphere) or MOS (for the atmospheric surface layer (ASL)) was employed. In most cases, MOS
relationships for profiles of mean wind speed, u (m¨ s´1), and mean temperature, θ0 ´ θa, were
applied within the SEBS and the integral form was written as follows [39]:

u “
u˚
k

„

lnp
z´ d
z0m

q ´Ψmp
z´ d

L
q `Ψmp

z0m

L
q



(2)

θ0 ´ θa “
H

ku˚ρcp

„

lnp
z´ d
z0h

q ´Ψhp
z´ d

L
q `Ψhp

z0h
L
q



(3)

where u˚ is the friction velocity (m¨ s´1) calculated as (τ0/ρ)1/2; τ0 is the surface shear stress
(kg¨m¨ s´2); ρ is the air density (kg¨m´3); k = 0.41 is von Karman’s constant; z is the height of
the measurement; d is the zero displacement height (m); z0m is the aerodynamic roughness length
for momentum transfer; θ0 is the potential temperature (K) at the surface; θa is the potential air
temperature (K) at z; cp is the specific heat capacity of air at constant pressure (J¨kg´1¨K´1); z0h is
the roughness height for heat transfer (m); and Ψm and Ψh are the stability correction functions for
momentum and heat transfer. L is the Obukhov length (m).

Obviously, both the zero-plane displacement height (d) and the roughness lengths (z0m and z0h)
are critical parameters for determinations of momentum and heat transfer between the land surface
and the atmosphere. The SEBS parameterizes roughness height based on a semi-empirical model
using the following equations:

β “ C1 ´ C2exp p´C3Cd ˆ LAIq (4)

nec “
pCd ˆ LAIq

2β2 (5)

d
h
“ 1´

1
2nec

r1´ expp´2necqs (6)

z0m

h
“ r1´

d
h
srexpp

´k
β
qs (7)

where β is the ratio of friction velocity to wind speed at canopy height; C1, C2, and C3 are constants
related to the bulk surface drag coefficient; Cd is the foliage drag coefficient; and nec is the wind speed
profile extinction coefficient within the canopy.

The roughness model utilizes a proportional relationship between canopy height and roughness
height [78]. Obviously, canopy height is also a critical parameter by which z0m and d0 are directly
prescribed. In the SEBS, if canopy height information is not available, it can be also derived using an
empirical equation, as follows:

h “ hmin `
NDVIveg ´ NDVIsoil

NDVIveg ` NDVIsoil
ˆ phmax ´ hminq (8)
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where hmin and hmax are the minimal and maximal canopy heights, respectively; NDVImax and
NDVImin are the NDVI values of fully vegetated and bare soil.

The kB´1 model proposed by Su [23] was used in this study and it links z0m and z0h, as follows:

z0h “
z0m

exppkB´1q
(9)

where kB´1 is a scalar heat transfer coefficient called the inverse Stanton number.
The energy balance of a limiting case at dryness and wetness are then used to estimate the

relative evaporative fraction (Λr), as follows:

Λr “ 1´
H ´ Hwet

Hdry ´ Hwet
(10)

where Hwet is H at wetness and Hdry is dryness. Both were estimated as described in Su [23].
The evaporative fraction (Λ) is calculated, as follows:

Λ “
λE

Rn ´ G0
“

Λr ˆ λEwet

Rn ´ G0
(11)

where λEwet is λE at wetness.
Finally, λE is determined by the following equation:

λE “ Λˆ pRn ´ G0q (12)

In practice, the remote sensing data used in the SEBS represents instantaneous information for
the land surface. The evaporative coefficient is assumed to be constant throughout the day, and,
finally, daily evapotranspiration is expressed, as follows:

Edaily “

24
ÿ

h“0

„

Λˆ
pRn ´ G0q

λρ



“ 8.64ˆ 107 ˆΛˆ
Rn ´ G0

λρ
(13)

where Edaily is the daily ET (mm¨d´1), and Rn and G0 are the mean daily net radiation (Wm´2) and
mean daily soil heat fluxes that can be assumed to be negligible for the entire day.

In brief, the SEBS generally requires two sets of driven data, remotely sensed land surface
parameters (for example, the surface Albedo, Emissivity, temperature, LAI, NDVI, and roughness
lengths) and meteorological data (for example, air temperature, wind speed, air and vapor pressures,
and downwelling shortwave and long-wave radiations).

3.2. Roughness Length Models

Based on the aforementioned importance of d, z0m, and z0h, the parameterization scheme should
first optimize d and z0m through the use of the roughness model and z0h through use of the kB´1

model. In a previous study, the process was validated using EC measurements in which the model
of Schaudt and Dickinson [43] (SD00) indicated superiority for estimating z0m but was compromised
for d [47]. Since ET estimates from SEBS are more sensitive to z0m and since z0m directly impacts the
z0h value, the SD00 model was employed for parameterizing d and z0m. Three parameters, including
forest height, LAI, and FAI are required for the SD00 model. The SD00 model is expressed as follows:

fz “ 0.3299Lp
1.5 ` 2.1713 f or Lp ă 0.8775 (14)

fz “ 1.6771expp´0.1717Lpq ` 1.0 f or Lp ě 0.8775 (15)

Lp “
fv

fc
LAI ´

fb
fc

Lb (16)
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fd “ 1.0´ 0.3991expp´0.1779Lpq (17)

where Lp is the mean plant LAI, Lb is background LAI, fb is the fraction of the canopy coverage,
and fb is the fraction of understory vegetation (fv = fc + fb). Multiplying fz on the right hand side of
Equation (19) or Equation (20) yields roughness length as a function of both LAI and FAI. The d/h is
quantified by multiplying Equation (17) by Equation (18).

Here, it is worth mentioning that only understory mosses live on the forest floor and that the
LAI derived from MODIS was used as a surrogate for Lp in Equations (14)–(17).

The estimation for the normalized displacement height, d/h, and the roughness length, z0m/h,
related to FAI (λ f ) is, as follows:

d
h
“ 1.0´

1.0´ expp´
b

a1λ f q
b

a1λ f

(18)

z0m

h
“ a2expp´b2λc2

f qλ
d2
f `

z00

h
pλ ď 0.152q (19)

z0m

h
“

a3

λd3
f

”

1.0´ expp´b3λc3
f q
ı

` f2 pλ ą 0.152q (20)

where a1 = 15.0, a2 = 5.86, b2 = 10.9, c2 = 1.12, d2 = 1.33, a3 = 0.0537, b3 = 10.9, c3 = 0.874, d3 = 0.510,
f 2 = 0.00368, and z00/h = 0.00086. λ f is the FAI, calculated from the frontal area, A f . By assuming that
the frontal area of the stem is much smaller than the frontal area of the crown [43] for each individual
needle tree, A f is simplified, as follows:

A f “
1
2

hc ˚wc (21)

where hc is the height of the crown (i.e., tree height-FBH) and wc is the crown width. The λ f is then
calculated from the total A f divided by the total area of the plot.

3.3. The SEBS Model Sensitivity

To compare model sensitivities and their dependencies on inputs, a sensitivity analysis was
performed for all input maps (land surface temperature, NDVI, LAI, and Albedo) and meteorological
inputs (air temperature, air pressure, wind speed, humidity, and incoming shortwave radiation).

The sensitivity (Sj) of the model to an input parameter (j) can be expressed as:

Sj pH˘q “
H˘ ´ Hr

Hr
(22)

Sj is calculated for a positive or for a negative deviation of an input (j) within the SEBS model.
H+ and H´ correspond to the sensible heat fluxes simulated by the SEBS model when driven by
the positive and negative deviation of the j, respectively. Hr is the result predicted by the reference
variable, r.

The major input maps (z0m, NDVI, LAI, Albedo, and LST) and the meteorological inputs (air
temperature (Ta), air pressure (P), wind speed (u), humidity (Hh), and incoming shortwave radiation
(Rs)) were considered in this analysis.

With the exception of LST and air temperature, the averages of additional inputs during
the growing seasons of 2010 and 2011 at the EC site were used as reference data for r while
r˘25 (˘25% ˆ r) were used as the testing variables, respectively. For LST and air temperature, we
used ˘5 K as the deviation because the 25% deviation exceeded the physical limits. The ranges of
the above values can represent the majority of the local land surface and meteorological conditions at
the site.
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3.4. Long-Term Parameterization for the SEBS

For dynamic parameterizations of d, z0m, and, thus, z0h, the long-term (from 2000 to 2012)
eight-day GLASS LAI was directly inputted into the SD00 model. No remote sensing products
for forest height and FAI are currently available, although these products can be retrieved from a
combination of multi-temporal remote sensing data and corresponding forest measurements over
short time intervals (at least several year intervals, i.e., 3–5 years). However, due to the limited
accessibility of forest areas, comprehensive forest measurements over the QMs at such short time
intervals are impractical.

To derive long-term forest vertical parameters (the forest Lorey’s height and the FAI), an
incorporation of interannual forest AGB dynamics, based on the synergistic simulations of two
ecological models (the MOD_17 and Biome-BGC models) using multi-parameter remote sensing
data, was employed. Regression relationships were first established between forest AGB and these
parameters that were derived based on field survey measurements. As a result of these two regression
models (Lorey’s height versus AGB and FAI versus AGB), the interannual forest Lorey’s height and
the FAI were then regressed using simulated interannual forest AGB dynamics. Interannual forest
AGB dynamics were derived from a combination of interannual forest AGB increments originally
converted from forest net primary productivity (NPP) and simulated using the Biome-BGC calibrated
by the MOD_17 model, using the forest AGB baseline retrieved from TM data from 2009 [52].

4. Results

4.1. The SEBS Model Sensitivity

Table 1 provides the sensitivities of H in regards to the SEBS’s inputs. Low sensitivities
(|Sj(H˘)| < 10%) were found for changes in d, NDVI, LAI, Albedo, Hh, and Rs. High sensitivities
(|Sj(H˘)| > 10%) were found for z0m, LST, Ta, P, and u. In general, the results indicate that
the variation of H largely depends on meteorological parameters at the reference height and z0m.
Exceptions to this finding include both H calculations outside of the limiting cases and the wet-limit
and dry-limit sensible heat flux, and both are determined from net radiation and soil heat flux. Here,
it is worth mentioning that in the SD00 model the prescribed forest height (in this case: the Lorey’s
height) is as sensitive as the d and z0m.

Table 1. The sensitivities of sensible heat flux (H) using different SEBS input parameters as a fraction
of their reference values.

Inputs Sj(H+25%)
(%)

Sj(H´25%)
(%)

Sj(H+5K)
(%)

Sj(H´5K)
(%)

d 0.01 0.01 - -
z0m 21.32 ´19.93 - -

NDVI 0.62 ´0.74 - -
LAI 1.86 ´0.48 - -

Albedo ´0.74 0.12 - -
LST - - 78.67 ´65.78
Ta - - ´23.53 19.39
P 16.82 ´18.93 - -
u 12.25 ´10.25 - -

Hh 0.53 0.48 - -
Rs 6.67 ´7.35 - -

4.2. Parameterization of the SEBS

A polynomial was fitted for forest Lorey’s height (YL) versus forest AGB (X) based on both DBH
and tree height measurements from 119 plots (out of the total 133 plots). The FAI (YFAI) versus forest
AGB was based on tree height, and the FBH and crown width measurements from 70 plots (Figure 2).
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For the Lorey’s height (YL), the fitting regression was, as follows:

YL “ 1.055ˆ X0.544 (23)

where R2 = 0.52 and RMSE = 2.35 meters (m).
For the FAI (YFAI), the fitting regression was, as follows:

YFAI “ 0.133ˆ X0.539 (24)

with R2 = 0.36 and RMSE = 0.35 (scalar).
The interannual forest Lorey’s height and the FAI parameters were derived from

Equations (23)–(24), and the corresponding forest AGB dynamics were estimated using the
Biome-BGC model calibrated using the MOD_17 model. Through the use of Equations (14)–(21) and
the eight-day GLASS LAI products, the corresponding eight-day d and z0m were derived using the
SD00 model (the statistics for the interannual forest Lorey’s height, d and z0m are shown in Table 2).
The retrievals were further applied in order to estimate eight-day z0h values using the kB´1 model.

Remote Sens. 2015, 7 12 

 

 

the eight-day GLASS LAI products, the corresponding eight-day d and z0m were derived using the SD00 

model (the statistics for the interannual forest Lorey’s height, d and z0m are shown in Table 2). The 

retrievals were further applied in order to estimate eight-day z0h values using the kB−1 model. 

 

Figure 2. The fitting regression of forest Lorey’s height (a) and the frontal area index (FAI) 

(b) against the forest aboveground biomass (AGB) based on measurements. 

Table 2. Statistics for the interannual forest Lorey’s heights (hL) (unit: meter), d (dR: value 

range; dM: mean value) (unit: meter), and z0m (z0m/R: value range; z0m/M: mean value) (unit: 

meter) from 2000 to 2012 at the EC site.  

Year hL dR dM z0m/R z0m/M 

2000 

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 
2011 
2012 

13.39 
13.62 
13.96 
14.30 
14.58 
14.87 
15.02 
15.24 
15.44 
15.55 
15.72 
15.90 
16.14 

6.52–7.62 
7.28–10.51 
7.48–11.10 
7.69–11.39 
7.86–11.41 
8.04–11.09 
8.12–12.05 
8.25–12.35 
8.38–12.49 
8.44–12.55 
7.79–9.18 

8.65–12.81 
8.80–13.14 

6.84 
8.50 
9.07 
9.25 
9.36 
9.92 

10.06 
10.22 
10.32 
10.19 
8.22 

10.44 
10.90 

1.32–1.46 
0.72–1.48 
0.65–1.49 
0.67–1.51 
0.73–1.53 
0.66–1.55 
0.68–1.55 
0.66–1.57 
0.68–1.58 
0.69–1.58 
0.71–1.61 
0.71–1.60 
0.69–1.62 

1.36 
1.19 
1.13 
1.16 
1.20 
1.13 
1.12 
1.14 
1.16 
1.21 
1.48 
1.22 
1.17 

4.3. A comparison of ET Estimates between EC Measurements, the SEBS Simulations, and MODIS 

MOD16 Products 

By incorporating original eight-day MODIS products (NDVI, LST), eight-day GLASS Albedo 

products, and downscaled WRF estimates (air temperature, wind speed, air and vapor pressure, and 

downwelling shortwave and long-wave radiations), the parameterized SEBS was employed for 

simulating eight-day ET from 2000 to 2012. Comparisons amongst the eight-day average ET estimates 

(a total of 86 samples) during 2010 and 2011 from EC, SEBS, and MODIS products are provided  

in Figures 3 and 4. 

Figure 2. The fitting regression of forest Lorey’s height (a) and the frontal area index (FAI) (b) against
the forest aboveground biomass (AGB) based on measurements.

Table 2. Statistics for the interannual forest Lorey’s heights (hL) (unit: meter), d (dR: value range; dM:
mean value) (unit: meter), and z0m (z0m/R: value range; z0m/M: mean value) (unit: meter) from 2000
to 2012 at the EC site.

Year hL dR dM z0m/R z0m/M

2000 13.39 6.52–7.62 6.84 1.32–1.46 1.36
2001 13.62 7.28–10.51 8.50 0.72–1.48 1.19
2002 13.96 7.48–11.10 9.07 0.65–1.49 1.13
2003 14.30 7.69–11.39 9.25 0.67–1.51 1.16
2004 14.58 7.86–11.41 9.36 0.73–1.53 1.20
2005 14.87 8.04–11.09 9.92 0.66–1.55 1.13
2006 15.02 8.12–12.05 10.06 0.68–1.55 1.12
2007 15.24 8.25–12.35 10.22 0.66–1.57 1.14
2008 15.44 8.38–12.49 10.32 0.68–1.58 1.16
2009 15.55 8.44–12.55 10.19 0.69–1.58 1.21
2010 15.72 7.79–9.18 8.22 0.71–1.61 1.48
2011 15.90 8.65–12.81 10.44 0.71–1.60 1.22
2012 16.14 8.80–13.14 10.90 0.69–1.62 1.17
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4.3. A comparison of ET Estimates between EC Measurements, the SEBS Simulations,
and MODIS MOD16 Products

By incorporating original eight-day MODIS products (NDVI, LST), eight-day GLASS Albedo
products, and downscaled WRF estimates (air temperature, wind speed, air and vapor pressure,
and downwelling shortwave and long-wave radiations), the parameterized SEBS was employed for
simulating eight-day ET from 2000 to 2012. Comparisons amongst the eight-day average ET estimates
(a total of 86 samples) during 2010 and 2011 from EC, SEBS, and MODIS products are provided in
Figures 3 and 4.Remote Sens. 2015, 7 13 
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Figure 4. A plot of the eight-day average SEBS simulated ET versus EC measurements. 
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Interannual ET dynamics (unit: mm·year−1) estimated by the SEBS model over the QM forest from 

2000 to 2012 are provided in Figure 5. Due to diverse environmental conditions (various meteorological 

Figure 3. A comparison of two-year, eight-day average evapotranspiration (ETs) betweenthe Surface
Energy Balance System (SEBS) simulations and eddy covariance (EC) measurements.

As compared to the two-year EC measurements, the parameterized SEBS generated a reliable
eight-day average ET with R2 = 0.80 and RMSE = 0.21 mm¨day´1. The MOD16-ET biased the
simulations, with R2 = 0.35 and RMSE = 0.76 mm¨day´1. The SEBS slightly underestimated ET during
the forest growing seasons (summer and autumn) during 2010 but overestimated ET for the growing
seasons during 2011. As is clear from the results, the MOD16-ET significantly underestimated ET
for the growing seasons but significantly overestimated ET during the spring seasons when the SEBS
matched EC measurements.
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4.4. Interannual ET Simulations Using the SEBS

Interannual ET dynamics (unit: mm¨year´1) estimated by the SEBS model over the QM forest
from 2000 to 2012 are provided in Figure 5. Due to diverse environmental conditions (various
meteorological and forest stand conditions) during the simulation period, the figure shows the
regional distribution of interannual forest ET over a wide range. In all of the maps, due to the cold
and arid conditions of the QM forest, the estimated forest ET is generally lower than 400 mm¨year´1.
In general, forest ETs located in the northern portion are lower than those in the southern portion.

Remote Sens. 2015, 7 14 

 

 

and forest stand conditions) during the simulation period, the figure shows the regional distribution of 

interannual forest ET over a wide range. In all of the maps, due to the cold and arid conditions of the 

QM forest, the estimated forest ET is generally lower than 400 mm·year−1. In general, forest ETs located 

in the northern portion are lower than those in the southern portion. 

  

  

  

  

Figure 5. Cont. 

  

.

Figure 5. Cont

15833



Remote Sens. 2015, 7, 15822–15843
Remote Sens. 2015, 7 15 

 

 

  

  

Figure 5. The interannual dynamics of forest ET simulated by the SEBS over the QMs from 

2000 to 2012. 

Table 3. The statistics for interannual simulated forest ETs and precipitation (unit:  

mm·year−1) downscaled from WRF estimates over the QMs from 2000 to 2012. 
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Figure 5. The interannual dynamics of forest ET simulated by the SEBS over the QMs from 2000
to 2012.

Table 3. The statistics for interannual simulated forest ETs and precipitation (unit: mm¨ year´1)
downscaled from WRF estimates over the QMs from 2000 to 2012.

Year ETMean ETMin ETMax ETsd ETSum P ETMean/P(%)

2000 244 136 1016 80 190,426 454 53.74
2001 281 165 1008 76 219,356 344 81.77
2002 299 166 1025 79 233,380 453 66.02
2003 317 194 985 77 247,049 279 113.59
2004 271 158 1075 82 211,567 386 70.21
2005 290 165 949 62 225,890 454 63.77
2006 248 143 1242 97 193,126 509 48.65
2007 277 165 1150 80 216,346 671 41.34
2008 255 136 1051 82 198,537 481 52.97
2009 201 124 882 69 156,904 512 39.33
2010 222 131 969 75 173,053 482 46.05
2011 236 137 1024 79 184,386 550 42.99
2012 290 175 1015 75 225,943 499 58.11
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Correspondingly, the interannual statistics of ET (including average, minimum, maximum,
stand deviation, and total amount), precipitation (downscaled from the WRF result), and
ET/precipitation in the forested areas are provided in Table 3. In total, the statistics calculated
from the 780 forest pixels (1 km resolution) also represented the diversity of the estimates. The
table indicates that the highest annual average of forest ET (317 mm¨year´1) occurred during 2003
and the lowest (201 mm¨year´1) occurred during 2009. Interestingly, the highest ratio of annual
ET/precipitation was also determined during 2003 while the lowest was found for 2009. The ratio
in 2003 was higher than one, implying that forest growth during 2003 was largely supported by
soil moisture.

5. Discussion

The parameters d and z0m have been used in ET models that include MOS theory, such as the
SEBS model. Although our sensitivity analysis indicated that errors within the SEBS led to estimated
H values with deviations (˘ 25%) of z0m that were smaller than those for LST and air temperature, a
50% deviation in the parameterization of z0m, as well as forest height, can generate errors of more than
40% for the H estimation. The result is consistent with those presented by van der Kwast et al. [50],
Zhou et al. [75], and Ma et al. [79]. In particular, according to the study of Zhou et al. [71], the annual
maximum effect of the roughness length dynamic on sensible heat flux was 33.80% and 18.11% for
the Qianyanzhou (with a 11–12 meter high artificial needle forest) and Changbai Mountains (with a
26 meter high natural mixed forest) experimental stations, respectively.

If canopy height information is not available for z0m parameterization within the SEBS, it can
be retrieved using the empirical equation that involves NDVI values (NDVIs of fully vegetated and
bare soil), as well as maximum and minimum canopy heights. Some sensitivity analyses [38,49]
for maximum height have indicated the importance of this parameter through replacement with
measured values. This type of empirical method may be suitable for low canopies with short
height ranges. However, due to the saturation of spectral signals, the NDVI in forests cannot
represent canopy height variations, so canopy heights, especially for long-term heterogeneous forest
parameterization, will generally be underestimated.

Additional studies [43,44,47] have indicated that vegetation vertical parameters (i.e., the height
and FAI) are critical for estimates of d and z0m obtained via remote sensing-based roughness
models [42–44]. However, few studies have focused on the long term parameterization scheme of
d and z0m while considering the variation of vertical vegetation information over time. Vegetation
height is commonly derived from vegetation indexes (i.e., NDVI and LAI) using optical remote
sensing data that may be suitable for low vegetation (for example, pastures, crops, shrubs, etc.) [80,81]
or that can be derived from active remote sensing (i.e., Synthetic Aperture Radar (SAR) and Light
Detection and Ranging (LiDAR)) data sensitive to forest vertical structure [82,83]. Nevertheless,
these methods are not possible for growing forests. On the one hand, vegetation indexes in the QMs
represent a mixture of the top canopy and the understory in forest gaps. On the other hand, the local
extremely complicated terrain condition hinders SAR data applicability, and expensive single-pass
airborne LiDAR data obtained by WATER can only derive vegetation height over a certain period and
for a certain area. Therefore, at present, remote sensing data cannot provide reliable forest vertical
dynamic information for this study area.

In an earlier study [47], we reported that the SD00 model outperformed other aerodynamic
roughness models. Here, dynamic forest vertical information for height and the FAI were obtained
from field calibrated regression models and interannual forest AGB variations in order to drive the
SD model. Instead of the arithmetical mean height, the Lorey’s height was derived due to the fact that
it is a better expression for forest stand status, as well as for d and z0m [44,47]. Although the R2 values
(0.52 and 0.36) of both fittings were not high, the RMSEs (2.35 m and 0.35 were relatively low. Based
on the high heterogeneity of local forests under various stand conditions (topography, tree density,
height, FBH, age, AGB level, overlapping canopies, etc.), regression relationships (forest Lorey’s
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height versus forest AGB and FAI versus forest AGB) established on the basis of forest measurements
were reasonable. However, due to natural disturbance, as well as the self-adaption, in forests, Lorey’s
height and the FAI are apt to defy the regressions. For example, as a result of self-thinning adaption,
matured or over-matured forests would definitely change SD (trees¨ha´1) so that ecosystem balance
is maintained, causing an increase in forest height and a decrease in forest AGB. As understood,
forest AGB levels should obey a parabolic relationship between forest AGB and forest age. In this
study, regression models based on measurements without forest age information would be biased,
because, in practice, different forest heights exist in stands that have a similar forest AGB level but
various stand densities. Additional studies should take forest stand age and forest SD into account
in their analyses. Alternatively, continuous national forest inventories using a five-year interval and
upcoming active spaceborne remote sensing (i.e., the Chinese high-resolution satellite constellation
with SAR and LiDAR sensors on board) with the ability to derive multi-temporal forest vertical
parameters could also be helpful for calibrating bias for local forest vertical information.

According to the statistics of the dynamics of interannual forest ET and meteorological data
obtained from the downscaled WRF, local forest ET is the most sensitive to a vapor pressure
deficit (VPD), then temperature, precipitation, and downwelling short wave radiation (DSR). VPD,
temperature, and precipitation yielded negative correlation to forest ET while DSR yielded a positive
correlation. For example, for the 13 years analyzed, the highest forest ET occurred during 2003,
the year with the second lowest VPD, the low temperature, the least amount of precipitation, and
a sufficient DSR; while the lowest forest ET was determined for 2009 that had the second highest
VPD and temperature, moderate precipitation, and a low DSR. As shown in Table 3, the ratio of ET
to precipitation during 2003 was higher than one, implying that during this driest year soil moisture
contributes the most positive “green water” (the water mainly used by the ecosystem itself [84]) to
the forest ecosystem.

In forested areas with altitudes from 2600 to 3300 m, surface soil with a field water capacity
of more than 50% [85] is largely covered by moss and litter with a very high porosity and a low
bulk density, resulting in a high evapotranspiration rate and hydraulic conductivity. Thus, the Picea
crassifolia forest has the greatest potential water retention capacity [86]. The water storage capacity
of the soil in this area was determined to be 39.14%, and 37.38% higher within the Picea crassifolia
forest than in Sabina przewalsk forest and shrubs, respectively, at a similar soil depth [87]. The
higher soil water content may result in a higher plant transpiration rate, as indicated in the study
of Chang et al., [85] who stated that the relationship between sap flow and soil moisture content was
a logistic function.

Overall, the performance of the SEBS in this study is promising and the results are comparable
to those of other studies [49,88–90]. For example, based on the input data retrieved from multiple
sensors onboard NASA Earth Observing Satellites (EOS) and the AVHRR sensor, as well as
model-derived surface pressure and winds from NASA’s Global Modeling and Assimilation Office,
daily global ETs were estimated by Vinukollu et al. [88] using the SEBS, the Penman-Monteith (P-M),
and the Priestley-Taylor (P-T) models for the years 2003–2006. Evaluations using an inferred ET
estimate based on a long-term water balance residual of precipitation minus runoff for large river
basins and on a global scale yielded a good correlation (the mean correlation—the Kendall’s τ from
0.72 to 0.79). The study of Vinukollu et al. [89], that reported long-term global ET estimations for
1984–2007 using the SEBS, P-M, and P-T models, indicated a downward trend for global ET after
1998. In our study, we also found a similar downward trend within the study area since 2000 due
to a warmer and wetter climate. Based on MODIS products, the results presented here are similar to
those reported by Byun et al. [49] who applied the SEBS within a forest site located in the middle of the
Korean peninsula, with R2 = 0.80 (for this case) versus 0.88 and with RMSE = 0.21 mm¨day´1 (for this
case) versus 0.22 mm¨day´1. Ma et al. [91] incorporated the TM using diverse compositions of forcing
and in situ meteorological data in order to estimate daily ETs using the SEBS over the Coleambally
Irrigation Area, located in the southwestern portion of New South Wales, Australia. Their results
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yielded a higher R2 (up to 0.95) than we report here that can be ascribed to high-resolution remotely
sensed data and other high-resolution and accurate inputs for homogenous irrigated croplands.
However, the RMSE of their results was up to 0.74 mm¨day´1, larger than those we report here. The
result can be explained by understanding that due to abundant irrigation daily ETs over croplands
are much larger than daily forest ETs for the QMs. In a similar manner, when applying Chinese
satellite HJ-1images (with a 30 m visible, 150m near-infrared, and 300 m thermal infrared bands),
the same WRF estimates as those used in this study, the SEBS generated comparable results for
irrigated cropland sites located within the middle reaches of the HRB [92] (with R2 = 0.79 and
RMSE = 0.58 mm¨day´1 at the vegetable site; R2 = 0.81 and RMSE = 1.29 mm¨day´1 at the maize site;
and R2 = 0.86 and RMSE = 1.25 mm¨day´1 at the orchard site). However, due to the heterogeneity of
the vegetation, the performance of the SEBS was reduced (with R2 = 0.53 and RMSE = 0.67 mm¨day´1)
at the wetland site.

In general, the SEBS model could perform well in areas with low vegetation or bare soil [38].
Nevertheless, the SEBS also showed inferiority in forested areas, especially for heterogeneous
forests [93,94]. As Weligepolage et al. [95] indicated, correction terms that adjust the effects of
the roughness sub-layer could contribute to improve the SEBS’s performance in areas containing
complex vegetation structural scenarios [72]. Further improvement of ET can be obtained using more
accurate meteorological inputs, although in our study meteorological inputs have been verified to be
reliable. Some improvements of wind speed and downwelling long-wave radiation estimates are still
possible [62]. As indicated by the HiWATER team, other improvements for long-term MODIS LST
inputs can also be expected [96]. Using unreliable meteorological inputs and MODIS LST products
for the SEBS would result in deterioration for the agreement of both H and λE, and, thus, ET and EC
measurements [97,98].

The SEBS model has been proven to be reliable for multi-scale ET estimations. However, only a
few studies have focused on short-term simulations within forests [65,70]. Due to complicated heat
transfer mechanisms within forests and their surroundings, the SEBS cannot consistently capture the
ET process. For cold and arid forests with high heterogeneity, such as the ones analyzed in this study,
climate and environmental factors were found to enhance the complexity of the ET process. For
example, melting snow within the canopy and underground possibly has a large impact on the ET
process. Some sharply increasing daily ET values were determined for EC measurements during the
late spring and early summer, indicating that this is the case (Figure 3). Further improvements should
be expected if soil moisture simulations and snow melt monitoring modules are embedded into the
SEBS algorithm [99]. Moreover, the appropriate parameterization of z0h is also critical for improving
the behavior of the SEBS [38,89]. Such additions could make the SEBS more applicable for multiple
biomes and various climate and environmental conditions.

6. Conclusions

For this study, we conducted a sensitivity analysis. The z0m, as well as forest height,
turned out to be one of the most important factors for parameterizing the SEBS, whose 50% deviations
could generate errors of more than 40% for the SEBS derived sensible heat fluxes. As the forest
structural dynamic information (height, FBH, crown width, and LAI) largely affect the temporal
changes in z0m, it is necessary to apply the multi-disciplinary techniques to develop the effective
parameterization of z0m.

Here, we propose a time-series parameterization scheme (for the years 2000 to 2012) for two
critical parameters (d and z0m) using MOS theory, which is the basic mechanism for the SEBS. We
calibrated two parameters (the forest height and FAI) of the SD00 model against forest measurements
using regression models. The two regression equations were linked to interannual forest AGB
dynamics derived from 2009 forest AGB basis maps and interannual forest AGB increments obtained
from the synergistic simulations of two ecological models. By combining GLASS LAI products, forest
height, and FAI dynamics, d and z0m were derived using the SD00 model. Afterward, d and z0m
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were further employed in order to derive z0h using the kB´1 model. These three parameters were
used to parameterize the SEBS from 2000 to 2012. With the incorporation of original MODIS products
(NDVI and LST), GLASS LAI, Albedo products, and downscaled WRF estimates, the parameterized
SEBS was used to simulate eight-day forest ET over the QMs. As compared to MODIS MOD16 ET
products (eight-day average) at the site (the nearest pixel), the SEBS estimates (eight-day average)
were much better and agreed well with EC measurements, with the exception of the growing seasons
for which the SEBS underestimated forest ET during 2010 and overestimated ET during 2011.

The dynamic parameterization scheme employed in this study is more realistic than that
obtained by assuming “static” conditions based on constant values for d, z0m, and z0h. The spatial
distribution of forest ET estimates provides valuable information for the sustainable management of
forest and water resources, which are extremely important to the QMs and the entire HRB river basin.
Runoff generated from mountainous regions is recognized as the main water source for the HRB.
The local forests are important for flood control, runoff regulation, and soil erosion control, and,
thus, contribute to hydrological service at the basin scale. The interannual forest ETs, as estimated
here, showed a downward trend that was largely caused by a local climate trend of warm dryness
to warm wetness [100]. Moreover, the current forest belt may shift upward in response to warm
wetness, and the grassland (or shrubland) above an elevation of 3300 m may convert to a forest on
shady slopes [86]. Rigorous local forest protection measures, including the expansion of grazing
prohibition areas and the conversion of grasslands to secondary Picea crassifolia forests, that have
been implemented within the Qilian Mountains since the 1980s could have caused decreased runoff
but may also have expanded the water retention capacity of this mountain ecosystem.
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