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This article presents a hybrid fuzzy classifier for effective land-use/land-cover (LULC)
mapping. It discusses a Bayesian method of incorporating spatial contextual informa-
tion into the fuzzy noise classifier (FNC). The FNC was chosen as it detects noise
using spectral information more efficiently than its fuzzy counterparts. The spatial
information at the level of the second-order pixel neighbourhood was modelled using
Markov random fields (MRFs). Spatial contextual information was added to the MRF
using different adaptive interaction functions. These help to avoid over-smoothing at
the class boundaries. The hybrid classifier was applied to advanced wide-field sensor
(AWiFS) and linear imaging self-scanning sensor-III (LISS-III) images from a rural
area in India. Validation was done with a LISS-IV image from the same area. The
highest increase in accuracy among the adaptive functions was 4.1% and 2.1% for
AWiFS and LISS-III images, respectively. The paper concludes that incorporation of
spatial contextual information into the fuzzy noise classifier helps in achieving a more
realistic and accurate classification of satellite images.

1. Introduction

Image classification is widely applied in image analysis to extract land-use and land-cover
(LULC) information from remote-sensing images. Conventional classification uses the
spectral information from a single pixel (i.e. the digital number (DN) of the pixel). It is
based upon the rather unrealistic assumption that pixels are pure (i.e. a pixel is the
reflected value of a single class; Zhang and Foody 1998). In the 1980s, fuzzy classifiers
were developed for addressing heterogeneity within a pixel, as a mixed pixel, thus
improving the accuracy and making classification more realistic (Bezdek, Ehrlich, and
Full 1984). Fuzzy classifiers generate fractional images (i.e. one image for every class,
representing the associated membership values at the pixel level). Fuzzy c-means (FCM)
classification is a popular fuzzy classification technique based on fuzzy set theory (Zadeh
1965). It is, however, sensitive to noise and outliers due to the probabilistic constraint
involved (Krishnapuram and Keller 1993). Possibilistic c-means (PCM) classification
addresses this sensitivity problem by redefining the concept of membership values.
Membership values generated by a PCM classification represent the degree of
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belongingness of a pixel to a class, rather than the degree of sharing of classes within a
pixel as was the case with FCM. For this reason, PCM performs better in the presence of
noise and outliers (Krishnapuram and Keller 1996).

Noise in remote-sensing images arises due to sensor deficiencies, data processing
errors, atmospheric noise, and the presence of classes other than the class of interest. The
presence of such noise in a remote-sensing image degrades the classification accuracy.
Noise clustering (NC) is robust against noisy data and has been used successfully in
various fields (Dave’ 1991). It groups all noisy pixels into a separate class called the noise
class based on their spectral properties. Image noise is often found as unrealistic pixel
values at unexpected locations and is commonly referred to as the isolated pixel problem
(IPP). Spectral classifiers do not entirely address the IPP as they refer only to the DN of
image pixels for achieving image classification (Krishnapuram and Keller 1993). The
suitable use of context allows the elimination of possible ambiguities, the recovery of
missing information, and the correction of errors, thus improving the robustness of a
spectral classifier against noise (Li 1995; Magnussen, Boudewyn, and Wulder 2004). By
providing NC with additional information (e.g. information about the neighbourhood
classes for a pixel), the classifier would more accurate predict the class to which a
noisy point belongs.

In remote sensing, the energy reaching the sensor does not entirely correspond to the
pixel area on the ground, as it also includes energy from neighbouring pixel areas. This is
mostly caused by diffuse scattering of the incoming radiation due to atmospheric distor-
tion. Moreover, classes on the ground usually span several pixels and it is rare to find a
class in isolation. Hence, there exists a relation between a pixel and its neighbouring
pixels. Markov random fields (MRFs) are used in effective modelling of such contextual
relationships, in the case of context-dependent entities such as image pixels (Geman and
Geman 1984; Li 2009). It has been widely used in image segmentation and image
restoration (Derin and Elliott 1987; Dubes and Jain 1989; Tso and Olsen 2005). MRFs
based upon simulated annealing optimization (Mather and Tso 2010) are widely accepted
for modelling contextual information in images, since publication of the classical study by
Geman and Geman (1984). This considerably improved the accuracy of PCM (Chawla
2010) and FCM (Singha et al. 2015) classifiers. In those studies, modelling of spatial
contextual information was done using both the smoothness-prior MRF model (S-MRF)
and four different discontinuity adaptive-MRF models (DA-MRF)(Li 2009). Among these
models, the use of DA-MRF models has helped to produce a higher classification
accuracy as compared with S-MRF models (Chawla 2010; Singha et al. 2015).

Accuracy assessment of a fuzzy classification is not straightforward, because multiple
classes might be assigned to a single pixel and so the standard error matrix cannot be realized
(Silván-Cárdenas and Wang 2008). Efforts to assess the accuracy of a fuzzy classification
result after making it crisp resulted in loss of information (Foody 1997; Silván-Cárdenas and
Wang 2008). Various suggestions have been provided to carry out a fuzzy image accuracy
assessment (Binaghi et al. 1999; Congalton 1991; Green and Congalton 2004; Pontius and
Cheuk 2006), but a standard accuracy assessment technique is still lacking. Among the
various methods proposed, the fuzzy error matrix (FERM) has been widely accepted and
hence was used in this study for accuracy assessment (Binaghi et al. 1999).

The aim of this paper is to present a novel hybrid fuzzy noise classifier, and then to
study its effects on the classification accuracy. Here, the spatial contextual information
was modelled using MRFs and thus incorporated into the fuzzy noise classifier, thus
creating a novel hybrid classifier. This classifier was applied on advanced wide-field
sensor (AWiFS) and linear imaging self-scanning Sensor-III (LISS-III) images from the
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Resourcesat-1 satellite in Uttarakhand State in India. Results were evaluated with a linear
imaging self-scanning Sensor-IV (LISS-IV) image.

2. Noise clustering

The presence of noise is often perceived as a problem for effective clustering, as it biases
clustering algorithms and results in the formation of unrealistic clusters. Noise clustering
is a fuzzy clustering technique which was developed to address this problem. It overcomes
the possible problem of unrealistic cluster formation due to the presence of noise in the
input image (Dave’ 1993; Krishnapuram and Keller 1993) It achieves this immunity to
noise by allocating noisy data into a separate class termed the noise class. The noise class
cluster centre is selected such that it is equidistant from all points in the image, and thus
each data point in the noise cluster has an equal prior probability of belonging to any other
cluster. In noise clustering, data points beyond the noise distance ðδÞ from the cluster
centres are considered as noise, but the pre-specification of δ is not practical due to
insufficient information about the data (Dave’ 1991). In this study, δ was estimated using
the method mentioned in Section 3.2. Figure 1(a) shows sample data set taken from Dave’
(1993) and Figure 1(b) shows the result of noise clustering on the image. Three valid
clusters formed by noise clustering are represented in Figure 1(b) using unique symbols,
whereas the ‘+’ symbol represents the noisy data assigned to the noise class.

Mathematically, noise clustering is modelled as an optimization problem with
Equation (1) as its objective function that needs to be minimized and Equation (2) as
its constraint:

JNCðU;VÞ ¼
XN
i¼1

XC
j¼1

ðuijÞmdðxi; vjÞ þ
XN
i¼1

ðui;Cþ1Þmδ; (1)

and

XCþ1

j¼1

uij � 1 1 � i � N : (2)

(a) (b)

Figure 1. An example of cluster formation using noise clustering for C ¼ 3 classes and two
spectral bands. (a) Noisy data and (b) clusters identified using noise clustering. In (b), ‘+’ indicates
the noise class.
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In Equation (1), JNC (U; V) corresponds to the value of the NC objective function for a
particular U and V, C is the number of classes, N is the total number of image pixels, m is
the fuzzification factor, uij is the membership value of the ith pixel to the jth class, and
ui;Cþ1 corresponds to the membership values of the noise class. Furthermore, ~vj denotes
the vector pointing to the cluster centre of the jth class and ~xi is the membership value
vector for the ith pixel. The Euclidian distance between ~xi and ~vj is represented by
dð~xi;~vjÞ. Both ~xi and ~vj are vectors in a D-dimensional feature space, where D is the

number of bands in the input image. The constraint
PCþ1

j¼1
uij � 1 allows the noisy data to

achieve as low membership values as possible (Dave’ and Krishnapuram 1997). The
cluster centres are jointly represented by the set V ¼ fV1;V2; . . . ;VCg, where
V1;V2; . . . ;VC represent the cluster centres for the 1st; 2nd; . . . ;Cth class. The set U ¼
fU1;U2; . . . ;UC;UCþ1g contains the membership values for individual classes, where
U1;U2; . . . ;UC represent the set of membership values for each pixel in the image and for
each class, and UCþ1 represents the set of membership values for each pixel in the image
for the noise class. The value of the membership values uij, membership values for noise
class ui;Cþ1, and class mean vectors ~vj can be obtained from Equations (3), (4), and (5),
respectively.

uij ¼
XC
k¼1

dð~xi;~vjÞ
dð~xi;~vkÞ

� � 1
m�1

þ dð~xi;~vjÞ
δ

� � 1
m�1

" #�1

(3)

ui;Cþ1 ¼
XC
i¼1

δ
dð~xi;~vjÞ

� � 2
m�1

þ 1

" #�1

(4)

~vj ¼
PN
i¼1

uij
� �m

~xið Þ� �
PN
i¼1

uij
� �m (5)

In this article a supervised version of noise clustering, referred to as the fuzzy noise
classifier (FNC), was used. The cluster centres V were initialized with the class mean vectors
obtained from the supervised approach (i.e. for each class, random pixels were selected and
pixel vectors were averaged to produce a mean vector). This also provides a computational
advantage for the FNC as it reduces the number of iterations required to reach the optimal
cluster centres, whereas it also ensures reproducibility of the results. More intuition on the
need for cluster initialization can be obtained by understanding the objective function shown
in Equation (1), which aims to minimize U and V simultaneously.

3. Methodology

The objective of this study was to develop an efficient hybrid classifier by integrating
spatial contextual information onto the FNC, which uses only the spectral information to
perform classification. To achieve this, an integral part of the methodology was to
formulate the objective functions for (FNC)s and four (FNC)DA classifiers, where
(FNC)s corresponds to the FNC with smoothness prior, ðFNCÞDA corresponds to FNC
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with discontinuity adaptive priors. Estimation of the parameters of the FNC and those of
the hybrid classifier were carried out to ensure optimal performance. The accuracy
assessment of the hybrid classifier, which is also a fuzzy classifier, was done using
the FERM. Figure 2 shows the methodology used in this study.

Over-smoothing at the boundaries in an image, on using smoothness (S) MRF priors,
was addressed in this study by replacing it with discontinuity adaptive (DA) MRF priors.
These use an adaptive interaction function (AIF) hðηÞ, as a function of η, that is placed
within the regularizer to model the nature of the interaction of a pixel site with its
neighbours. η represents the difference in membership values between the centre pixel
and its neighbour within a clique. A clique is a subset of a site from the neighbourhood
system, where the members of the site are mutual neighbours (Mather and Tso 2010). hðηÞ
returns a low value when the membership variation in the pixel neighbourhood is large,
and returns a high value when the membership variation in the pixel neighbourhood is
low, resulting in selective smoothing. Equation (6) shows the relation among AIF, hðηÞ,
and the adaptive potential function (APF), g0ðηÞ. The APF encodes the neighbourhood
information for a pixel, and it is further incorporated into the objective function of the
FNC to form the hybrid classifier.

g0ðηÞ ¼ 2ηh ðηÞ (6)

Four AIFs from the literature are used in this work (Equations (7)–(10)), resulting in
four different APFs and hence four different DA models (Li 2009). Each AIF has a unique
response graph, and in this way models the interaction between a pixel site and its
neighbours in a different way. In Equations (7)–(10), the parameter γ controls the intensity
of the interaction between a pixel and its neighbours. Incorporation of each of these APFs

AWiFS and LISS-III
images

LISS-IV reference
image

Pre-processing
(Geo-registration)

Pre-processing
(Geo-registration)

Classification using
FNC, (FNC)s and

(FNC)Di

Classification using
FNC, (FNC)s and

(FNC)Di

FNCs and FNCDi
objective function

formulation followed
by λ and β /γ
optimization

Image to image
accuracy assessment
on fractional image

Soft reference data

FNC parameter
estimation (m, δ)

Figure 2. Methodology followed in this study. On the left side are the AWiFS and LISS-III images
used to study the hybrid classifier performance, while on the right side is the LISS-IV image used
for validation. All terms are defined in the text.
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into the objective function of FNC created a new hybrid classifier, and are referred to in
this study as ðDAÞ1, ðDAÞ2, ðDAÞ3, and ðDAÞ4 MRF models, respectively.

h1ðηÞ ¼ exp
�η2

γ

� �
(7)

h2ðηÞ ¼ 1

1

1þη2

γ

� �2 (8)

h3ðηÞ ¼ 1

1þ η2

γ

(9)

h4ðηÞ ¼ 1

1þ jηj
γ

(10)

3.1. Mathematical formulation of hybrid classifiers

The FNC achieves classification by solving an optimization problem, as stated in Equations
(1) and (2). The hybrid classifiers were created by adding a spatial term to the objective
function of the FNC while keeping its optimization problem constraint unchanged. Spatial
contextual information was modelled using all four different DA-MRF models mentioned in
Section 3, separately. Modelling was also done using the S-MRF model for showing the
performance improvement of the classifier against the four DA-MRF models. Using Bayes
theorem we were able to incorporate the spatial information modelled using MRFs into
Equation (1), hence formulating the objective function for the hybrid classifier.

The formulated objective function of the ðFNCÞS classifier is shown in Equation (11):

E uij
� � ¼ ð1� λÞ

XN
i¼1

XC
j¼1

ðuijÞmdð~xi;~vjÞ þ
XN
i¼1

ðui;Cþ1Þmδ
" #

þ λ
XN
i¼1

XC
j¼1

X
j2Nj

βðuij � uij0 Þ2
2
4

3
5: (11)

The term E in Equation (11) refers to the energy of the pixel for the membership value
uij. The remainder of the terms in Equation (11) are defined in Section 2. The optimization
of Equation (11) is done using simulated annealing (Mather and Tso 2010). Objective
functions of the ðFNCÞDi classifiers for i ¼ 1; . . . ; 4 are formed by replacing the APF (i.e.

the term βðuij � uij0 Þ2 in Equation (11)), with the corresponding APFs being equal to

� γ exp �η2

γ

� 	
, �γ

1

1þη2
γ

� �2 , γln 1þ η2

γ

� 	
, and γjηj � γ2ln 1þ jηj

γ

� 	
, respectively (Li 2009). In

this way, ðFNCÞS and the ðFNCÞDi represent the hybrid classifiers obtained by using the
S and ðDAÞi MRF models for i ¼ 1; . . . ; 4, respectively.

The term λ is used in the objective function of the hybrid classifier to balance the
contribution of information from the spectral and spatial domains. This further controls
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the impact of spatial and spectral information on the classification. The weights β control
the amount of influence of a site with its neighbours.

3.2. Fuzzy noise classifier parameter estimation

The outputs of FNC are fractional images, where each pixel depicts the membership
values (i.e. the possibilistic percentage cover of a particular class within that pixel). The
classifier generates a fractional image for each individual class.

Estimation of the FNC parameter, which includes the noise distance (δ) and the
fuzzification factor (m), is essential for ensuring the best performance of the FNC. The
parameter combination which gives the maximum classification accuracy for the FNC was
considered. Accuracy of the fuzzy classification was assessed by minimizing the entropy
associated with the fractional images (Dehghan and Ghassemian 2006). Entropy mini-
mization is a widely accepted method to quantify the uncertainty associated with an
image. To calculate the entropy of a class, random pixels were selected from the high-
membership regions of the fractional image for each class. Vectors of membership values
were formed for each pixel by combining membership values from all the fractional
images. For each such membership vector, the entropy was calculated using Equation (12)
and was averaged to obtain the entropy for a pixel.

Havg ¼
PC
i¼1

ðuijÞ log2ðuijÞ
PC
i¼1

ðuijÞ
(12)

Entropy as the sole criterion for optimal parameter estimation was found to be insuffi-
cient, as the minimum entropy fractional images could possibly be generated from a
parameter combination, resulting in inaccurate classification. To address this problem,
accuracy estimation was done using inter-class membership change calculation (IMC),
which is based on the fact that, in the optimal classification, the membership value of class
pixels will be highest in the fractional image associated with that class only, but correspond-
ing pixel membership values will be lowest in the other fractional images (Townsend 2000).
In this method, emphasis is given to finding parameters that maximize this difference in
membership values for all class pixels. To do so, the difference is calculated for a fractional
image between the mean membership values at known class locations, and the mean of
membership values at known non-class locations. A large difference corresponds to a more
accurate classification. The FNC estimates were found by simultaneously minimizing the
entropy of the fractional image and maximizing the IMC.

3.3. Hybrid classifier parameter estimation

The hybrid classifier was developed by adding a spatial term to the FNC formulation. For
the hybrid classifier, two parameters need to be estimated. The first is the weight factor λ,
with 0 � λ � 1, which controls the impact of spatial and spectral components. The second
is β in the case of S-MRF, or γ in case of a DA-MRF. Both parameters have an impact on
the classification accuracy, and hence their estimation is critical.

The main objective behind the use of DA models is to preserve the class boundaries
during classification, considered as the main criterion for hybrid parameter estimation. To
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determine the optimal parameter values, the classification was repeated with different
combinations of λ and β in the case of S-MRF and λ and γ in the case of DA-MRF. The
range of β was set to [1, 10] and that of γ to [0, 1], as values outside this range were found
to significantly reduce the overall classification accuracy.

Edge preservation in the fractional images was quantified in this study using the
mean-variance method (Chawla 2010; Singha et al. 2015). This method considers the
mean difference in membership values across boundaries, as well as the membership
variance on either side of boundaries, as a means to quantify the edge preservation in the
fractional images. Fractional images with the highest mean difference in membership
values across boundaries and minimum membership value variance on either side of the
boundaries provided the best results in terms of edge preservation. Ultimately the para-
meter combination which provided the highest edge preservation in the classification
results was considered as the hybrid classifier parameter estimates.

Once the FNC and hybrid classifier parameters were estimated, the optimal member-
ship values, and hence the fractional images, were found by minimizing Equation (11)
using simulated annealing (SA) optimization (Mather and Tso 2010; Geman and Geman
1984). When using SA, the initial temperature ðT0Þ was set to 3 and the temperature
update rate ðkÞ was set to 0.90 for efficient optimization. These values were considered
because the variance in the estimates was minimal on repeating the estimation (Tolpekin
and Stein 2009).

3.4. Accuracy assessment

To quantify the accuracy of fuzzy classifiers, the error matrix that is commonly applied for
hard classification cannot be used. In this study we used the FERM (Zhang and Foody
1998). This is similar to the error matrix, but it takes fractional images as its input. Hence
the cell values are between 0 and 1. This is based on the min operator (intersection
operator), which shows the maximum possible overlap between reference and classified
image and is calculated as shown in Equation (13) (Silván-Cárdenas and Wang 2008). In
Equation (13), Pnij is the maximum possible overlap between the reference and the
classified image, uij and vij represent membership values of the ith pixel in the fractional
image for class j in the assessed and reference image, respectively.

Pnij ¼ minðuij; vijÞ (13)

The efficiency of the novel hybrid classifier was obtained by evaluating its perfor-
mance on coarse-resolution (56 m) AWiFS and medium-resolution (23.5 m) LISS-III
images. Fractional images generated from high-resolution (5.6 m) LISS-IV image values
were used as the reference image. For accuracy assessment, the cell resolutions of
AWiFS, LISS-III, and LISS-IV images were resampled so that their resolutions were
in the ratio 1:4:12. Hence 16 pixels (4 � 4) of LISS-III and 144 pixels (12 � 12) of
AWiFS were combined (pixel values averaged) to achieve the pixel dimension of the
LISS-IV image. In this way, an effective comparison could be made between images of
different resolutions. Resampling of the images and aggregation of pixel values were
potential sources of error, but were ignored in this study since they were likely to be
very small. We applied nearest neighbour resampling, resulting in geometric disconti-
nuities in the order of plus or minus half the pixel size, which is considered acceptable
(Chawla 2010).
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4. Study area and data

The study area is the Sitarganj Tehsil, Udham Singh Nagar District, Uttarakhand State,
India, located at 280 520 2900 N to 280 540 2000 N and 790 340 2500 E to 790 360 3400 E.
Uttarakhand is a state in the northern part of India and Sitarganj Tehsil is located in
the southern part of the state. Sitarganj Tehsil is near Pand Nagar Agricultural
University, famous for its participation in the Green Revolution of India. The study
area was selected for its diversity in classes. The current research aims at testing the
capability of a novel classifier, and Sitarganj Tehsil has a large diversity of distin-
guishable classes. Six classes were identified from the study area and are labelled in
Figure 3. The study area mostly includes sugarcane and paddy agricultural farms. It
also has two large reservoirs, named Dhora and Bhagul, on the northwestern and
southeastern parts, respectively. Images from AWiFS and LISS-III sensors on board
Resourcesat-1 were used to study the efficiency of the novel hybrid classifier con-
sidered in this work. The AWiFS (56 m), LISS-III (23.5 m), and LISS-IV (5.8 m)
images were acquired on the same date (15 October 2007), and hence are comparable.
The validation of classification was done against the LISS-IV image of the same area.
In this study, the LISS-IV image was rectified using Survey of India (SOI) toposheet
no. 53P=9. Geo-registration of the AWiFS and LISS-III images was conducted using
the geometrically corrected LISS-IV image. Figure 3 shows the high-resolution LISS-
IV image of the study area. The AWiFS and LISS-III images provide the low- and
medium-resolution images of the same area.

Ground data validation was not preferred in this study, as it is difficult to identify a
pixel area on the ground. Also it is impractical to manually quantify the percentage cover

Figure 3. LISS-4 imagery (from Resourcesat-1) of Sitarganj Tehsil, Udham Singh Nagar District,
Uttarakhand, India, acquired on 15 October 2007. The image is an false color composite (FCC)
image with 0.77–0.86 µm spectral band mapped to the Red band, an FCC image with 0.62–0.68 µm
spectral band mapped to the Green band, and a 0.52–0.59 µm spectral band mapped to the Blue
band.
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of a particular class within an area on the ground, as the certainty with which the classes
can be identified is a subjective issue (Foody 2000).

5. Results

5.1. Fuzzy noise classifier parameter estimates

Parameters for both the FNC and the hybrid classifier were estimated separately for each
image considered in this study. On analysing the FNC results for different parameter values,
δ was found to have minimal or no impact on the value of total entropy or IMC beyond the
threshold δ ¼ 10; 000. For δ < 100, unrealistic classification emerged and so these values
were omitted. Figure 4 shows the effect of δ > 100 on m for the ‘Agricultural Field with
Crop’ class in the AWiFS image. As can be observed, estimated m values are least affected
by changes in δ beyond δ ¼ 10; 000. So m was estimated while maintaining δ ¼ 10; 000.
Estimation was done separately for each fractional image (or class) generated by FNC.

The FNC parameters were estimated using the normalized entropy graph and the IMC
graph, as shown in Figure 5. In particular, the entropy versus IMC graph of the AWiFS

Figure 4. Effect of δ on estimation of m for the ‘Agricultural Field with Crop’ class in the AWiFS
image, for different values of δ: (a) δ = 100, (b) δ = 1000, (c) δ = 10,000, and (d) δ = 50,000.
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Figure 5. Entropy/IMC versus fuzzification factor plots for different LULC classes considered in
the AWiFS image. (a) Agricultural field with crop, (b) Sal forest, (c) Eucalyptus plantation, (d) Dry
agricultural field without crop, (e) Moist agricultural field without crop, and (f) Water.
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image is shown in Figure 5. Mean m estimates, obtained for AWiFS and LISS-III images,
are shown in Table 1. Optimal m value estimation for the reference image (i.e. LISS-IV)
was also essential to obtain the best possible soft reference data. For the LISS-IV image,
the optimal m value was found to be 3.0. Visual inspection of the optimal fractional
images generated using the estimated parameter values showed them to be very accurate,
and this added to confidence in the estimates.

From Table 1, it will be seen that m shows a slightly increasing trend with increase in
the spatial resolution of the images, which in turn is caused by the increase in entropy of
an image with an increase in its resolution. This is just an observation which was made
and has no impact on the results of this study.

5.2. Hybrid classifier parameter estimates

Parameter estimates for the hybrid classifier were obtained against the fractional images
quantified as having maximum edge preservation. Quantification of edge preservation in
the fractional images was conducted using the mean-variance method as explained in Section
3.3. Estimates for the hybrid classifier obtained for the low-spatial resolution AWiFS and
medium-spatial resolution LISS-III images, for different MRF models, are shown in Table 2.

As was the case with FNC parameter estimation, the hybrid parameters were estimated
for the high-spatial resolution reference image (i.e. LISS-IV) to generate the optimal soft
reference data. The hybrid parameter estimates for the LISS-IV image are shown in
Table 3.

Among the different DA-MRF prior models used in this study, a combination of the
ðDAÞ4 model with the FNC (i.e. the ðFNCÞD4 classifier) showed the maximum edge
preservation capability. This was observed for all three images considered in this study.
Figures 6 and 7 show the fractional images generated by FNC for AWiFS and LISS-III
images, respectively, whereas fractional images generated by the ðFNCÞD4 classifier for the
AWiFS and LISS-III images are shown in Figures 8 and 9, respectively. In the case of the

Table 1. Fuzzification factor m estimates obtained against the
low-, medium-, and high-spatial resolution (reference) images for
the FNC.

Image Fuzzification factor (m)

AWiFS 2.7
LISS-III 2.9

Table 2. Hybrid classifier estimates obtained against the low- and medium-spatial resolution images.

AWiFS LISS-III

Hybrid Classifier MRF Model λ β=γ λ β=γ

ðFNCÞS S 0.6 5.0 0.9 5.0
ðFNCÞD1 ðDAÞ1 0.9 0.4 0.9 0.5
ðFNCÞD2 ðDAÞ2 0.7 0.8 0.8 0.4
ðFNCÞD3 ðDAÞ3 0.7 0.9 0.8 0.5
ðFNCÞD4 ðDAÞ4 0.8 0.8 0.9 0.7
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Table 3. Hybrid classifier estimates obtained against the high-spatial
resolution reference images.

LISS-IV

Hybrid Classifier MRF Model λ β=γ

ðFNCÞS S 0.6 6.0
ðFNCÞD1 DA1 0.9 0.4
ðFNCÞD2 DA2 0.7 0.5
ðFNCÞD3 DA3 0.7 0.7
ðFNCÞD4 DA4 0.8 0.5

(a) (b) (c) (d) (e) (f)

Figure 6. Fractional images obtained against AWiFS image for the FNC for (a) Agricultural fields
with crops, (b) Sal forest, (c) Eucalyptus plantations, (d) Dry agricultural fields without crops,
(e) Moist agricultural fields without crops, and (f) Water.

(a) (b) (c) (d) (e) (f)

Figure 7. Fractional images obtained against the LISS-III image for the FNC for (a) Agricultural
fields with crops, (b) Sal forest, (c) Eucalyptus plantation, (d) Dry agricultural fields without crops,
(e) Moist agricultural fields without crops, and (f) Water.

(a) (b) (c) (d) (e) (f)

Figure 8. Fractional images obtained against AWiFS image for the ðFNCÞD4 classifier, (a) for
Agricultural fields with crop, (b) Sal Forest, (c) Eucalyptus plantation, (d) Dry agricultural field
without crop, (e) Moist agricultural field without crop, and (f) Water.

International Journal of Remote Sensing 2779



ðFNCÞD4 classifier, the membership values of unrealistic isolated pixels were reduced thus
achieving a more realistic classification. The ðFNCÞD4 classifier achieves this by selective
smoothing of pixels as explained in Section 3. Also, a reduction in the accuracy is observed
for fractional images produced for the AWiFS image when compared with those of the
LISS-III image, caused by the lower resolution of AWiFS as compared with LISS-III.

5.3. Accuracy assessment results

Table 4 shows the FERM overall fuzzy accuracy of classification results for AWiFS
against LISS-IV reference images and LISS-III against LISS-IV reference images for
FNC, ðFNCÞS, ðFNCÞD1, ðFNCÞD2, ðFNCÞD3, and ðFNCÞD4 classifiers.

justification = centring
Among the different classifiers formed, ðFNCÞD4 gave the highest overall fuzzy

accuracy, of 87:3% for AWiFS and 89:4% for LISS-III images. The APF functions are
usually convex, and there exists a region of η within which the smoothing strength
therefore increases monotonically with increase in jηj. A perfectly convex APF function
will result in no smoothing at the boundaries, and the smoothing strength gradually
increases on moving away from the boundaries. This type of smoothing blends well
with the concept of gradual class variation at the boundaries in natural objects. The APF
of ðDAÞ4 is a smoother convex function than those of its counterparts (Li 2009) and
therefore performs better. It will be observed that the use of S, ðDAÞ2, and ðDAÞ3 MRF

Table 4. FERM overall fuzzy accuracy obtained on comparing the
low- and medium-spatial resolution fractional images with the high-
resolution reference fractional image, for the trained case.

Accuracy (%)

Classifier AWiFS versus LISS-IV LISS-III versus LISS-IV

FNC 83.2 87.3
ðFNCÞS 82.7 88.2
ðFNCÞD1 84.6 87.6
ðFNCÞD2 81.8 77.0
ðFNCÞD3 81.4 75.6
ðFNCÞD4 87.3 89.4

(a) (b) (c) (d) (e) (f)

Figure 9. Fractional images obtained against the LISS-III image for the ðFNCÞD4 classifier for (a)
Agricultural fields with crops, (b) Sal forest, (c) Eucalyptus plantation, (d) Dry agricultural fields
without crops, (e) Moist agricultural fields without crops, and (f) Water.
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models for spatial contextual modelling resulted in a slight reduction in the accuracy of
the FNC for all the images considered in this study. Also, while acquiring higher-spatial
resolution data by a sensor, intra-pixel neighbour-reflectance effect resulted due to a single
class, whereas in coarser spatial images this effect is due to an increased number of
classes. This neighbour effect is added as noise to a pixel, and hence the coarser pixels
have a stronger neighbour pixel effect than high-resolution pixels. For the same reason,
ðDAÞ4 produces greater improvement in accuracy for the AWiFS image than for the LISS-
III image.

5.4. Performance with untrained classes

The FNC considers any class other than those of interest as image noise. To quantify the
robustness of FNC to noise, a class was deliberately omitted while training the classifier
and the performance of the classifier was then evaluated (i.e., the classifier was deprived
of the signature information about one known class and classification was done). The
results obtained for one such experiment are shown in Table 5.

Here the class ‘Agricultural Fields with Crops’ was left untrained for both AWiFS
and LISS-III images. Table 5 compares the user’s accuracy of FNC, ðFNCÞS, and
ðFNCÞD4 classification results for AWiFS and LISS-III images for both the trained
and untrained case, using the ðFNCÞD4 classifier. The other hybrid classifiers were not
considered for this analysis, as they are of relatively low accuracy when compared with
the ðFNCÞD4 classifier. It can be seen from Table 5 that the user’s accuracy obtained in
the presence of an untrained class was low when compared with user’s accuracy if all
classes are trained. For the AWiFS data, the decrease in user’s accuracy in the untrained
case was 9.2%, 10.1%, and 9.9% for FNC, ðFNCÞS, and ðFNCÞD4, respectively. For the
LISS-III data, the decrease in user’s accuracy for the untrained case was 11.0%, 12.2%,
and 6.0% for FNC, ðFNCÞSand ðFNCÞD4 respectively. The decrease in user’s accuracy
for the untrained case is due to the increased number of untrained classes, which are
added to the pixel as noise. Even though the FNC clearly has the ability to restrict the
information flow from untrained classes in an image, the results from Table 5 show that
the performance of FNC classifiers decreases when there is an increase in noise. The
relatively small drop in user’s accuracy for AWiFS as compared with LISS-III can be
explained by the intra-pixel neighbourhood reflectance effect, as explained in
Section 5.3.

Table 5. Fuzzy user’s accuracy obtained for the trained and untrained cases, for low- and
medium-spatial resolution images.

Accuracy (%)

AWiFS versus LISS-IV LISS-III versus LISS-IV

Classifier Untrained Trained Untrained Trained

FNC 74.8 84.0 77.2 88.2
ðFNCÞS 75.6 85.7 76.3 88.5
ðFNCÞD4 55.0 64.9 69.4 75.4
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5.5. Comparison with results of previous studies

In various studies, information from the spectral, spatial, and temporal domains has been
used, in all possible permutations, to achieve better image classification. Among these, the
studies conducted for evaluating the impact of incorporating spatial contextual informa-
tion, modelled using MRF in combination with FCM (Singha et al. 2015), and with
possibilistic c-means classification (Chawla 2010), are closely related to ours. Also, they
have all used the same data sets that were used for this study.

The results of these studies were compared with those of the FNC-MRF classifier. In
the case of FCM, ðDAÞ3�MRF prior gave the best results and the overall fuzzy accuracy
for AWiFS and LISS-III images was 85:5% and 89:5%, respectively (Singha et al. 2015).
In the case of PCM, ðDAÞ2�MRF prior proved to be the best and its overall fuzzy
accuracy for AWiFS and LISS-III images was 82:0% and 87:3%, respectively (Chawla
2010). Upon comparing the overall fuzzy accuracy of ðFNCÞD4 with ðFCMÞD3, one can
see that there is an improvement in accuracy of 1:8% for the AWiFS image for ðFNCÞD4
and almost the same for LISS-III image. When comparing the overall fuzzy accuracy of
ðFNCÞD4 to ðPCMÞD2, one can see that there is an improvement in accuracy of 5:3% and
2:1% for ðFNCÞD4 against AWiFS and LISS-III images, respectively. This proves the
ability of the FNC to produce better classification results when supported by spatial
contextual information.

6. Discussion

The hybrid classifiers developed in this study combine the DN value of a pixel from the
spectral domain with the context of the pixel in the spatial domain. The spatial contextual
information for a pixel was modelled using four different discontinuity adaptive MRF
models, and the impact of adding information to the FNC was studied. Mathematically,
the FNC is expressed as an optimization function and hybrid classifiers were created by
adding the APFs of the MRF models as additional terms in the objective function. The
weight factor, λ allowed control of the contribution from the spatial and spectral terms of
the hybrid classifier. For λ ¼ 0, the spatial context of a pixel does not affect the classifica-
tion, whereas for λ ¼ 1, classification will be performed based on the spatial context of a
pixel. The optimal value of λ was found to be dependent on the resolution of the image
and was estimated using the methods in Section 3.3.

The MRF helps in achieving better classification by smoothing the unrealistic pixel
locations in an image, thus addressing the isolated pixel problem. The DA-MRF model
ensures that smoothing happens only within a class and not at the class boundaries. As a
result, the final fractional images produced by the hybrid classifier appear more like a
smoothed version of the original FNC outputs, resulting in a small decrease in the
classification accuracy. However, the increase in accuracy obtained by reducing the
isolated pixel problem and the mixed pixel problem outweighs this decrease due to
increased smoothness. Each MRF has a unique AIF, and as a result their effectiveness
in spatial contextual modelling is different even for the same image. Since no method
exists to predict the potential of using an MRF model for an image, spatial modelling was
done using all five MRF models to compare their performance and thus identify the best
model. The parameters associated with these models, such as β and γ, were also found to
be data dependent and to have an impact on the classification accuracy. The hybrid
classifier parameter estimates were the values that produced the highest edge preservation
in the classification result.
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FNC clearly has the ability to restrict the information flow from untrained (non-
interested) classes in an image. For each hybrid classifier considered in this study, the
presence of untrained classes in the input image caused a decrease in the classification
accuracy. This is because the untrained classes are added to the pixel as noise.
Nevertheless, there is an 14:1% improvement in the classification accuracy of ðFNCÞD4
as compared with classification by the ðFCMÞD3 classifier for the LISS-III image (Singha
et al. 2015). This clearly shows the robustness of the ðFNCÞD4 classifier to the presence of
untrained classes in the image as compared with the PCM- or FCM-based hybrid
classifier. Hence the ðFNCÞD4 classifier should be selected in case there are untrained
classes or unrealistic isolated pixels in the input image.

The current study was conducted on low-resolution (AWiFS) and medium-resolution
(LISS-III) images only. Within the scope of the images used in this study, it was found
that the ðFNCÞD4 classifier, which uses the ðDAÞ4 MRF model, is the best. This is because
the APF of ðDAÞ4 is a smoother convex function with no smoothing at the boundaries and
the smoothing strength gradually decreases on moving away from the boundaries. This
type of smoothing blends well with the concept of gradual class variation at the bound-
aries in nature. The fuzzy nature of the FNC enabled the hybrid classifier to address the
mixed pixel problem, whereas the use of spatial contextual information helped in addres-
sing the isolated pixel problem, thus making the ðFNCÞD4 more efficient than the FNC.
Nevertheless, to confirm the general usability of this classifier in remote-sensing studies,
its classification accuracy must also be evaluated for images of other resolution with
different set of classes, this is left to future studies.

7. Conclusion

The article studied the effect of adding spatial contextual information to a spectral
classifier. A supervised version of noise clustering was used in this study, as the spectral
classifier. Modelling of the spatial contextual information at the pixel level was achieved
using the MRF technique. Both coarse- (AWiFS) and medium-resolution (LISS-III)
images from Resourcesat-1 were used for evaluating the performance of the novel hybrid
ðFNCÞDA classifier. Among the different discontinuity adaptive MRF models used, the
ðFNCÞD4 classifier was found to provide the highest classification accuracy for both
images. The overall FERM accuracy for the ðFNCÞD4 classifier was found to be 87.3%
and 89.4%, respectively, for the AWiFS and LISS-III images. Classification was also
conducted by keeping a class untrained, to study the effects on ðFNCÞDA accuracy of
undesirable classes present in an image. In that case, a decrease in user’s accuracy of 9.9%
and 6.0% was observed for AWiFS and LISS-III, respectively, as compared with the fully
trained case. The study concludes that the use of spatial contextual information improved
the classification accuracy of the fuzzy noise classifier (FNC) when compared with the
accuracy obtained on using FCM or PCM.
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