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a  b  s  t  r  a  c  t

Discrimination  of plant  species  in the optical  reflective  domain  is  somewhat  limited  by  the  similarity
of  their  reflectance  spectra.  Spectral  characteristics  in  the  visible  to shortwave  infrared  (VSWIR)  con-
sist  of  combination  bands  and  overtones  of primary  absorption  bands,  situated  in the  Thermal  Infrared
(TIR)  region  and  therefore  resulting  in broad  spectral  features.  TIR spectroscopy  is assumed  to have
a  large  potential  for providing  complementary  information  to  VSWIR  spectroscopy.  So far,  in  the TIR,
plants  were  often  considered  featureless.  Recently  and  following  advances  in  sensor  technology,  plant
species  were  discriminated  based  on  specific  emissivity  signatures  by  Ullah  et  al. (2012)  using  directional-
hemispherical  reflectance  (DHR)  measurements  in  the  laboratory.  Here  we  examine  if  an accurate
discrimination  of  plant  species  is  equally  possible  using  emissive  thermal  infrared  imaging  spectroscopy,
an  explicit  spatial  technique  that  is faster  and  more  flexible  than  non-imaging  measurements.

Hyperspectral  thermal  infrared  images  were acquired  in the  7.8–11.56  �m range  at  40  nm  spectral
resolution  (@10  �m)  using  a TIR  imaging  spectrometer  (Telops  HyperCam-LW)  on seven  plants  each,  of
eight  different  species.  The  images  were radiometrically  calibrated  and subjected  to temperature  and
emissivity  separation  using  a spectral  smoothness  approach.  First,  retrieved  emissivity  spectra  were
compared  to laboratory  reference  spectra  and  then  subjected  to species  discrimination  using  a  random
forest classifier.  Second,  classification  results  obtained  with  emissivity  spectra  were  compared  to those
obtained  with  VSWIR  reflectance  spectra  that had  been  acquired  from  the  same  leaf  samples.

In  general,  the  mean  emissivity  spectra  measured  by the TIR imaging  spectrometer  showed  very  good
agreement  with  the  reference  spectra  (average  Nash-Sutcliffe-Efficiency  Index  =  0.64).  In  species  dis-
crimination,  the  resulting  accuracies  for emissivity  spectra  are  highly  dependent  on the  signal-to-noise
ratio  (SNR).  At  high  SNR,  the  TIR  data  (Overall  Accuracy  (OAA)  =  92.26%)  outperformed  the  VSWIR  data

(OAA  = 80.28%).

This  study  demonstrates  that  TIR  imaging  spectroscopy  allows  for fast  and spatial  measurements  of
spectral  plant  emissivity  with  accuracies  comparable  to  laboratory  measurement.  This  innovative  tech-
nique  offers  a valuable  addition  to  VSWIR  spectroscopy  as it provides  complimentary  information  for
plant  species  discrimination.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction
Vegetation mapping and species discrimination are key
equirements of studies focusing on ecosystem monitoring and
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development. The time consuming traditional methods of in-
field mapping are optimized by remote sensing data collection,
which facilitates the economic acquisition of repeated data prod-
ucts allowing for large area studies of vegetation cover (Langley

et al., 2001). Remote sensing based vegetation mapping has been
achieved in different ways including multi-spectral, hyperspectral,
and multi-temporal classification (Langley et al., 2001; White et al.,
2005).
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Table  1
The studied plant species with their common name, Latin name, sample size and short code.

Common name Latin name Sample size(nr plants x nr. leaves) Short code

Vine Peach Prunus persica 35 (7 × 5) Pp
Sweetgum Liquidambar styraciflua 35 (7 × 5) Ls
Redosier dogwood Cornus sericea 35 (7 × 5) Cs
Maidenhair tree Ginkgo biloba 35 (7 × 5) Gb
Cherry laurel Prunus lauracerasus 35 (7 × 5) Pl
Rhododendron Rhododendron repens 35 (7 × 5) Rr
David viburnum Viburnum davidii 35 (7 × 5) Vd
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Norway maple Acer platanoides 

he measurements for the species discrimination experiment took place on August

Multispectral and hyperspectral systems in the visible to short-
ave infrared (VSWIR; 0.4–2.5 �m)  spectral range demonstrated

heir capability in plant discrimination (Govender et al., 2007; Ustin
nd Gamon, 2010). This is caused by the fact that the spectral fea-
ures in the VSWIR are mostly defined by plant constituents such
s pigments, leaf water content and other biochemicals like lignin,
ellulose (Asner, 1998). Vegetation classification is facilitated by
he extraction of distinct and characteristic spectral features in the
SWIR, such as green peak, red edge, and water absorption bands

Asner, 1998; Govender et al., 2007).
While VSWIR spectra have been widely used for many differ-

nt applications at laboratory to spaceborne levels, the use of the
hermal infrared spectral domain (TIR; 8–14 �m)  is not as widely
pread. The reasons for this are the lack of available spectrome-
ers and the general low SNR in combination with subtle spectral
eatures, which had limited the benefits of TIR spectrometers in
he past (Ribeiro da Luz and Crowley, 2007). However, sensor
echnology has improved in the past years and high resolution
pectrometers became available for laboratory, in-situ and even air-
orne applications. The increasing availability for commercial TIR

maging spectrometers (e.g., Telops HyperCam-LW, Itres TASI-600,
pecim AisaOWL) in the last years underline the growing scientific
ommunity and the rising number of studies using thermal infrared
maging spectroscopy (Danilina et al., 2012; Vaughan et al., 2003).

Spectral characteristics in the VSWIR consist of combination
ands and overtones of primary absorption bands resulting in broad
pectral features. As many of the fundamental absorption bands
re situated in the TIR region, thermal infrared spectroscopy is
ssumed to have a large potential for providing complementary
nformation to VSWIR spectroscopy, e.g. identification of vegeta-
ion and the quantification of leaf constituents (Ribeiro da Luz,
006; Silverstein et al., 2005). Despite the general meaning, a few
uthors demonstrated that vegetation spectra in the TIR are dif-
erent from blackbody (BB) signatures (Salisbury, 1986; Salisbury
nd D’Aria, 1992). Moreover, just very recently it could be impres-
ively demonstrated that plant species are discriminable in the TIR
Ribeiro da Luz, 2006; Ullah et al., 2012b). Ullah et al. (2012b) and
abre et al. (2011) showed that the mid-wave infrared (MWIR;
–5 �m)  is sensitive towards leaf water content and Buitrago et al.
2016) even demonstrated that multiple types of stress could be
pectrally identified. These studies were laboratory-based direc-
ional hemispherical reflectance (DHR) measurements of single
eaves. The results from active DHR spectroscopy can be adapted to
assive acquisition techniques used for remote sensing purposes
onsidering Kirchhoff’s law. However, these laboratory measure-
ents are time consuming (40 min  or longer for each analysis) and

nly allow for a single, non-imaging leaf measurement at a time
Hecker et al., 2011).

Ribeiro da Luz and Crowley (2007) collected in-situ vegetation

missivity spectra using a passive non-imaging field spectrometer
nd recognized spectral features identified in laboratory mea-
urements carried out before. Beyond this, new developments in
missive TIR spectroscopy focusing on hyperspectral TIR cameras
35 (7 × 5) Ap

nd 22nd 2013 from 10:30 to 18:00 local time.

offer the possibilities for fast and spatial measurements of plant
emissivity. Nevertheless, the accuracy of such measurements and
their suitability for species discrimination at field conditions has
not been tested yet.

2. Objectives

The overall aim of this study was  to investigate if plant species
discrimination is feasible using emissive TIR imaging spectroscopy.
Specific objectives were to: i) compare emissivity spectra from
a passive emissive imaging spectrometer with reference spectra
from laboratory DHR measurements, ii) classify plant species using
the emissivity spectra as input, iii) compare classification accura-
cies of emissivity spectra with reflectance spectra from a traditional
VSWIR spectrometer, iv) demonstrate the ability of identifying
spatial heterogeneities using a TIR imaging spectrometer and v)
perform a systematic investigation on the effect of SNR on classifi-
cation results.

3. Methods

During summer 2013, an experiment was  carried out in the
greenhouse facilities at Trier University. The greenhouse setup
allowed plants to be grown under controlled conditions and ther-
mal  hyperspectral measurements to be performed next to the
greenhouse under clear sky conditions.

3.1. Species discrimination experiment

Eight different plant species were selected for this study
(Table 1). Five of the eight species are identical to those used by
Ullah et al. (2012b) and represent a wide range of leaves’ proper-
ties (i.e., colour, thickness, structure, shape) and different canopy
structures with expected variations in emissivity. This species setup
allows for direct comparison with the results of Ullah et al. (2012b)
who assessed plant species discrimination in the thermal spectral
region in a laboratory experiment using active DHR spectroscopy.

Seven individual plants from each species were obtained from a
local nursery (n = 56). Emissivity measurements of five leaves were
taken of each plant, resulting in a total amount of 280 emissivity
spectra.

3.2. Thermal infrared

3.2.1. Thermal infrared spectroscopy
Infrared spectroscopy is an analytical technique that is based on

vibrational motions within molecules of matters that interact with
electromagnetic radiation (Christensen et al., 2000; Hecker et al.,
2011). A molecule starts vibrating at fundamental frequency when

it is stimulated by absorption of specific electromagnetic radiation.
The frequency of such molecular vibration is characteristic for a
specific functional group and depends on the atoms’ masses and
the molecule’s geometry. If a molecule absorbs higher amounts of
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nergy, the molecule is excited in overtones or combinations of fun-
amental vibration frequencies (Wilson et al., 1955). Whereas NIR
nd SWIR radiation (0.8–2.5 �m)  can excite molecules to overtone
ibrations, the midwave and longwave infrared spectral region
2.5–25 �m)  may  be used to study the fundamental vibrations and
ssociated molecular structures and can be used as a diagnostic tool
Christensen et al., 2000; Salisbury, 1986).

The fundamental vibration frequencies of many constituents
omposing the superficial epidermal layer of plant leaves are
ituated in the TIR spectral region. Among others, cellulose,
emicellulose, varieties of pectin and aromatic compounds have
haracteristic features in the 8–2 �m spectral range (Elvidge, 1988;
ibeiro da Luz and Crowley, 2007; Riederer and Muller, 2006; Ullah
t al., 2012a). This is why TIR spectroscopy is assumed to have large
otential for identification of species specific surface compositions
nd species discrimination.

While several techniques allow the acquisition of thermal
nfrared spectroscopy data, this study focuses on a passive acquisi-
ion technique. Passive measurements of emitted thermal infrared
adiation always require a thermal contrast between the sample
nd the environment to distinguish the sample signal from radi-
tion emitted from surroundings such as walls, ceilings, buildings
nd instruments, which is reflected by a surface different from a
lackbody. When measuring inside a laboratory, the sample needs
o be heated up to at least 20 K above ambient temperature to
roduce this thermal contrast (King et al., 2004; Salisbury and
’Aria, 1994; Schlerf et al., 2012). This method is not suitable for
reen leaves and other temperature sensitive samples. Alterna-
ively, thermal measurements are possible outside under clear sky
onditions. The relatively poor downwelling radiation (DWR) from
lear sky appears like radiation emitted from a very cold black-
ody and the samples can be measured at ambient temperature.
he sample should be isolated from radiating objects, because the
igh amount of radiation from warm objects would overpower the
ubtle spectral contrast of plant spectra.

.2.2. Measurement setup
Hyperspectral thermal infrared imaging data were collected

sing a HyperCam-LW (Telops Inc., Québec, Canada) camera that
easures radiation emitted from objects in many narrow bands.

his instrument is a Fourier-transform imaging spectrometer, using
 320 × 256 pixel MCT  (mercury cadmium telluride) detector and
ecords one interferogram per pixel. TIR radiance spectra can be
erived from these interferograms at a spectral resolution of up to
.25 cm−1 (Schlerf et al., 2012). To prevent disturbances by self-
mission, the detector is cooled down to 65 K. The spectrometer
as equipped with a wide-angle telescope and a 45◦ tilted gold-

oated mirror, which allows a vertical view with a field of view
f 25.6◦ × 30.6 ◦corresponding to 443 mm  × 358 mm and a pixel
ize of 2.07 mm at 1.5 m distance. A spectral sampling distance of
.3 cm−1 with 4 cm−1 FWHM (Full Width at Half Maximum) cor-
esponding to 40 nm at 10 �m was chosen in the spectral domain
rom 865 to 1280 cm−1 (7.8–11.56 �m),  resulting in 125 bands.

At a distance of 1.5 m,  a highly diffuse reference target
Infragold®, Labsphere Inc, North Sutton, USA) of known reflectance
as centred in the scans to quantify DWR. Five leaves were picked
er plant and clipped in a sample holder in front just above the

nfragold® panel. This setup allowed the acquisition of image cubes
nly composed of sample spectra and DWR. Another advantage of
his setup is that target and background spectra are clearly different
nd this allows the identification of mixed leaf border pixel. Most
f the spectrometer and the tripod were covered by crinkled alu-

inium foil to avoid thermal radiation emitted from the equipment

rom disturbing the measurements.
To achieve a high signal-to-noise ratio (SNR), eight consecutive

cquisitions were collected per scene. One acquisition taking eight
servation and Geoinformation 53 (2016) 16–26

seconds, the total acquisition time was  about one minute per scene.
Because of subtle temperature fluctuations due to wind, these eight
single data cubes were individually processed before being aver-
aged.

3.2.3. Image processing and temperature-emissivity separation
The radiometric calibration interferogram datacubes, includ-

ing Fourier transformation, 2-point-blackbody calibration
(BBcold = 20 ◦C and BBhot = 35 ◦C) and bad pixel correction, was
accomplished using the Reveal Calibrate software (Telops, Quebec,
Canada). A Hamming windowing function was  chosen as apodiza-
tion window, resulting in smooth radiance spectra (Blackman and
Tukey, 1958).

The resulting radiance datacubes were then processed to spec-
tral emissivity. The self-emission of an object at some temperature
T is modulated by the emissivity of the material. In addition, for
surfaces with emissivities differing from unity, the object leaving
radiance contains a reflected downwelling component from the
atmosphere. This DWR  not only originates from the atmosphere
above the sample, but also from the surrounding objects, such as
equipment and buildings. On the other hand, the intervening atmo-
sphere absorbs some of the surface leaving radiance and adds path
radiance. Thus, the hyperspectral TIR spectra need to be corrected
for these effects to retrieve surface emissivity and temperature.
This is commonly combined in a process known as temperature
and emissivity separation (TES).

DWR  spectra, measured using an Infragold® plate, need to
be corrected for the plate’s self-emission that requires knowing
the temperature and emissivity of the reference targets. For the
Infragold® target an average emissivity of 0.046 in TIR was gathered
from the calibration certificate, and the Infragold® temperature
was assumed to be ambient temperature.

When DWR  is known, surface emissivity spectrum is derived
using the following equation:

εS (�) = LS (�) − LDWR (�)
LBB (TS, �) − LDWR (�)

(1)

where εS (�) is the sample’s spectral emissivity, LDWR (�) the down-
welling radiance, and LBB (TS, �) the blackbody radiance at the
sample’s kinetic temperature TS . In order to use Eq. (1), exact knowl-
edge of the sample kinetic temperature is required.

Since kinetic surface temperatures are typically not known with
the required accuracy, alternative processing approaches have to
be used. For temperature retrieval under clear sky conditions, the
“Downwelling Radiance Residual Index (DRRI)”- method (Wang
et al., 2008) was chosen, which is based on the “spectral smooth-
ness” − approach (Horton et al., 1998). Although this method is only
applicable under clear sky conditions, it is less restrictive than the
“reference channel” − approach (Kahle and Alley, 1992) and the
“maximum spectral temperature” − approach (Korb et al., 1996)
because it requires no a priori knowledge (e.g. peak value of emis-
sivity, wavelength of peak emissivity). The sole premise of the DRRI
approach is that the distance from sample to sensor is very short
and that atmospheric contribution is negligible within this path.

For the application of the DRRI approach, DWR  and the surface
leaving radiance (approximated here by the radiance at sensor)
need to be known. This data being extracted from the hyperspectral
thermal infrared image data, the remaining surface temperature
and surface emissivity is derived by an optimization algorithm, try-
ing to find the surface temperature which is the solution for DRRI = 0
(OuYang et al., 2010).
3.2.4. Validation of emissivity spectra
For validation, HyperCam-LW spectra were compared to

reference spectra from a laboratory spectrometer. Reference
measurements were done at the spectroscopic facilities of the Uni-



rth Ob

v
F
(
w
C
s
i
c
P
i
w
s
L
p
a
e
r
a
f
c
H

3

u
a
F
B
c
d
T
c
d
t
r
w
f
b
m
e
a
o
r
(
V

3

s
a
t
7
s
T

3
s

s
a
r
d
r
d

G. Rock et al. / International Journal of Applied Ea

ersity of Twente’s GeoScience Laboratory using a Bruker Vertex 70
TIR laboratory spectrometer, equipped with an integrating sphere
Hecker et al., 2011). For every species, one representative plant
as selected and 5 leaves were picked for reference measurements.
hecking the range of the absolute values and the remaining atmo-
pheric residual peaks in the processed spectra provides good initial
nformation on the quality of the applied TES. This first test was
onsolidated by the calculation of similarity criteria such as the
earson’s correlation coefficient (r) and the Nash-Sutcliff-Efficiency
ndex (NSE) (Nash and Sutcliffe, 1970). The NSE ranges from 1 to −∞

here NSE < 0 indicates that the mean value of the HyperCam-LW
pectrum would have been a better predictor than the HyperCam-
W spectrum, NSE > 0 indicates that the HyperCam-LW spectrum
erforms better than the mean value and NSE = 1 corresponds to

 perfect match between HyperCam-LW spectra and Bruker ref-
rence measurements. For each species, 100 image pixels were
andomly selected over all leaves for comparison with one aver-
ge reference spectrum. From these values, the probability density
unction was derived and the mode of this function was  used to
haracterize the most representative similarity value between the
yperCam-LW spectra and Bruker reference spectra.

.3. Visible to shortwave infrared

To compare the separation power for species discrimination
sing TIR data to that of traditional VSWIR spectra, we collected
dditional spectra in the 350–2500 nm spectral range using an ASD
ieldSpec® III spectroradiometer (Analytical Spectral Devices Inc.,
oulder, CO, USA) equipped with a Plant Probe. The Plant Probe
onsists of a clamp with a constant light source and a rotating
ark or white background with a spot size diameter of 10 mm.
his setup allows for non-destructive leaf measurements under
ontrolled illumination conditions (Carvalho et al., 2013). Imme-
iately after the hyperspectral thermal infrared measurements,
he same five leaves per plant were measured individually in the
eflective domain. The spectroradiometer was calibrated using the
hite reference target of the leaf-clip. In order to derive leaf sur-

ace reflectance, the single leaves were clamped in front of the
lack background of the leaf-clip. For every leaf, three leaf-clip
easurement were distributed of the central part of the leaves,

ach averaged over 30 single measurements. These 90 spectra were
veraged resulting in one spectrum per leaf representing an area
f approximately 240 mm2. White reference and grating drift cor-
ections were performed on each spectrum following Dorigo et al.
2006) As a result, 280 reflectance spectra were collected in the
SWIR spectral domain and used further for the statistical analysis.

.4. Statistical analysis

A Random-Forest classifier (RFC) (Breiman, 2001) was cho-
en for species classification. This classifier is non-parametric
nd is well suited to analyse high dimensional data. For statis-
ical analysis, spectral bands dominated by water vapour from
.8 �m–8.037 �m were removed from the spectra, resulting in a
pectral range of 865 cm−1–1244 cm−1 (8.038–11.56 �m)  for the
IR and 400 nm–2450 nm for the VSWIR.

.4.1. Comparison of discrimination accuracies in different
pectral ranges

Since the same leaves were measured in the TIR and VSWIR
pectral range, a comparison of classification accuracies could be
ccomplished. For the VSWIR spectral range, the averaged 280

eflectance spectra were subjected to the RFC. To make the TIR
ataset comparable to the VSWIR dataset, the TIR image data were
educed to one emissivity spectrum per leaf by averaging 20 ran-
om pixel from the image dataset, covering the same area as the
servation and Geoinformation 53 (2016) 16–26 19

VSWIR spectrometer’s plant probe. The resulting 280 emissivity
spectra were subjected to the RFC. To assess the heterogeneity of
the dataset, averaging of emissivity pixel followed by RFC was per-
formed 20 times. To select the most representative classification
model from the 20 individual classification runs, quality measures
like OAA and Kappa values were recorded. From these values, the
probability density function was  derived and the mode of this func-
tion was used to characterize the classification accuracy.

3.4.2. Image classification
For image classification 100 pixels per species were randomly

selected as training dataset and another set of 100 different pixels
were randomly selected as validation dataset. To account for the
effects of pseudoreplication on the classification accuracy, which
arises from the fact that each five leaves were picked from the
same plant, training data were collected from 4 of the 7 individual
plants and validation data from the remaining 3 plants. The image
background consisting of an Infragold® reference plate was used as
an additional endmember into the discrimination analysis. For the
RFC a data reduction was  carried out using a principal component
analysis (PCA). The number of principal components was chosen to
reach a cumulative proportion of > 0.95. As in 3.4.1., 20 classification
runs were performed. To select the most representative classifica-
tion model, the classification model closest to the mode of the OAA
density function was selected. This most representative model was
applied to the image dataset.

To investigate the influence of SNR on the classification results,
the methodology described above was  applied on two additional
datasets: Before being subjected to TES, the radiance datasets were
preprocessed with i) a 3 × 3 kernel filter and ii) a 5 × 5 kernel filter.
In order to avoid averaging of leaf and background pixel at the edges
of leaves, a median filter was chosen as kernel filter.

3.4.3. Spectral band reduction
To assess the importance of certain wavebands for species dis-

crimination, the random forest classifier’s band importance was
derived. Band importance is determined as the mean decrease in
accuracy (MDA) during processing, i.e. the difference in prediction
accuracy, averaged over all trees, before and after randomly per-
muting the predictor variable and breaking its original association
with the response (Breiman, 2001; Nicodemus, 2011). Further, to
investigate the predictive power of the most important bands, clas-
sification was  repeated with an increasing number of input bands,
selected by decreasing importance.

4. Results

4.1. Visible to shortwave infrared

Focusing on the spectral signatures in the VSWIR, the shapes of
the spectra only show small between-species variabilities. Spectral
behaviour of all species is clearly determined by common fea-
tures, such as green peak, pigment absorption minima, red edge,
infrared plateau with minor water absorption bands, and SWIR
with major water absorption bands. In the NIR all the species
present an average maximum reflectance between 44% and 52%,
with the exception of Acer platanoides which shows significantly
lower reflectance values (Fig. 1). Looking into detail, the standard
deviation of Liquidambar styraciflua and Ginkgo biloba is signif-
icantly larger in comparison to the remaining 6 species due to
differences in leaf structure.
4.2. Validation of emissivity spectra

A first visual evaluation of the emissivity spectra presents
smooth signatures in a rational range. Fig. 2 shows the spectral
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Fig. 1. VSWIR spectra for the investigated species. Black: Mean spectra (N = 35), grey: mean +/− 1 standard deviation.
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ig. 2. Comparison of HyperCam-LW spectra (black line: average of 100 random
nterpretation of the references to colour in this figure legend, the reader is referred

nformation per species. The different vegetation spectra, with a
ange of emissivity from 90% to 99% show distinctive shapes com-

rising mainly a low frequency component superimposed by a
ariety of narrow spectral features. Although an offset between
yperCam-LW and the reference spectra is present for large parts
lected pixel, grey: mean +/− 1 sd) with Bruker reference spectra (red line). (For
e web version of this article.).

of the spectral range, the shapes of the spectra correspond rela-
tively well to the reference spectra. The offset varies from 1 to 3%

(absolute emissivity) for different species.

To remove the offset between HyperCam-LW spectra and ref-
erence spectra for a better comparison of their shapes, vector
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Fig. 3. Comparison of vector normalized HyperCam-LW spectra (grey and black) and Bruker reference spectra (red). (For interpretation of the references to colour in this
figure  legend, the reader is referred to the web  version of this article.)

Table 2
Nash-Sutcliffe-Efficiency Index (NSE) and Pearson’s correlation coefficient (r) for the different species measured with the HyperCam-LW and Bruker Vertex 70.

Species r NSE

Prunus persica 0.958 0.78 +++
Liquidambar styraciflua 0.943 0.73 ++
Cornus sericea 0.913 0.63 ++
Ginkgo biloba 0.778 0.58 ++
Prunus lauracerasus 0.757 0.50 +
Rhododendron repens 0.841 0.65 ++
Viburnum davidii 0.681 0.44 +
Acer  platanoides 0.927 0.84 +++

Table 3
Classification results (mode +/− 1 sd of 20 classification runs) for the two  spectral domains.

Spectral Range OAA kappa

n
t
F
H

H
T
h
p
l
a

TIR 92.26% (+/− 1.54) 

VSWIR 80.28% (+/− 0.43) 

ormalization was applied. Normalization is performed by dividing
he single band’s values by the sum of all of the 115 band values.
ig. 3 shows normalized spectra. In general, the overall shape of
yperCam-LW spectra fit well to the normalized reference spectra.

The similarity values (NSE and r) between normalized
yperCam-LW spectra and Bruker reference spectra are listed in
able 2. All of the tested species have positive NSE of which five
ave NSE values > 0.60. While Acer platanoides and Prunus persica
resent the best results, Ginkgo biloba,  Viburnum davidii and Prunus

auracerasus present the poorest. These results support the visual
nalysis of the image data (Fig. 4).
0.9115 (+/− 0.0176)
0.7746 (+/− 0.0049)

4.3. Species discrimination

4.3.1. Comparison of discrimination accuracies in different
spectral ranges

The results shown in Table 3 compare the classification results
of TIR spectral range with respect to the reflective spectral range.
While Table 3 presents the overall accuracies for both spectral
domains, Tables 4 and 5 present the error matrix allowing an in-
depth analysis of the results.

Classification results based on thermal infrared spectroscopy
data outperform the classifications based on VSWIR data by almost

12% in OAA.
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Fig. 4. Classification result from native spatial resolution (top), 3 × 3 spatial averaging (middle) and 5 × 5 spatial averaging (bottom). Colour: species, grey: background,
black:  pixel with non-converging TES. The 5 leaves from one column originate from one plant. The leaves from Ap being much larger than the remaining, it seems that a lot
of  background pixel were misclassified, which is not the case.

Table 4
representative error matrix for a single classification run based on TIR spectroscopy data.

Reference data

Pp Ls Cs Gb Pl Rr Vd Ap Total User’s Accuracy [%]

Classification
Results

Pp 31 5 0 0 0 0 0 0 36 86.11
Ls  3 30 0 0 0 0 0 0 33 90.91
Cs  0 0 35 0 1 0 0 0 36 97.22
Gb  1 0 0 31 4 0 0 0 36 86.11
Pl  0 0 0 4 30 0 0 0 34 88.24
Rr  0 0 0 0 0 34 1 0 35 97.14
Vd  0 0 0 0 0 1 33 1 35 94.29
Ap  0 0 0 0 0 0 1 34 35 97.14

Total  35 35 35 35 35 35 35 35 280
Producer’s Accuracy [%] 88.57 85.71 100.00 88.57 85.71 97.14 94.29 97.14 Overall Accuracy: 92.14%

Kappa statistic: 0.9102

Table 5
representative error matrix for a single classification run based on VSWIR spectroscopy data.

Reference data

Pp Ls Cs Gb Pl Rr Vd Ap Total User’s Accuracy [%]

Classification
Results

Pp 29 7 3 0 0 0 0 0 36 74.36
Ls  2 22 0 2 2 0 0 0 33 78.57
Cs  2 0 30 2 2 0 1 9 36 68.18
Gb  0 3 0 31 2 0 0 0 36 91.18
Pl  0 3 0 0 30 1 1 0 34 85.71
Rr  0 0 0 0 1 29 5 0 35 82.86
Vd  0 0 0 0 2 5 27 0 35 79.41
Ap  2 0 2 0 0 0 0 26 35 86.67

Total  35 35 35 35 35 35 35 35 280
Producer’s Accuracy [%] 82.86 62.86 85.71 88.57 85.71 82.86 79.41 74.29 Overall Accuracy: 80.29%

Kappa statistic: 0.7747
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Table  6
Error matrix from classification result based on native spatial resolution image data.

Reference data

Pp Ls Cs Gb Pl Rr Vd Ap bgrd Total User’s Accuracy [%]

Classification
Results

Pp 53 1 0 12 7 0 10 5 0 88 60.2
Ls  0 81 10 0 0 2 1 10 9 113 71.7
Cs  1 5 87 1 7 7 5 0 5 118 73.7
Gb  12 0 0 68 2 0 1 0 0 83 81.9
Pl  7 1 1 2 74 4 8 0 2 99 74.7
Rr  0 0 0 3 3 74 23 0 2 105 70.5
Vd  7 1 0 5 5 7 38 0 1 64 59.4
Ap  18 10 0 8 1 0 9 82 2 130 63.1
bgrd 2 1 2 1 1 6 5 3 79 100 79.0

Total  100 100 100 100 100 100 100 100 100 900
Producer’s Accuracy [%] 53.0 81.0 87.0 68.0 74.0 74.0 38.0 82.0 79.0 Overall Accuracy: 70.7%

Kappa statistic: 0.67

Table 7
Error matrix from classification result based on spatial averaged (3 × 3) image data.

Reference data

Pp Ls Cs Gb Pl Rr Vd Ap bgrd Total User’s Accuracy [%]

Classification
Results

Pp 81 2 0 9 3 0 3 1 0 99 81.8
Ls  0 91 4 0 0 0 0 8 0 103 88.3
Cs  0 3 96 0 0 0 0 0 3 102 94.1
Gb  4 1 0 71 0 0 0 0 0 76 93.4
Pl  5 0 0 1 95 5 1 1 1 109 87.2
Rr  0 0 0 0 0 85 23 0 2 110 77.3
Vd  2 0 0 4 2 8 69 3 1 89 77.5
Ap  6 3 0 15 0 0 2 87 2 115 75.7
bgr  2 0 0 0 0 2 2 0 91 97 93.8

Total 100 100 100 100 100 100 100 100 100 900
Producer’s Accuracy [%] 81.0 91.0 96.0 71.0 95.0 85.0 69.0 87.0 91.0 Overall Accuracy: 85.11%

Kappa statistic: 0.8325

Table 8
Error matrix from classification result based on spatially averaged (5 × 5) image data.

Reference data

Pp Ls Cs Gb Pl Rr Vd Ap bgrd Total User’s Accuracy [%]

Classification
Results

Pp 85 1 0 11 0 0 0 2 0 121 85.9
Ls  1 90 6 0 0 0 0 4 2 115 87.4
Cs  0 2 92 0 0 1 0 0 2 105 94.8
Gb  4 0 0 79 0 0 0 0 0 83 95.2
Pl  0 1 0 0 95 4 1 0 1 114 93.1
Rr  0 0 0 0 0 88 4 0 0 78 95.7
Vd  0 0 0 1 5 5 92 1 0 79 88.5
Ap  10 6 0 9 0 0 2 93 1 106 76.9
bgrd 0 0 2 0 0 2 1 0 94 99 94.9

100
95.0

4

d
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w
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G
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Total 100 100 100 100 

Producer’s Accuracy [%] 85.0 90.0 92.0 79.0 

.3.2. Image classification
Tables 6–8 show the classification results of TIR image data for

ifferent spatial smoothing pre-processings (native spatial resolu-
ion (Table 6), 3 × 3 (Table 7) and 5 × 5 (Table 8) averaging window).

The classification of thermal spectroscopic image data at
ull spatial resolution achieved an OAA of 70.7% (Kappa = 0.67)
hich indicates a good overall discrimination of the investigated
lant species using emissivity spectra. These accuracies rise with

ncreasing averaging window size (3 × 3 averaging: OAA = 85.1%,
appa = 0.83; 5 × 5 averaging: OAA = 89.8%, Kappa = 0.89).

Consistently, for classifications of the three image datasets, Pp,
b and Vd show the poorest results. Mostly, Pp is confused with Gb
nd Ap,  Gb is confused with Pp and Ap and Vd is confused with Pp

nd Rr.  While these three species are often confused with Ap,  the
atter is classified with high accuracies.

Image classification results depicted in Fig. 4 show a good
erformance in general. Most of the leave pixels were correctly
 100 100 100 100 900
 88.0 92.0 93.0 94.0 Overall Accuracy: 89.8%

Kappa statistic: 0.8850

assigned. Misclassifications mostly occurred on complete leaves
or certain parts of leaves. The leaves of Cornus sericea comprise a
high percentage of NA-values (black pixels), which results from a
non-converging of the residual minimizing algorithm during TES.
Except for the NA-values, Cornus sericea does not show many mis-
classifications. For Acer platanoides large parts of leaves originating
from one single plant show a high percentage of misclassifications,
which could be due to intraclass variability. While Ginkgo biloba is
mostly confused with Prunus persica and Acer platanoides, Viburnum
davidii is confused with most of the remaining classes (i.e. Prunus
persica, Liquidambar styraciflua, Cornus sericea, Prunus lauroacera-
sus, Rhododendron repens and Acer platanoides). All other species
mostly present random misclassifications with remaining species.
With increasing SNR (Fig. 4 middle and bottom), the number of
misclassification is strongly reduced and only coherent misclassi-
fications remain in the resulting image. This points to the spatial
heterogeneity in individual leaves.
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Fig. 5. Relative importance of spectral band for RFC (left) 

.3.3. Spectral band reduction
Fig. 5 depicts the relative importance of spectral band

or discrimination of the 8 species (left) and the accuracies
chieved during classification using an increasing number
f spectral bands with respect to their importance (right).
ocal maxima and minima (8.19 �m/1220.90 cm−1, 8.4 �m/
190.96 cm−1, 8.49 �m/1177.65 cm−1, 9.7 �m/1031.28 cm−1,
0.19 �m/981.38 cm−1, 10.51 �m/951.44 cm−1, 10.81 �m/
24.82 cm−1) in band importance agree well with results from
llah et al. (2012b). The discrimination accuracy varies with

espect to the number of bands used for classification. Starting
rom an OAA of 66.94% for 2 bands, the discrimination accuracy
ncreases up to 91.79% for 6 bands. Further increase of bands
eads to a weak gain in accuracy up to 94.73% for 44 spectral
ands (Fig. 5, right). These results fit well with the results from
he comparison of classification accuracies for different spectral
anges (Tables 4 & 5).

. Discussion

Data acquisition using a hyperspectral thermal infrared cam-
ra (such as the Telops HyperCam-LW) is a fast and accurate way
f measuring emissivity spectra of plants in a spatially continuous
ay. As multiple pixels can be averaged for homogeneous sam-
les, SNR increases and derived emissivity spectra compare well to

aboratory reference spectra.
When comparing the HyperCam-LW spectra with laboratory

eference spectra, an offset of 1–3% (absolute emissivity) was
etected. This offset can have various reasons: i) errors in the tem-
erature estimation during TES or ii) the radiometric calibration
r iii) systematic spectrometer errors. Since the HyperCam-LW
pectra presented smooth shapes and did not show any large
tmospheric residuals, errors during TES and radiometric cali-
ration could be excluded. Hecker et al. (2011) conclude that
he described Bruker FTIR laboratory spectrometer tends to have

arginally lower values at very low reflectance in comparison to
imilar spectrometers. Therefore, lower reflectance corresponding
o higher emissivity values would explain the offset in vegetation
pectra, usually ranging between 94–99% of emissivity or 1–6% of
eflectance. This offset was  eliminated by vector normalization in
oth datasets to allow the shapes of the emissivity curves to be

ompared.

When looking very closely at the different spectra, small diver-
ences are still detectable between HyperCam-LW and Bruker
eference spectra. The reason for these divergences is probably
AA of RFC by increasing number of spectral bands (right).

related to the fact that the acquisition of reference measurements
could not be taken simultaneously with the HyperCam-LW mea-
surements and leaves that were picked for both measurements
were not identical.

The DRRI approach to derive emissivity from radiance data
appears to be a well-suited TES method for field measurements at
short distances from the sample. Minimizing an average smooth-
ness value is affected by noise and leads to atmospheric residuals
in the resulting emissivity spectrum. This is why our temper-
ature retrieval focused on minimizing residuals of the most
prominent water line, i.e. the line at 1174.53 cm−1 (8.514 �m),
which is included in the spectral band with centre wavenumber
1174.33 cm−1 (8.515 �m).  The fact that the remaining residuals
in the individual spectra are compensated by averaging multiple
pixels per leaf illustrates that the TES algorithm has a good perfor-
mance and does not produce a systematic over- or underestimation
of temperature.

Concerning intraclass heterogeneity, especially the spread of the
Rhododendron repens and Viburnum davidii spectra is wider than
for the remaining species (Fig. 2). As the samples were randomly
chosen within one canopy, leaves of different ages and illumination
conditions, presenting different physiological and biochemical con-
ditions, were selected, resulting in different spectral emissivities
(Buitrago et al., 2016).

Species discrimination using a random forest classifier led to
good results and improved significantly with respect to spatial
averaging. In summary, the initial dataset achieved an OAA of 70.7%,
the 3 × 3 averaging pre-processing resulted in an OAA of 85.1%
and the 5 × 5 averaging pre-processing in an OAA of 89.8%. On the
whole, TIR spectroscopy allows for identification of objects with
very subtle spectral signatures and differences. With reference to
Fig. 4, the consistent confusions of Pp and Gb spectra are related to
the similarity of the species specific spectra. The misclassifications
of many pixel as Vd are due to the wide variance within the species
spectra. The lower variance and the unique spectral shape for Ap
causes the good producer’s accuracy (93.0%) and the corresponding
poorer user’s accuracy (76.9%).

Misclassifications are not distributed randomly over the com-
plete dataset but concentrate on complete or certain parts of leaves.
It appears that this is related to a spatial variation of emissivity spec-
tra caused by inhomogeneity of biochemistry and leaf structural
properties within and between leaves of the same species. Espe-

cially some leaves from Ginkgo biloba present misclassifications at
the apexes and all the leaves from one Acer platanoides plant present
wide misclassifications. This fact points to the assumption that the
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eaves and some individual plants were in different physiological
tates, i.e. showed signs of stresses. The identification of these spa-
ial heterogeneities impressively demonstrates the advantage of
maging over non-imaging spectroscopy.

In order to provide a complete impression on the potential of
he Telops HyperCam-LW, classification was also performed on
ingle measurements. The results are poorer than those obtained
rom image datasets averaged over eight repeated measurements
Tables 6–8) but, even with single measurements, OAA of 54.67%
ould be achieved. With spatial averaging pre-processing OAA of
5.67% and 76.11% were achieved for kernel sizes of 3 × 3 and 5 × 5
espectively.

Comparing with a laboratory study from Ullah et al. (Ullah et al.,
012b) who achieved an OAA of 92%, these results are completely
atisfying, taking into account the argument of an in-situ experi-
ent, the smaller spectral range and the very short duration per

cquisition.
These classification results confirm the stated hypothesis, which

eans that TIR measurements are well suited for vegetation
nalysis. In addition, these results confirm that for this special
xperimental setup, hyperspectral thermal infrared measurements
rovide better classification results than measurements in the
eflective domain. This can be explained by the fact that primary
bsorption bands of many constituents are located in the TIR spec-
ral region.

The results of the band reduction experiment meet our expec-
ations. Selecting single narrow bands, with respect to their
mportance during classification, indicated a significant improve-

ent of OAA when selecting up to 6 bands. Adding more bands to
he classification did only result in a slight improvement for classi-
cation results. Although these results are remarkable and would

ead to a conclusion that a sensor comprising only 6–10 well-chosen
ands would allow for similar results, it needs careful evaluation.
bviously, the considered plants differ more with respect to their

pectral emissivity shapes than the respective reflectance curves in
he solar spectral domain. However, without further studies, this
esult cannot be generalized to other plant species, which might
ave similar spectral characteristics in the TIR but unique features

n the VSWIR.
Though at near range, TIR imaging spectroscopy allows for

ccurate and reliable retrieval of plant emissivities and species
iscrimination, there are still many challenges to overcome for air-
orne and future spaceborne sensors: 1. Atmosphere correction
nd TES algorithms require knowledge of the spatial distribution
f atmospheric water vapour. Its quantification requires radiance
easurements in narrow spectral bands which are generally lim-

ted in their signal to noise ratio. 2. Increasing observation distances
mplies scale effects related to structural issues (i.e. mixed pixels,
cattering, re-radiation and cavity effects) (Kirkland et al., 2002)
esulting in non-linear mixtures of signatures and reduction of
pectral contrast (Gillespie, 1992; Ribeiro da Luz and Crowley,
010).

. Conclusion

This study demonstrated the suitability of the TIR spectral range
or species discrimination. Important aspects of the study include
) that the suitability of the Telops HyperCam-LW for TIR data
cquisition does not only account for gases, but for surfaces of
ow spectral contrast, too, ii) the ability of discriminating multiple
lant species using emissive imaging spectroscopy, iii) the supe-

iority of emissivity spectra over VSWIR reflectance data for this
pecial experimental setup, iv) the ability to uncover spatial hetero-
eneities using the TIR imaging spectrometer, and v) the influence
f SNR on the classification results.
servation and Geoinformation 53 (2016) 16–26 25

In our experiment we demonstrated that the Telops HyperCam-
LW is not only suitable for data acquisition of samples with very
prominent spectral features, e.g. gas detection purposes or mineral
detection (Schlerf et al., 2012), but, in addition, is able to collect
high-quality data suitable for surface analysis for materials with
very subtle spectral signatures, such as vegetation.

Further, we  showed that the TIR spectral range is suitable for
species discrimination. Although, the spectral contrast for vege-
tation in the TIR only spans 4% absolute emissivity, the spectral
signatures of the selected species show substantial differences in
shape, which is different from the reflective spectral domain. There-
fore, TIR spectroscopy can be considered as a valuable addition to
VSWIR spectroscopy for vegetation studies. As the spectral con-
trast is relatively low, an increase in SNR has a positive effect on
classification results.

Finally, we  demonstrated that emissive TIR imaging spec-
troscopy provides fast measurements and accurate as well as
reliable results, comparable to laboratory spectrometers. In addi-
tion, TIR imaging spectroscopy offers the ability to uncover spatial
distributions of surface properties, usually hidden during labora-
tory non-imaging studies.
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