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a b s t r a c t

In this article, we critically examine the role of semantic technology in data driven analysis. We explain
why learning from data is more than just analyzing data, including also a number of essential synthetic
parts that suggest a revision of George Box’s model of data analysis in statistics. We review arguments
from statistical learning under uncertainty, workflow reproducibility, as well as from philosophy of sci-
ence, and propose an alternative, synthetic learning model that takes into account semantic conflicts,
observation, biased model and data selection, as well as interpretation into background knowledge. The
model highlights and clarifies the different roles that semantic technology may have in fostering repro-
duction and reuse of data analysis across communities of practice under the conditions of informational
uncertainty. We also investigate the role of semantic technology in current analysis and workflow tools,
compare it with the requirements of our model, and conclude with a roadmap of 8 challenging research
problems which currently seem largely unaddressed.

© 2017 Elsevier B.V. All rights reserved.
1. What’s missing frommodern data-driven analysis?

Modern data science is predicated on the assumption that data
is synonymous with facts, and thus the more data that can be
gathered for analysis, the better. Today’s increased availability of
data has thus not only paved theway for data-driven analysis, it has
even led some researchers to proclaim a radical end of theory [1],
as well as the rise of a new, fourth paradigm of science as such [2].
According to this latter idea, science in the future will exclusively
rely on efficient strategies to gather and analyze data, and less and
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less on theory building itself, a task which is largely taken over by
powerful machine learning algorithms. Pushing this to its ultimate
consequence, it is an argument for taking theory out of the hands
of humans (because they are not only incapable of handling huge
amounts of data, they are also error prone) and for reducing science
to a mere computational problem.

However, if we take a closer look at the current practice of data
science, we see that analysts struggle with issues very different
than simply improving their computational efficiency [3,4]. Today,
we have more data and computational power than ever before,
and we have more software tools implementing a vast array of
statistical methods than ever before. And yet, in more and more
cases, this results in spurious discoveries, statistically insignificant
findings, and ridiculous correlations [5,6].

http://dx.doi.org/10.1016/j.future.2017.02.046
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.02.046&domain=pdf
mailto:simonscheider@web.de
http://dx.doi.org/10.1016/j.future.2017.02.046


12 S. Scheider et al. / Future Generation Computer Systems 72 (2017) 11–22
A parallel problem is themissing reproducibility of scientific re-
sults [7–9]. We often do reuse models, methods, algorithms and
code from other researchers. However, this can be dangerous and
problematic even under optimal conditions [9]. The problem is
that effective reuse goes considerably beyond just sharing code
or data [10]. Very often, scientists need to know more about for-
eign data than can be discovered from its surface, causingwhat one
might call science friction [11]. This becomes even more important
if we want to exploit the advantages of citizen science, i.e. local
and traditional knowledge from the citizens, and increased partic-
ipation for the citizens [12,13].

These issues, along with the increasing publicity of big data
and data science more broadly, has led in recent years to social
critiques of the big data phenomenon [14]. There is little doubt
that much of the massive amount of data that we have now has
the potential to open up new discoveries in the sciences and to aid
decision making in certain domains. The question is: how can we
leverage that opportunity in away that builds off of the knowledge
we have learned about the process of science, an endeavor which
still requires humans in the loop performing interpretation in
context [15]?

The technology to support data analysts is in principle available,
and can be based on SemanticWeb standards, ontologies, sharable
linked data repositories and other e-Science technology [15,16].
There is also an increasing awareness that the Semantic Web may
serve as a way to invest knowledge into the discovery process it-
self [17]. The knowledge to ‘‘do it better’’ is also there, but it is scat-
tered inmany papers and textbooks about data analysis, thus diffi-
cult to obtain and internalize, and even more difficult to apply to a
specific problem [18]. We argue that good data analysts need to be
critical synthesists. Under the conditions of uncertain information
gathered from diverse sources, there is no meaningful knowledge
discovery without information about semantic domains of origin
and the context in which data is generated. This synthetic context
consists of observation, data and model selection, data derivation
and interpretation, and it serves to clarify the roles that semantic
technology could take in the learning process. Consequently, there
remains a series of unsolved research challenges to develop tools
that help analysts in becoming critical synthesists.

In this review article, we present a number of arguments shed-
ding light on the reasons why synthesis should be considered an
integral part of data analysis (Section 2), requiring a revision of
Box’s model of data analysis and learning. We then critically ex-
amine current research in analysis support technology in this re-
spect. In Section 3, we investigate the principle role that synthetic
and semantic tools could play in the process of data analysis, be-
fore assessing in Section 4 how they are currently used in practice.
For this purpose, we review recent research on semantics in statis-
tics and data mining and assess in how far existing workflow tools
actually cover semantic methods, using a geospatial analysis sce-
nario. Based on these theoretical and practical insights we suggest
a research roadmap in Section 5 that is capable of filling in some of
the detected gaps. We formulate eight open problems that should
be addressed by future research.

2. The synthetic parts of learning

In 1976, George Box [19] published a pragmatic critique of con-
temporary statistics, which he argued had by his time become a
playing field for specialized mathematicians with little relevance
for scientific practice. Methods that were once invented with a
particular context and practical meaning in mind, such as Fisher’s
ideas of distribution-free tests or combinatorics in experiment de-
sign, came to live a life on their own, totally disconnected from
practice. Box warned us about the consequences of both, mathe-
maticians who do not understand the practical context naively ap-
plying mathematical models, as well as practitioners who naively
Fig. 1. Box’s model of ‘‘data analysis in scientific investigations’’ includes an
experimental design ‘‘window’’, but misses other synthetic parts of learning.

apply mathematical theories to their domain to produce question-
able results. He concluded that mathematical knowledge about
statistics, which preventsmere cookbookery, needs to be backed up
by knowledge of scientific practice, avoiding mathematistry. This
results in a closed loop that links induction with deduction, as well
as experimental design with a hypothesis (see Fig. 1).

Box’smodel has become sort of a standard in statisticalmethod-
ology. It has recently been used to underpin modern Bayesian and
so called ‘‘latent variable’’ approaches [20]. However, in trying to
give it a ‘‘modern’’ interpretation, Blei [20] seems to reduce Box’s
model to amere inductive revision loop of statistical models based
on data, excluding any considerations of experimental design or
background knowledge.1 In fact, we think that Box’s critique con-
cerning the acknowledgment of practice and the underestimation
of experimental design perfectly applies also to today’s data driven
practice, for which Blei’s framework is a good example. The ‘‘mod-
ern’’ approach seems to reduce every single step of scientific prac-
tice into a question about modeling that needs to be answered
based on data.2 We hardly believe that this is what Box intended,
let alone what scientific practice consists of. One could say, there-
fore, that data driven science today has fallen behind Box in ne-
glecting an essential part of science.

However, we think that we need to go into the exactly oppo-
site direction: Box’s model is not only in danger of being over-
simplified, it is also incomplete itself. Box largely excludedwhatwe
call the synthetic parts of learning [22], which consist of available
knowledge, interpretation, observation, data selection and deriva-
tion, terms that we will explain below in more detail. When Box
speaks about a theory, then he onlymeans an isolated ‘‘hypothesis’’
that needs to be accepted or refuted, just like in test statistics. This
neglects the dependency of acceptable statements on other kinds
of knowledge and leaves open how a hypothesis alone (without
any other kinds of knowledge) could ever serve to design a statis-
tical experiment to test it. Furthermore, when Box speaks about an
‘‘error signal’’ that causes a model revision, he only means a con-
tradiction between predicted and observed facts which leads to an
inductive correction step of themodel. This, however, neglects that
in scientific practice, counter-induction and non-analytic methods
are often used which ignore the rule of facts, as explained in the
following.

1 This is verymuch in the tradition of Bayesianmodel averaging, where decisions
for models are not based on knowledge but on how well they explain data or how
much faith we put into them regardless on which grounds [21].
2 Note that, paradigmatically, the word ‘‘deduction’’ completely disappeared

from Blei’s model, and that what he calls ‘‘critique’’ is merely model testing based
on new data.
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2.1. Against the rule of facts: arguments from philosophy of science

Very often, new problems can be recast in older terms to show
the futility of alleged solutions. Philosophers of science have been
trying for centuries to unravel the method of science, and in do-
ing so, created forceful ideologies, such as Popper’s idea that sci-
entific progress is a linear process of approaching truth (the corre-
spondence theory of truth), the idea that science can be clearly sep-
arated from pseudo-science (the demarcation problem), and that
the latter is a matter of exposing theories to the scrutiny of em-
pirical facts [23]. In the history of science of the 20th century, this
led to the widespread opinion that facts (in the form of data) are
what makes science scientific, and that therefore every method
that induces theories from as many facts as possible will advance
science.

This view, however, has been confronted with substantial cri-
tique from other scholars, such as W.V.O. Quine [24], W.W. Bart-
ley [25] and P. Feyerabend [26]. For instance, Feyerabend [27] gath-
ered a large list of evidences from the history of physics to show
that scientific progress in fact often relies on:

• Counter-induction, i.e., on choosing theories that seem unnatu-
ral or even contradict given facts. Reasons for counter-induction
are threefold: the primacy of alternatives, the dependency of
facts on theories, and the possibility of re-interpretation of facts.
We shortly explain the latter two.

• The dependency of facts on theories. Which facts are available is
influenced by the theory one adopts. This is not only because
under a given theory, some facts may appear trivial or remain
unnoticed, but also because alternative theories make certain
facts observable in the first place, as they inform us on how to
observe matters of interest. An example are Galilei’s observa-
tions of the moon through a telescope, which were influenced
by novel theories of vision, unraveling some observed proper-
ties of themoon as beingmere artifacts of the telescopic process
of perception (cf. [27], Chapter 10).

• The re-interpretation of facts. The reason why facts contradict
theories is not necessarily because theories are wrong, but be-
cause facts may need to be reinterpreted in order to resolve the
contradiction. Thus, in the light of a contradiction, one always
has a choice as to whether one changes a theory or whether
one rather changes the interpretation of facts that contradict it
(cf. [24]). An example is Galilei’s re-interpretation of facts about
the motion of a falling stone in his refutation of the Aristotelian
tower argument against the motion of the Earth (cf. [27], Chap-
ter 6).

Our point is that these insights can serve to protect us against
uncritical views on futile promises and alleged benefits of a data
driven science. We illustrate this with a couple of examples in the
following.

For example, the dependency of facts on theories has practi-
cal consequences for those people who want to base data-driven
science (solely) on knowledge discovery. Suppose you obtain data
about passenger statistics in public transportation in different
cities [28]. Suppose the best predictor of traffic (with the least
squares error under cross-validation) over all cities is a non-
linearly increasingmonotonic function of tour frequency, since the
passenger distribution spreads a lot between larger and smaller
cities. Note this pattern will not change regardless of how many
cities one adds to the data. In later tests it turns out, however,
that predictions of thismodel catastrophically overestimate higher
frequencies in smaller and middle-sized cities. With a bit of (eco-
nomic) background theory, one could have guessed that passenger
numbers can never increase with tour frequency in an unlimited
way, since there must be a saturation of mobility needs for any
given city. The joint distribution of passenger frequency over all
cities is, however, a mixture of the distributions of very different
cities. Thus, it would have been advisable to prefer a conservatively
increasing model, and, in effect, to ‘‘distrust’’ or ‘‘disregard’’ some
facts about tour frequency dependencies in incompatible cities in
the joint data set based on a background theory.

Furthermore, re-interpretation of facts has similarly devastat-
ing influence on the effectiveness of a data driven science. To illus-
trate,weuse an example first suggested byGoodman [29]: suppose
there is a color term called ‘‘grue’’. Grue applies to all observations
of blue things before a given point in time t . After time t , it applies
to all things that are green. Up to time t , based on gathering observ-
able facts about utterances of ‘‘grue’’ in the presence of blue things,
and based on the conservative strategy of choosing only the most
simple theory that explains the given facts, one would end upwith
the wrong conclusion about the extension of ‘‘grue’’ (‘‘grue’’ means
blue), no matter how many facts were gathered before time t . We
suggest that Goodman’s example perfectly illustrates how a data-
driven science will suffer from semantic re-interpretation. Grue is
a color term that is re-interpreted from green to blue. In the light of
contradictions of our learned color theory (predicting ‘‘this is grue’’
for blue things)with observations after time t (‘‘this is not grue’’ for
blue things), we should better learn how to re-interpret ‘‘grue’’ as
green, rather than adapting our color theory to contradicting facts.3
If this example seems artificial, consider that this is exactly the sit-
uation faced by biodiversity scientists who use syntactically equiv-
alent taxonomical terms that have quite different semantics as the
taxonomic classification is updated and changed over time [30].
The same situation occurs in the Earth and environmental sciences,
where over time different methods of land use categorization re-
sult in very different semantics for regions mapped to syntacti-
cally equivalent land-use labels [31]. In summary, what is needed
are methods that allow researchers to effectively disregard or pre-
select facts.

2.2. Why bias is needed: arguments from (statistical) learning under
uncertainty

In order to learn a curve from observations, it is always possible
to choose among a set of linear and non-linear regression models.
However, this choice is often not clearly decidable from empirical
evidence: it needs a theoretic bias [32,33], an a-priori decision that
is based on a theory or on general experience of a domain, and not
on data.

Why is this so? The reason lies in uncertainty, but not in stochas-
tic uncertainty, rather in the lack of knowledge about what informa-
tion is relevant, which leaves us no way of determining optimal be-
havior [35]. This contradicts some fundamental assumption of sta-
tistical learning, namely that optimal predictors minimize bias er-
ror4 bymaximizing effort, i.e., by beingmaximally flexible in adapt-
ing to the imagined ‘‘true’’ function that needs to bepredictedusing
more data, more computation, and more time.

The program of minimizing error byminimizing bias andmaxi-
mizing computational effort, however, has very limited chances of
success under the conditions of informational uncertainty. An op-
timal estimator is only optimal under the assumption of ‘‘optimal’’
knowledge. For statistical learning [36], this essentially means
samples are representative (have low noise), (2) large (relative to
the number of variables), and (3) phenomena are predictable. If any

3 The reason is that the latter can only result in an impoverished color theory,
where color terms like ‘‘grue’’ can mean blue or green, and thus the distinctive
power of color terms is lost altogether.
4 The bias error is the difference between the ‘‘true’’ function to be predicted and

the function induced from samples by an algorithm, averaged over these samples.
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Fig. 2. The bias–variance trade off illustrated by daily temperatures of the year 2000 in London. Polynomials of different degree can be fitted into the scatter plot (a), but
even though the error of fitting decreases, the prediction error increases with the degree (b). Furthermore, even a balancedmodel fails to learn that temperature is a periodic
phenomenon.
Source: Example taken from [34], by kind permission of Gerd Gigerenzer and Henry Brighton.
of these criteria are not met, then the most sophisticated estima-
tors can perform worse than simple heuristics (compare the evi-
dences given in [34]). Heuristics, in contrast, typically have a large
bias error but aminimal variance error5 withminimal effort. That is,
under informational uncertainty conditions, heuristics donot trade
accuracy for efficiency, but rather bias for variance error, and thus
can be both more efficient as well asmore accurate [34].

In contrast to heuristics, textbook measures against variance
error, such as cross validation and balancing of model complex-
ity, [36] (1) do not take into account background knowledge and
(2) can easily fall victim to biased samples, as illustrated by the fol-
lowing. Consider the case of choosing among a set of polynomials of
increasing degree to predict London’smean daily temperature over
the year 2000 (see Fig. 2(a)). One can fit a curvewith increasing per-
fection to this data, as depicted in the lower curve in Fig. 2(b), but
this usually increases the error with the polynomial degree (up-
per curve in Fig. 2(b)). This is normally called ‘‘overfitting’’, and
it means that the flexibility of a predictor is too high and models
noise instead of the temperature function in question. If the sam-
ple size is large and representative, then we can penalize overfit-
ting based on random re-sampling (cross validation) or by balanc-
ing model complexity with the minimum description length prin-
ciple.6 In this way, we might be safely guided in choosing, e.g., the
degree-3 polynomial in Fig. 2(b), a moderately complex and bal-
ancedmodel. However, in this specific case, even a balancedmodel
is actually not adequate, because it lacks a certain kind of bias:
temperature variation is strongly periodic, and therefore the ends
of the temperature curve should meet at the beginning and end
of a one-year period. Even the degree-3 polynomial fit in Fig. 2(a)
does not take into account this basic kind of background knowl-
edge. It suggests that Dec. 31 is a singular temperature minimum.
A semantically adequate model would consist of a periodic func-
tion representing the average temperature variation plus a poly-
nomial for the particular deviations over the year 2000. Regarding
the second claim, if the data sample is biased itself, then the only

5 The variance error is the difference between the mean function and the
function induced from each sample. It exactly captures that part of the error which
comes from overfitting, i.e., from uncertainty about what is noise and what is
representative for the process to be modeled.
6 https://arxiv.org/abs/math/0406077.
chance we have is to rely on a heuristic. Only background knowl-
edge can then usefully guide our choice of a plausible model. To
illustrate, consider the case of a large sample of road traffic mea-
sured at the locations of billboard posters to assess their value for
advertising [37], which is naturally biased towards streets with
high traffic frequency. Estimating traffic on side streets with this
sample will inevitably lead to overestimation [38], regardless of
anymeasures taken against overfitting. Preventing overestimation
of road traffic in small streets requires a-priori knowledge of traf-
fic conditions, which may, for example, enter a KNN predictor of
road traffic in the form of synthetic (‘‘low traffic’’) data exemplars
for side streets [37]. Further examples were found by Gigerenzer,
who has shown in many studies how ‘‘less can be more’’, i.e., how
heuristicmodels can outperform optimal estimationmodels under
informational uncertainty [34].

The robustness of biased methods, however, comes at a
price: whereas machine learning methods adapt to any possible
domain, biased models depend on a domain or a certain type of
information [34]. We argue therefore that the only way to fight the
detrimental effects of informational uncertainty in data analysis
lies in knowing your domain, not in building more powerful
general-purpose learning models or using more data. And the
only way to support this technically over distant communities of
practice is to use semantic metadata. In principle, there are two
ways how metadata can be used in countering uncertainty:

1. Either, one can use biased re-sampling, i.e., one can ignore or
weight data items based on knowing what items are relevant
and which are noise depending on what is modeled. A standard
example for this is outlier removal, but also sample stratifica-
tion and data prototyping [37].

2. Or, one can use biased models, i.e., heuristics for prediction.
This also depends on knowing your domain, because whether
a heuristic or biased model works well depends on an informa-
tion environment [34] that needs to be described with meta-
data.

2.3. The curse of modularity: arguments from re-usability of analysis

How couldwe support analysts in biasedmodel/data selection?
A crucial role in this respect is played by the way we help re-
searchers reuse workflows. Current approaches to re-usability of
analytic methods often rely on the idea of re-computation [39];

http://arxiv.org/abs/math/0406077
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we hope to be able to reproduce and reuse analyses by sharing
software code and data. Reusing analysis methods across applica-
tion domains, however, goes considerably beyond replicating re-
sults [10]. For this purpose, the mere sharing of executable code
and source data is not sufficient. It needs to be amended in some
manner to share workflows that can be adapted with respect to
data sources and models.

Why is this so? Notice that all arguments discussed above,
starting from counter-induction, through the dependency of facts
on theories, to the necessity of biased re-sampling and biased
model selection, basically require a way to react to a data analysis
problemby adapting parts of the processes involved in a purposeful
way, either by adapting observation techniques, data, tools or
models, or even by adapting data or model interpretation. This
adaption needs to be based on a-priori knowledge, and so is difficult
to manage simply based on sharing data or software scripts.
Also, particular data and software may be unavailable for various
reasons (e.g. license restrictions or simply research culture).

What is needed is rather a modular way of sharing workflows,
namely by distinguishing tools from methods and data from their
semantic types. This requires abstracting from particular tools and
data sets and describing data analysis on a conceptual level [40],
which would allow partial adaption of workflows across comput-
ing environments. It would also allow analysts to focus on the
questions they want to answer and the methods to answer them,
instead of the software and data formats needed for computa-
tion [41,42]. A particular challenge is to decide when such adap-
tions can be considered meaningful [18]. Building truly modular
analysis workflows first requires a more comprehensive picture of
the synthetic operations involved in data analysis and learning.

3. An alternative, ‘‘synthetic’’ model of learning

In this section, we argue that the crucial role of observation,
selection, derivation, interpretation and background knowledge
leads to a different, ‘‘synthetic’’ model of learning (depicted in
Fig. 3), in which the import of semantic operations and semantic
metadata stands out clearly from the background of classical
analysis procedures.

3.1. Model revision: semantic conflicts vs. data conflicts

If we analyze data or models, then we compare them against
each other as well as against our theories. In Fig. 3, a conflict
(detected by an error term or a logical contradiction) can occur
on the level of data (where derived data may contradict observed
data), as well as on the level of statements that data is interpreted
into (e.g., when a statement extracted from data contradicts a
known theory). In Box’s model (Fig. 1), a comparison is only
possible on the data level, and only to a single purpose, namely
in order to detect data conflicts that may lead to a revised
selection of a model. However, in reality, in such a case, we may
also decide to keep our model, and instead either re-observe,
re-sample or generate new data, all of which might resolve
the conflict. Furthermore, we might also re-interpret data into
different conceptual statements, which might resolve the conflict
on another, semantic level (Fig. 3). Even if data andmodelmight not
be in conflict, then the interpreted statements it produces might
still be in conflict with our theories, and thus cause us to revise a
model just because we put more trust in theories.

Semantic conflicts are conflicts between interpreted statements
and conceptual theories, and they exist independently from
data conflicts. We argue that both kinds of conflicts can trigger
adjustments on all levels of the following analytic and synthetic
operations (Fig. 3). These operations are also summarized in
Table 1.
Fig. 3. A model of the operations involved in data analysis and learning. Orange
ellipses denote operations and normal arrows their in- and outputs. Boxes denote
participating data and tools and big circles denote semantic concepts. Dashed
arrows denote influences between chosen operations. Onemight ‘‘enter’’ thismodel
at any point in the process, and conflicts may be resolved by modifying any kind of
operation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

3.2. Observation

Observation processes not only generate data, they also influ-
ence our interpretation of data [43]. For example, knowing that
a temperature sensor was calibrated in a certain way and mea-
sured one meter above the ground surface allows us to give this
temperature quality a spatio-temporal support as well as associat-
ing it with a phenomenon in a domain theory [18], such as ground
surface temperature. Making this distinction is crucial for analysis.
If we confuse ground surface temperature with the temperature
of the ground, we mix up two different domains of interpretation
of temperature measurements, and thus two different stochastic
processes with different probability distributions and means. Fur-
thermore, the way we interpret data can influence the way we ob-
serve. For example, we may plan a certain sensor measurement to
gather new data based on interpreting existing data as ground sur-
face temperature. Observation also influences thewaywe interpret
a model. For example, we can interpret a KNN model as a model
of the traffic process only if it was trained on traffic data. Seman-
tic technology could therefore help analysts in sharing information
about observational origins of data, which helps them interpreting
data as well as models.

The need for semantic information on observations was formu-
lated a decade ago for ecological data, through development and
use of a formal ontology [44]. This was followed by a proposal for
a Semantic Sensor Web [45] and its application using the OGC’s
Sensor Web Enablement’s Sensor Observation Service (SOS) [46].
However, it remains to be demonstrated that such an approach
can cope with the increasing volume of sensor data being gener-
ated. The emergence of several ontologies related to data collection
(e.g. [47]) has led to recent research activity on semanticmediation
of observation ontologies for the SOS [48] and Observation &Mea-
surement standards [49].
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Table 1
A summary of analysis operations for which semantic technology is crucial.

Operation type Subtype Example Semantic information

Observation Sensor measurement A smartphone sensor Sensor calibration, sensed phenomenon and
measurement error

Human observation User-generated web content Expertise and trustworthiness of observer

Tool selection/data derivation

Data fusion Table join Entity (web) identifiers and space–time support
Data summarization Box plot, estimating any statistic parameter Scale levels and meaningful statistics
Data transformation Spatial reprojection Standardized (coordinate) reference frames with

web identifiers
Data construction Building a ratio from two numbers Scale levels and meaningful data derivation

Data selection
Retrieval A statistical data portal Question based analysis support: what

constitutes relevant data for an analytic
question?

Biased resampling Stratified resampling What are relevant strata/important data points?
Cleaning Outlier detection

Data interpretation Data annotation Provenance and workflow models Semantic workflow support

Model/hypothesis selection Biased model selection Linear regression Best practice model repository for problem
domains

Formulation of hypothesis 0-hypothesis selection Question based analysis support

Model/hypothesis interpretation Model documentation annotation of a regression model Model repository for problem domains
Hypothesis documentation Linking hypotheses to research question Model/question repository for problem domains
3.3. Selection of data

As important as observation ‘‘from scratch’’ is the ability to
select from existing data. Under this heading, we subsume data
retrieval (the selection and access of data from external sources),
but also resampling (the selection of data subsets), as well as data
cleaning and preparation. Retrieval is clearly knowledge-based, but
also resampling and data cleaning sometimes need to be done
in a biased and thus domain specific way (compare Section 2.2).
Semantic tools have been proposed to support analysts not only
in retrieval of data [50,51], which is an on-going major research
effort, but also in biased sampling and data cleaning [52–54], i.e., in
deciding which sub-sample is representative and which is adding
only noise.

3.4. Selection of data derivation tools, models and hypotheses

We often need data in a different form in order to answer ques-
tions not answerable based on the available data sets. One way to
obtain such data is data derivation, i.e., fusing, summarizing, trans-
forming, or constructing data. For example, suppose we want to
compare the age structure across statistical regions in space, but
the only kind of data available is absolute population counts for
different groups of people. Then, we can construct a new data set
of age class ratios by combining absolute numbers for each region.
This new variable has a different meaning, and thus gives rise to
different kinds of models. It also requires that underlying counts
have comparable spatial and temporal references in order to pre-
vent semantic conflicts and meaningless ratios. Semantic tech-
nology could support analysts in deciding whether such deriva-
tion tools are meaningfully applicable to a data set [55]. Also they
could help them in formulating an appropriate hypothesis that cor-
responds to a research question [42,56]. As another example, in the
geosciences, georeferencing information (assigning coordinates to
information including a textual reference to a place) is an impor-
tant and ubiquitous step. However, the process itself is often not
disclosed completely, which can have important ramifications for
future analysis. For example, in a previous study [57], Tweets were
geocoded based on lexical matching with LAU2 placenames, and
the centroid of a matching municipality was assigned as a coordi-
nate. This was sufficient for a study of the spread of bushfires with
social media data, but others using the data set for more precise
kinds of analysis may require a different geocoding method.

While selection ofmodels in data science ismainly data-driven, it
used to be (and inmany applied science disciplines still is) amatter
of a domain theory. Data driven models can be more accurate and
successful than domain driven models, but this is not necessarily
the case under uncertainty (Section 2.2). The selection of a model
can also be driven by its (or its underlying data’s) interpretation
into a theory, and may even be done by neglecting data. Semantic
technology could support scientists in choosing models based on a
library of successfully tested models for a given semantic domain,
allowing computational scientists to share and document models
and their results in a way that goes beyond sharing software and
code [41]. Some of the workflow tools we present in the following
section allow this.

3.5. Interpretation into background knowledge

As shown in Fig. 3, hypotheses need to be interpreted into the-
ory statements and linked to research questions, models need in-
terpretation into (stochastic) processes, and data need interpreta-
tion into theory statements. Note that on a conceptual level, state-
ments can also be produced in a theory, not only through a data
driven environment, and interpretations can be adjusted in case
of a conflict. In fact, all operations discussed so far influence and
are influenced by interpretation processes. Background knowledge
has played a large role in ontology engineering, however, its in-
tegration into analysis tools is largely missing. For example, the
background assumptions usually taken in statistics (about forms
of distributions and covariance) are usually not made explicit in
terms of meta-data [18]. One proposed solution is to aggregate
data and metadata that enriches the specifications of workflows
into research objects [58]. Another suggested approach is to gen-
erateworkflowdescription summaries and aggregateworkflow el-
ements using reduction to primitives [59].

4. The current role of semantic technology in analysis

Once it is clear in what ways semantics can help in the analysis
process, we can identify corresponding support technology. In this
section, we investigate the state of the art in data analysis support
technology and the role that the Semantic Web currently plays
in it. We first review related research efforts in semantic based
statistics and data mining, before we take a closer look at existing
analysis workflowmanagement systems. Our specific view on this
work is driven by the question in how far it supports the synthetic
operations identified in Table 1.
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4.1. Semantic support for statistics and data mining

Biased theory building and deductive elements of learning used
to be a topic in early machine learning books, namely in the form
of analytical learning (learning from scarce data with a biased
domain theory) and explanation-based generalization [60,61],
and in artificial intelligence based endeavors to model scientific
and commonsense reasoning [62]. However, since the triumphal
success of data mining in the nineties and 2000s, such kind of
research was largely given up.7 The current state of the art in
statistical learning theory [36] seems to have excluded semantic
issues from its agenda. Nowadays the dominant way howmachine
learning and Semantic Web technology contribute to each other is
by helping the latter scale across unstructured texts or noisy linked
data [64], e.g., in terms of Semantic Web Mining [65].

There is, however, a growing number of researchers who inves-
tigate potential linkages between statistics/knowledge discovery
and semantics.8 For example, there is recent research on bring-
ing statistical meta-data, such as data cubes [66], on the level of
the Web for increased accessibility. Also, the value of ontologies
for data mining has been investigated by [67]. In a revised knowl-
edge discovery (KDD) process on graph data, Ristoski and Paulheim
recently suggested that data resources as well as mining results
all should be linked to the Linked Open Data (LOD) Web [17]. In
fact, a lot of research has demonstrated how ontologies and linked
data can support the whole KDD process, including enrichment of
tabular data on the Web [68], data cleaning (outliers and redun-
dancy reduction) [52,53], feature vector generation (propositional-
ization of linked data) and feature selection (based on relations be-
tween features) [54], valid data mining process design (as in Rapid
Miner [69]), as well as generalization of learned hypotheses [70]
(compare the complete survey in [17]). However, the authors con-
clude that reasoning on expressive schemas and ontologies about
the analysis workflow itself (e.g., to infer result types or to advise
meaningful analysis steps for givendata) is rarely done in datamin-
ing [17].

In the information ontology community, there is research on
measurement scale ontologies [71] and observation concepts [72,
73] that can be used for choosing relevant services and data, but
it does not focus on data analysis. There are many approaches to
integrating ontologies into workflow management systems [58],
but these are mainly used for purposes of documentation and
replication, not for analysis support or reproducibility across data
or tool environments [10]. The work in [74] is a notable exception,
in that the authors propose a reasoning and query service for
interpreted observations gained from biomedical experiments. A
semantic approach tomeaningful spatial data analysis is presented
in [18].

In summary, while many semantic methods for sharing data
and workflows and for supporting the KDD process in various
ways have been proposed, current research hardly addresses the
problem how Semantic Web tools could support researchers in
designing the process of data analysis in a modular way, including
synthetic operations such as observation, biased data/model
selection or modular and meaningful workflow design. It seems
that data analysis is still largely considered a process that is
independent from semantics and thus supported mainly with
analysismethods, notwith syntheticmethods. In the following, we
will take a closer look at existing workflow management systems.

7 Observe, e.g., how the idea of incorporating prior knowledge still ranges among
future work in Mitchell’s later publications [63].
8 Compare the workshop series on Semantic Statistics (SemStats 2015)

https://semstats.wordpress.com/.
4.2. Semantic support for workflow management

In this section, we investigate workflow management systems
for their semantic support of the analysis process. We do this us-
ing an example analysis workflow from the geographic informa-
tion science domain. There are two reasons for this choice. First,
the authors’ backgrounds in the Geosciences provide them with a
background in a domain that relatively early on began to embrace
semantic technologies to improve discovery and interoperability
of heterogeneous data sets [75]. However, at the same time a typi-
cal Geoscience research team is comparatively small, thus they of-
ten have little incentive or resources to develop or adopt advanced
scientific workflow management systems. Second, geographic in-
formation science is a highly integrative science, potentially inter-
facing with environmental science, social sciences, and planning
sciences. Therefore, there is a strong potential benefit from work-
flow management systems that allow interdisciplinary sharing of
analysis workflows.

Our example workflow combines relatively straightforward,
typical objectives and design choices in geographic information
science. An analyst wants to compare the frequency of georefer-
enced social media posting with the official population density
records. The objective is to find out at which geographic scale pop-
ulation records can serve as a normalization factor for detecting
unusual clusters of social media posts. The motivation is that we
can assume that clusters of social media activity are dependent
on population density (more people, more posts), but authorita-
tive population records (i.e., census) captures mostly residential
(nightly) population, which may not be suited to act as baseline
for social media activity normalization. The required analysis steps
can be summarized as follows. First, we need to obtain two data
sets, one for georeferenced social media, one for population den-
sity. Then, we need to count the number of unique geosocial media
contributors per census district (point-in-polygon analysis). Lastly,
we need to compare this geosocial media distribution with the
population density and identify the correlation between them (and
possible clusters of high or low correlation).

There are several potential pitfalls in this analysis, which need
to be captured in semantic annotations in order tomake the whole
workflow shareable. They include varying geographic coordinate
systems (often, geographic data come in different coordinate sys-
tems, requiring harmonization or re-projection before analysis),
the modifiable areal unit problem (aggregating over areas is in-
fluenced by their geometric shape, e.g. changing census districts),
edge effects of study area (influence from outside factors on study
objects at the periphery, or analysis methods that rely on neigh-
borhoods), uncertainty and imprecision of geolocation (e.g. lineage
of georeferencing can be different for two data points from the
same source), scale effects (at which scale do we measure?—the
finest scale is not always the most suitable), and parameterization
of quantitative methods (in this case spatial clustering). The gold
standard would be a fully semantically annotated workflowwhich
allows modular reproduction of the analysis by researchers from
different domains, e.g. a geographic information scientist or a so-
ciologist or a urban planner, and also addresses the most common
reasons for workflow decay over time [76]: insufficient documen-
tation, missing example data, volatile third-party resources, and
incompatible execution environment.

For a structured investigation of workflow management
systems, we developed (partly based on [76]) several criteria that
need to be fulfilled for a gold standard workflow:

• Annotation granularity. At which level or granularity of the
workflow are annotations possible? Possible values are Node
(every single atomic analysis module can be annotated,
required for the gold standard), Model (the combination of
several Nodes into a coherent workflow, or the combination of

https://semstats.wordpress.com/
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several atomic analysis steps into an aggregated Node), Project
(the project file, which can contain several Models and many
Nodes).

• Annotation abstraction level. At which abstraction level are
annotations supported? Possible values are Natural Language,
Formal (any formalized language), or both (gold standard).

• Annotation languages. Which are supported: formal and
structured languages for storing and sharing the annotations
or the whole workflow? This is a list of supported languages,
e.g. XML and dialects. A gold standard would support as many
as possible.

• Annotation generation. How are the annotations generated?
Possible values are Manual (the analyst has to enter every
annotation manually), Automated (the workflow management
system creates annotations based on the meta-data of input
data sources and analysis nodes), or both (gold standard).

• Semantic richness. How rich are the semantics of the analysis
workflow? Possible values are High (a gold standard workflow
management system checks the meaningfulness of an analysis
step, e.g. combining different geographic coordinate systems,
different temporal resolutions or periods, or parameterization
of clustering), Low (the workflow management system only
enforces data type consistency), or None.

• Recommender system. Does theworkflowmanagement system
recommend analysis steps based on input and expected output,
e.g. the operation types of data or tool or model selection as
presented in Table 1? Possible values are Data, Tool, Model,
combinations thereof, or None.

• External resources. Which external resources does the work-
flow management system support? This is a list of resources,
the more the higher the support for extensibility and interdis-
ciplinarity.

4.2.1. Review of workflow management systems
As a starting point for the choice of workflowmanagement sys-

tems, we reviewed Talia’s recent work [76]. Several of the exam-
ined workflow management systems do not seem to have strong
development support anymore (exemplified in lack of an acces-
sible website, time elapsed since last update, low forum activity,
etc.). After excluding those, seven workflowmanagement systems
remain: Kepler [77], Knime [78], Orange [79], Taverna [80], Vis-
Trails [81], Pegasus [82], and WINGS [83]. Although the scope of
this paper does not allow an in-depth evaluation of these complex
systems, the ability to test them first handwas deemed a necessary
requirement. However, given that our test case is from the geospa-
tial domain, we added ESRI’s ArcGIS model builder9 to our set as a
widely used workflow management system in the geospatial do-
main. A brief description of each tested system follows:

Kepler is a very mature scientific workflow management
system. It builds on the Ptolemy II engine that users Modeling
Markup Language (MoML). Kepler’s origins from 2002 are in the
ecological and environmental sciences, but it has found wide
adoption in many other scientific disciplines.

Knime is another mature scientific workflow management
system, based on Eclipse, having a strong support and user
base (commercial versions exists), and offering many extensions
with wide functionality. It was originally developed to support
pharmaceutical research, but has found adoption in many other
business areas as well.

Orange is a relatively recent addition to the pool of scientific
workflow management systems. Its focus lies on ease of use,

9 http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/
what-is-modelbuilder-.htm.
with an intuitive GUI providing access to SciPy functionality. It is
developed by a bioinformatics institute.

Apache Taverna is another ‘established’ scientific workflow
management system and widely in use. It strongly supports
service-oriented architecture through the functionality of plugging
in network processing services with a URL. It was originally
developed within the bio and life sciences.

VisTrails supports a very low-level assembly of workflows,
with the components providing atomic functionality. Its domain
background are computer sciences.

Similar to the Kepler and Taverna scientific workflow systems,
Pegasus allows for the construction of models of data flow with
very complex topologies that can be mapped to high-performance
computing systems with extensive error handling. The WINGS
system has been designed to build off of Pegasus and similar
workflow systems.

ArcGIS model builder is a module of the ArcGIS software suite
that allows researchers to build geoprocessing workflows using a
visual language including a huge variety of geoprocessing tools and
models.

4.2.2. Applying the example workflow
Our test is based on trying to implement the straightforward

geospatial analysis workflow in all available systems. An initial ob-
servation regarding their utility for geospatial analysis is that most
of the systems do not support basic geospatial analysis methods.
Kepler has geospatial actors (throughGRASS10 andGDAL11) that al-
low coordinate system transformation and point-in-polygon anal-
ysis (among others), and allows to include R12 scripts, which pro-
vides (spatial) clustering algorithms. However, support for geospa-
tial analysis seems to have stopped (the website referenced in the
point-in-polygon module has not been updated since 2007). Kn-
ime has some geospatial extensions (OpenStreetMap13 and ESRI
shapefile14 support), but their functionality is basic. None of the
required case study analysis steps is currently supported, al-
though there are plans to bring Open Spatial Analytics15 to Kn-
ime. Apache Taverna allows in principle any geospatial operation
to be included through the OpenGeospatialConsortium16 WebPro-
cessingService17, but apart from the pioneering work of de Jesus
et al. [84] there appears little progress. VisTrails and Orange are
both built on Python, and therefore facilitate plugging-in of Python
scripts for all the required analysis steps. However, there is lit-
tle innate geospatial analysis support. It should be noted that the
available tools are very powerful, very complex, and possess a
strong community and corresponding diverse ecosystem in other
domains. Therefore, our analysis is possibly not complete. The sin-
gle domain-specific system ArcGIS model builder offers all of the
required analysis functionality, but this is to be expected given its
background in the Geosciences. Although there is no directmodule
to import geosocialmedia fromAPIs, these can be included through

10 Popular and established free and open source geographic informations system
(https://grass.osgeo.org/).
11 Widely used library for transformations of geospatial data (http://www.gdal.
org/).
12 Free and open source project for statistical computing (https://www.r-
project.org/).
13 https://openstreetmap.org.
14 Industry de-facto standard file format for geospatial data.
15 http://www.crcsi.com.au/research/2-rapid-spatial-analytics/2-23-open-
spatial-analytics/.
16 International not-for-profit organization committed to develop open geospatial
standards (http://www.opengeospatial.org/).
17 Inferface standard providing rules for networked geospatial analysis
(http://www.opengeospatial.org/standards/wps).
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Table 2
Semantic support for (geospatial) analysis in current analysis workflow tools.

System Annotation
granularity

Annotation
languages

Annotation
generation

Semantic
richness

Recommender
system

Annotation abstraction
level

External resources

Kepler Nodes XML Manual Low None Natural language Ontologies, Web Services
Knime Nodes XML Manual High None Natural language
Orange Project Manual Low None Natural language
Taverna Model Manual Low None Formal and natural MyExperiment, Web services
VisTrails Model XML Manual Low None Natural language Crowdlabs, Web services
Pegasus Model SQL Both Low None Natural language
WINGS Model OWL Automated High Data Formal and natural Ontologies, Web services
ArcGIS model
builder

Nodes Python Manual Low None Natural language
Python scriptswith little effort. As a next step,we investigated how
each of the tools supports semantic annotations tomake thework-
flow reproducible.

Table 2 summarizes the results of the test regarding the
criteria for semantic annotation. In summary, the tested workflow
management systems offer little support for an analyst to enrich
the workflow with structured semantic annotations.

Orange is the most accessible system, but is geared towards
single users with little support (or encouragement) for semantics
and sharing. Workflow semantics are limited to free-form annota-
tions within the project or some components. Knime has several
extensions aimed at incorporating semantics and elements of the
semantic web, but a search of the extensions and forums seems
to indicate that the only way to use ontologies is to model them
as network graphs (for which ample support exists). Apache Tav-
erna supports the myGrid ontology and semantics at the level of
component families, i.e. groups of components that the creator of
a workflow can define. Vistrails supports detailed logging and ver-
sioning for collaborative analysis, but there is no explicit support
for semantics or ontologies.

At the other end of the spectrum, Kepler and WINGS offer the
most support for analysis semantics. Kepler offers ontology-based
semantic annotations. Its MoML does not define any semantics
for the connections between workflow components. However,
it does represent hierarchical relationships between workflow
components that have properties, and the components’ interaction
ports and the connections between those. The Ptolemy II engines
uses the concept of director to describe the overall type of
workflow and the connections, hence they inherit any properties
from the directors, which is another class for MoML. The other
important concept is actor, which describes the components of
workflow, i.e. the actual processes. These can have semantic type
annotations that describe the actor and its data schema. These
annotations are part of the component’s metadata and can serve
to ontology-based discovery, integration and validation. However,
at the same time, Kepler’s functionality comes at the price of high
complexity and a very steep learning curve.

In Pegasus, there is no semantic annotation of the nodes and
edges in the workflow. However, the WINGS add-on to Pegasus
provides the most advanced system in terms of reasoning capa-
bility over semantic annotations. It provides a semantic layer used
to generate valid workflow models. The key purpose of WINGS is
to use semantics to define constraints on both the data that can be
used in the workflow as well as how the components of the work-
flow are connected. These constraints are defined using the OWL
standard and build off of existing ontologies, such as the PROV-
O provenance ontology [85]. The semantic constraints defined in
WINGS can be used to suggest parameter settings for operations
based on metadata properties in the data, and they can also be
used to suggest data sets that can be used in a workflow. In or-
der to facilitate re-use of workflows, WINGS provides the ability
to define abstract components that can be specialized with differ-
ent operations depending on the type of data that is input into the
component. Finally, WINGS can produce metadata for the output
data from components of the workflow. However, similar to Ke-
pler, there exists a high practical barrier to making this research
software usable and accessible to non-specialist users who are
not working in high performance computing environments. Al-
though the ArcGIS model builder supports the example case study
in a rather intuitive way, there is no support for encapsulating the
semantics and addressing the domain-specific problems outlined
above, except manually added annotation boxes. Adding those an-
notations is tedious work even for a small analysis workflow, and
still offers no structured way to annotate. The resulting model can
be exported as Python script, which is, however, of little use with-
out the proprietary ArcGIS software libraries. Based on this assess-
ment of the state-of-the-art, we propose in the following section a
research and development agenda.

5. A research road map

How exactly should semantic technology support data ana-
lysts? The following is a list of research problems that take up
the argumentation thread from Section 3 and that currently seem
largely unaddressed (compare Section 4). Possible solutions are
shortly discussed. For the most part, these problems progressively
build off of each other, i.e., each problem will require some kind of
solution of its predecessors in order to be solved. We hope that by
formulating these problems in an explicit way, they can be better
acknowledged in future Semantic Web research.

1. The problem of (semi-automatic) documentation of analysis
workflows. People usually do not document what they do and
for which purpose. Yet, semantic documentation is a prereq-
uisite for any kind of semantic analysis support and for re-
producibility of research. This is why machines have to sup-
port people in annotating what they do. While automatic doc-
umentation of workflows for particular tools is available, the
main challenge lies in finding general procedures for annota-
tion of data analysis operations and data types that could be
used across data and tool environments [86]. One possibility is
to use information concepts to describe operations on an abstract
level [42], based on their input and output types [87], and to
reuse them across the Web of data [58].

2. The problem of biased data selection. Under the conditions of in-
formational uncertainty, random sampling is not an option to
avoid overfitting. How could semantic technology help analysts
in biased sampling, in trusting or distrusting data items [88],
and in purpose oriented data retrieval based on knowing about
observational origins and representativity for the phenomenon
in question? It seems that ontologies of observation and sam-
pling techniques are needed for this purpose, but also a repos-
itory of typical distribution parameters found in a domain is
needed.While semantically-enabled data retrieval [50] and ob-
servation portals [51] have been previously proposed, to the
best of our knowledge, the semantic support of biased sample
selection seems a largely new exercise (compare [18]).
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3. The problem of biased model selection. Under the conditions
of informational uncertainty, biased models can be more suc-
cessful than unbiased ones [34]. What would a semantic model
repository look like that allows researchers to share and link
their models to information environments and modeling prob-
lems, allowing them to reuse models that have proven robust
in a certain domain and for a certain problem? Data scientists
have pointed to the necessity of software-independent model
databases [41], however, it remains unclear how such models
could be described together with the problems they solve in a
way that is independent from scripting languages [10].

4. The problem of typing and meaningful application of models and
tools. Since data scientists are overwhelmed by the amount of
data and tools available, it is crucial to support them in choosing
(types of) tools meaningfully applicable to (types of) data in an
automated way, very similar to statically typed functional pro-
gramming [87]. This requires extending the notion of meaning-
fulness from measurement theory to design reusable semantic
types that go beyond ordinary data types based on specific in-
formation concepts. For example, in the Geosciences, types for
data could be spatio-temporal fields or trajectories, and types
for tools could be interpolation, and meaningful interpolation
can only be performed on data that represents fields [18].

5. The problem ofmodular workflow design and analysis design pat-
terns. Workflow tools nowadays quite successfully document,
share, and replicate what has been done, but they hardly help
scientists in designing workflows in a modular way, and thus,
in reproducing research across contexts [10]. So far, the closest
instantiation of this idea is the ability to create abstract steps
inWINGSworkflows [89]. Fostering reproducibility across con-
texts would require adapting both data inputs and tools. A pre-
requisite for doing so is that nodes and links in a workflow are
semantically typed, so that tools and data of equivalent, similar
or evendifferent type canbe substituted [40]. In analogous fash-
ion, ontology design patterns were proposed as a cure to lim-
ited re-usability of modeling solutions, as they can be adapted
to particular applications by filling in open slots [90].

6. The problem of formulation and linking of analysis questions.
Analysis questions are those questions that motivate an anal-
ysis because they need to be answered, and thus determine its
purpose. Questions need to be formulated on a formal level that
allows machines to share them and to compare and link them
with tools and analysis workflows [42]. The question how this
can be done remains largely open, even though the problemhas
gained attention in the e-science community [74].

7. The problem of recommendation/exploration of analysis solu-
tions. This problem can be paraphrased as follows: given a data
set and an analysis question, which steps would need to be
taken to obtain a solution, i.e., an answer to this analysis ques-
tion? Solving this problem, at least to a limited extent, is a
prerequisite for any kind of analysis support system that truly
deserves its name. Recently, we proposed an algebraic model
of data generation that is capable of computing possible data
derivations based on a functional type system [87] and thatmay
beused to construct and search through a data derivation graph.

8. The problem of indirect question answering in data analysis. We
cannot start our analysis unless we know that an available data
set is in principle suitable for our task. A semantically informed
retrieval portal should therefore expand a data query in such a
way to encompass also those data sets that do not directly an-
swer a given query, but which can be made to do so via some
analysis steps. For example, if an analysis of environmental air
pollution in Germany requires a fully covering raster data set
of PM10, then a data query could also search for point mea-
surements based on knowing that with a suitable interpolation
technique, the point set can be turned into a PM10 data set cov-
ering the whole of Germany [18]. In order to expand queries in
such a way, one needs to be able to construct possible analy-
sis solutions, and then reformulate the data query to search for
possible data inputs [87].

6. Conclusion

In this article, we have examined a number of arguments for re-
garding data analysis as a synthetic enterprise, where knowledge
is not only extracted from data but needs also to be invested into
the analysis process in order to prevent non-reproducible ormean-
ingless results. From a theoretical viewpoint, the reasons lie in the
need for counter-induction and biased learning under informa-
tional uncertainty. From a practical point of view, this essentially
requires tool support not only regarding model building and in-
ference and the computational replication of workflow processing
steps, but also regarding the critical adaption of workflows across
data, tools and research environments. This will help analysts
to take into account semantic conflicts, perform conceptual (re-
)interpretations and biased selections of models and tools, as well
as give them information about a data set’s observational origin.

While current research on the interface between semantics and
analysis focuses largely on using machine learning to help the Se-
manticWeb do its job (of classifying unstructured data), or on link-
ing and publishing data and results in analysis portals, there seems
a void of research that specifically addresses how the Semantic
Web could support the data analysis process itself. Current work-
flow tools offer a very limited level of semantic annotation. They fo-
cus on tool documentation and computational replication of work-
flows, while genuine reproducibility would require semantic ab-
straction from particular data and tool environments, allowing an-
alysts to do modular adaption. Furthermore, semantic support of
the workflow design, i.e., of data, tool, or model selection and the
meaningful applicability ofmethods, aswell as the linking ofwork-
flows with research questions, seems largely missing. In this arti-
cle, we have suggested a research roadmap that shows a way to
incrementally fill this gap, starting from Semantic Web based au-
tomatic documentation and sharing of workflows and moving to-
ward functional typing of analysis operations and the linking of
workflows to questions, which may lead to a new generation of
analysis recommendation technology.
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