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a b s t r a c t

To estimate the long-term trends in changes for the Antarctic sea
ice, daily extents of sea ice were integrated to monthly averages.
Different integration methods, however, result in monthly ice
extentswith inconsistent boundaries thatmay have further impact
on the estimated trend rates.Weused randomsets tomodel the sea
ice extent and we compared five averaging methods to derive the
monthly expectation from a set of daily ice extents and examined
their differences in the trend analysis. The Antarctic sea ice extent
exhibited consistent statistically significant upward trends for the
period November 1978–December 2014 at a rate of approximately
24 ± 2.3 × 103 km2yr−1. The trends in the sea ice perimeter,
however, do not agree and its estimation is more sensitive to the
averaging methods. Large gaps among monthly sea ice boundaries
occurred in the regions where sea ice retreated or expanded
dramatically in a single month, especially in the Weddell Sea and
the IndianOcean during themonth of December. The study showed
thatmore attention should be given to these regions during periods
that the daily sea ice experiences more notable dynamics. We
finally commented that the median set can serve as a widely
applicable method for both ice extent and perimeter and that the
Vorob’ev expectation is appropriate only for the extent estimation.
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1. Introduction

Sea ice is an integral component of the climate system that both affects and also reflects changes
in other climate components (Massom and Stammerjohn, 2010). Because sea ice in the polar region is
sensitive to climate change on a global scale, trends in its current dynamics and changes are of particu-
lar interest to scientific committees and governments (Simmonds, 2015). Satellite passive-microwave
images have been used to produce sea ice concentration data, i.e., the percentage of areal ice cover-
age, since 1978. These have been used to measure the boundaries and areas of sea ice regions, thus
providing a daily monitoring of Arctic and Antarctic sea ice for almost four decades. The Intergovern-
mental Panel on Climate Change Fourth Assessment Report (IPCC AR4) and Fifth Assessment Report
(IPCC AR5) show a rapidly diminishing ice extent in the Arctic but an opposite trend in Antarctic. In-
terestingly, the IPCC AR5 reported that the observed Antarctic sea ice extent expands at a statistically
significant rate of 16.5±3.5×103 km2 yr−1 (IPCC, 2013). This is in substantial contrast with the small
and statistically insignificant rate of 5.6 ± 9.2 × 103 km2 yr−1 reported in IPCC AR4 (IPCC, 2007).

To calculate the change rate of sea ice, we used satellite passive-microwave images. First, the
ice concentration data (proportion of ice area in a pixel) was derived from passive microwave
measurements. The sea ice extent is defined as the area of ice that has an ice concentration of no less
than 15%. Next, the daily ice extents are averaged to determine monthly mean values. On the basis of
those values, monthly deviations are derived and a linear regression model is applied to determine
the rate (Parkinson and Cavalieri, 2012). This is currently a standard practice that started in Parkinson
et al. (1999) and has been followed by subsequent works (Parkinson and Cavalieri, 2012; Cavalieri
and Parkinson, 2008, 2012). During this process, uncertainties from sensor transitions, processing
method updates and the addition of newdata sources can all influence the final result (Eisenman et al.,
2014; Cavalieri et al., 2012). For example, in using passivemicrowavemeasurements to determine ice
concentrations, there are more than thirty different algorithms that can be selected, with a portion
even having different versions (Ivanova et al., 2015). Eisenman et al. (2014) found that a substantial
change in the long-term trend was caused by a change in the intercalibration across a 1991 sensor
transition when the Bootstrap data set was updated to Version 2 in 2007. Ivanova et al. (2015)
subsequently presented the results of an extensive inter-comparison algorithm to find the optimal
SIC algorithm in which a climate time series has a low sensitivity to error sources. Unfortunately,
their conclusions showed that no one single algorithm is superior as concerns all criteria. Additionally,
for the uncertainties associated with image processing, the choice of a statistical method utilized as
the final step can also introduce a large variation in trend analyses. By treating the daily ice extent
as a random variable, calculation of an arithmetic monthly mean value based upon the daily extent
data is a basic way to determine the monthly extent. In this common practice, however, the spatial
information on the distribution of the sea ice ismissing andwe do not even knowwhere the boundary
of the monthly sea ice is located. Moreover, the arithmetic mean is not the only way to summarize
the daily data and we may ask how other averaging methods will impact the trend estimation.

Averaging is a basic statistical concept, but it becomes fairly complicated for random sets and for
random shapes in a non-linear space. A random set is a generalization of a random variable, whose
values are sets (Molchanov, 2005). Because they provide a foundation for set-theoretic statistical
approaches, random sets have been successfully employed for developing image averaging methods
as well as for the study of randomly varying geometrical shapes (Friel and Molchanov, 1999; Stoyan
and Stoyan, 1994). In this study, we first treat the spatial extents of daily sea ice in a single month
as a set of objects with randomly varying shapes and then derive the monthly average extent as the
expectation of the random set. There is no universal definition of the expectation for random sets;
however, some definitions highlight certain features in particular contexts (Molchanov, 1998). The
Vorob’ev expectation has been used to extract natural objects with vague boundaries inwetland areas
(Zhao et al., 2010) and also to simulate the fire spread with irregular boundaries in a forest (Vorob’ov,
1996). Expectations based on various distance functions were applied to determine an average
shape of characters from the collection of scanned newspaper images (Baddeley and Molchanov,
1998; Jankowski and Stanberry, 2010). A Fréchet expectation based on the Hausdorff distance was
successfully utilized to identify the mean of geometrically constrained traffic island polygons (Zhou,
2014).
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The aim of this study was to test the impact of using different averaging methods for evaluation
of the long-term trends of sea ice extent and perimeter. To this end, we implemented several
expectations of random sets to derive the spatial boundaries of monthly sea ice extents and compared
their sizes, perimeters and spatial ranges. We intended to determine the times at which the biggest
variations occurred and the regions where large gaps occurred based on different monthly extents.
Long-term trends were further estimated and compared using the different averaging methods. We
evaluated the impact of averagingmethods on the trend analysis based upon differences in the change
rates and their statistical significance. Finally, the features of each method were discussed and the
appropriate method has been recommended for sea ice analysis.

2. Methods and data

2.1. Image data

The sea ice concentration data sets considered in this study are derived using passive microwave
measurements from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7
satellite, from the Special Sensor Microwave/Imager (SSM/I) sensors on the Defense Meteorological
Satellite Program’s (DMSP) -F8, -F11, and -F13 satellites and from the Special Sensor Microwave
Imager/Sounder (SSMIS) onboard DMSP-F17. The data were processed using the Bootstrap Algorithm
(Version 2) at NASA Goddard Space Flight Center and distributed by the National Snow and Ice Data
Center (Comiso, 2000, updated2015). We chose the Bootstrap algorithm for this study, being a widely
used ice concentration product, also providing the database for the IPCC reports. Daily (every other
day prior to July 1987) data gridded on an SSM/I polar stereographic grid (25 × 25 km) were selected
for the south polar regions for the period of 1 November 1978–31 December 2014.

2.2. Monthly mean processing

During image processing, the sea ice extent is identified by including grid cells with ice concen-
tration above 15% to avoid wind roughing and other weather filtering issues near the ice edge. Ex-
planation for the 15% threshold can be found in Worby and Comiso (2004). The sea ice perimeter is
extracted as the boundary between the sea ice and the ocean. In a standard convention, the monthly
mean is the arithmetic average of the daily extents. This value only has attribute information and can-
not bemapped spatially. In this study,we applied fivemethods to extract the spatial extent ofmonthly
means in different ways. We then calculated the area and perimeter of the monthly extents based on
the figures in two-dimensional space.

A straightforwardway to envision this process is to first compute themonthly averaged ice concen-
tration fields from the daily ice concentration data and then identify the monthly ice extent (denoted
byMA) by including grid cells with ice concentrations above 15%. A previous study indicated that this
calculation can result in bias associated with the merging of temporal and spatial averages (Eisenman
et al., 2014). We kept this method in our study for comparison with results from other methods.

By constructing random sets for each calendar month, we aimed to identify some features, such as
the area of a region, which can be described as a random variable in a linear space. Several methods
of defining the means of random sets are based upon the inverse images of the expectations of these
features. Widely accepted definitions include the Aumann expectation, the Vorob’ev expectation, the
Radius-vector expectation, the Fréchet expectation and the Distance average (Molchanov, 1998; Friel
and Molchanov, 1999; Stoyan, 1997). The choice of a particular definition depends upon the aim of
the specific application. In this image analysis study, we selected the Vorob’ev expectation (denoted
asMV ), an oriented Distance average (denoted asMO) and a Hausdorff distance-based Fréchet expec-
tation (denoted asMH ) to determine the monthly mean ice extent.

The daily ice extent is used to construct a random set for month t , denoted as Γ t , representing
the stochastic shape of the ice extent in that month. The covering function, also called the one-point
coverage function (Stoyan and Stoyan, 1994), serves to characterize the distribution of the random set
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Γ . The covering function PrΓ (x) at pixel x is defined as P (Γ ∩ {x} ≠ ∅) = P(x ∈ Γ ). It is estimated
as:

P̂rΓ (x) =
1
n

n
i=1

IOi(x)

where Oi is the realization of Γ , e.g., the daily ice extent, and IOi (x) is the indicator function of Oi(x).
Pixels with PrΓ (x) ≥ p constitute a p-level set of Γ . The support set (0-level set) and core set (1-level
set) delineate the extent of the possible maximum ice area and the definite sea ice area in a month,
respectively. Themedian set of Γ t is the 0.5-level set (denoted asMM ) that delineates the regions that
sea ice is covering for half of the time period.

The Vorob’ev mean of random set (MV ) is estimated by first determining the expectation of the
covering function EA (Γ ) =


R2 PrΓ (x)dx and then determining a p-level set that has an area equal to

EA (Γ ):

MV = {x ∈ R2, 0 ≤ pm ≤ 1 : PrΓ (x) ≥ pm}

where pm is determined for the setMV that has the area EA (Γ ). If pm is not unique, then the infimum
of all such pms can be used. If pm = 0.5, then MV and MM are identical. In the sea ice case, if the
probability distribution of daily extents within a month is approximately symmetrical, MV and MM
are likely to be equal.

TheVorob’evmeanMV is determined by the covering function,which is the average of the indicator
functions.MO replaces the indicator functions with oriented distance functions and characterizes the
expectation of the random set using the distance average (Baddeley andMolchanov, 1998; Jankowski
and Stanberry, 2010).MO is then defined as the pixelswith positive average oriented distance function
b̂Γ (x):

MO = {x ∈ R2
: b̂Γ (x) ≥ 0}.

The average oriented distance function of Γ at pixel x is denoted as b̂Γ (x):

b̂Γ (x) =
1
n

n
i=1


dOi (x) − dOc

i
(x)


, x ∈ R2

where dOi (x) equals the Euclidean distance from x to the nearest pixel in the realization Oi, and
dOc

i
(x) equals the Euclidean distance from x to the nearest pixel in the complement of Oi. Previous

study showed that MO has a denoising property in the sense that random speckles on an image can
be averaged out (Jankowski and Stanberry, 2010). This property can smooth the details of sea ice
boundary and leads to a too short length.

The Fréchet expectation MH is based upon the Hausdorff distance ρH . ρH is equal to the greatest
distance from a point in one set to the closest point in the other set. For two non-empty subsets A and
B, their Hausdorff distance ρH(A, B) is defined as:

ρH (A, B) = max

max
a∈A

min
b∈B

d (a, b) , max
b∈B

min
a∈A

d (a, b)


.

A realization Oi of Γ for which E

ρH (Γ , O)2


achieves its minimum is considered the Fréchet

expectation. In our sea ice case, a daily sea ice extent that has aminimum square integrable Hausdorff
distance compared with all the other daily ice extents in a month t is identified as MH . Compared to
the other four methods, MH equals to a particular realization Oi. This may result in a very irregular
shape of MH including a great many details.

2.3. Trend calculation

For quantifying the trend, we first determined the 36-yr average for each calendar month; for
the months of November and December, we used the 35-yr average. Second, the monthly deviations
were generated by subtracting the 36- (or 35-) yr average from each individual monthly mean extent.
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The linear regression model was fitted to the monthly deviation data. The slope of the fitting line
indicated the trend in change and the standard error of the slope indicated the uncertainty range of
the estimate. The slope was tested at the 0.001 and 0.01 significance level to identify whether the
trend is statistically significant using the procedure in Parkinson et al. (1999) and subsequent works.

3. Results

3.1. Ice extent trends

The linear regression model was applied to monthly deviation data that were derived from all
five averaging methods. We therefore obtained five different change rates for the period November
1978–December 2014. As an illustration, Fig. 1 presents plots of monthly sea ice extents and monthly
deviations as derived from MM . On average over the 36-yr period, the ice extent ranged from a
minimumof 3.1×106 km2 in February to amaximumof 19.5×106 km2 in September, i.e., amaximum
ice extent more than six times the minimum ice extent (Fig. 1(a) inset). After the seasonal cycle
is removed, the existence of an upward trend becomes evident for each month with a statistically
significant positive slope of 23.1 ± 2.4 × 103 km2 yr−1.

The slopes for all five different methods are positive and statistically significant at the 99.9% con-
fidence level. Except for MH , the slopes of all the other four methods are similar, approximately
24 × 103 km2 yr−1 with a standard error approximately equal to 2.3 × 103 km2 yr−1. MH , however,
has a flatter slope but it has the largest standard error, equal to 19.3 ± 3.2 × 103 km2 yr−1.

To assess the influence of the observation years on the rates, we vary the endpoints of the calcu-
lation period from 1989 to 2014 (Fig. 2). Therefore, the first rate is for a decade from 1978 to 1989,
and the last rate is for the entire 36-year period from 1978 to 2014. Generally, the five increasing
trend lines are similar except for MH . For endpoints before 1994, trend values in the Antarctic sea ice
extent are negative. The trends turn positive only after 1995, and show a sharp growth after 2012
until reaching a value of approximately 24 × 103 km2 yr−1. From the 95% confidence band for MH
we observe that MH has a significantly smaller positive trend than those derived from the other four
methods after 1999.

3.2. Ice perimeter trends

Fig. 3 presents monthly average sea ice perimeters corresponding to the information that is
presented in Fig. 1 for ice extent. The monthly mean perimeter (Fig. 3(a)) indicates a different basic
seasonal cycle, ranging from 22.6 × 103 km in March to 42.3 × 103 km in December. After removing
the seasonal cycle, themonthly deviations indicate noticeable differences for each of the fivemethods.
MM shows a slightly negative but statistically insignificant trend. MA and MO have positive trends at
the 99% confidence level, at 20.8±7.8 km yr−1 and 26.5±5.6 km yr−1, respectively.MV andMH have
negative trends, with the two highest magnitudes −75.3± 11.1 km yr−1 and −71.5± 12.3 km yr−1,
respectively, at the 99.9% confidence level. Three monthly deviation curves were plotted in Fig. 3(b)
as an illustration.

Unlike the extent trend shown in Fig. 2, the five methods indicate different time series trends for
perimeters (Fig. 4).MV andMH showsignificant negative trends,withmagnitudes that are consistently
lower than the other methods for all the endpoints. MA and MO are in close agreement and remain
positive after 1991. The year 1996 is a turning point: the trends vary rapidly prior to 1996, and keep
stable after 1996. The trend line ofMM is located in the middle, with the narrow 95% confidence band
not overlapping with any other lines. MM shows a negative trend before 1996 and no obvious trend
after 1996.

3.3. Special months

The five data sets of monthly averages were compared to their arithmetic mean (the mean
of the five monthly average extents, denoted as MAA) to determine the temporal structure of the
difference. All the five methods showed significantly different ice extents as compared to MAA by the
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Fig. 1. (a) Monthly average Antarctic sea ice extents derived from MM for November 1978 through December 2014, with an
inset showing the average annual cycle. (b) Monthly deviations for the sea ice extents of part a, with the regression line and its
slope and standard error.

Fig. 2. Trends in the monthly-mean ice extent records at a range of endpoints.
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Fig. 3. (a) Monthly average Antarctic sea ice perimeters for November 1978 through December 2014, with an inset showing
the average annual cycle. (b) Monthly deviations for the sea ice perimeters of part a, with the regression line and its slope and
standard error.

Fig. 4. Trends in the monthly-mean ice perimeter records at a range of endpoints.
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Table 1
The maximum and minimum differences between five average methods and their mean.

Difference MA − MAA MO − MAA MV − MAA MM − MAA MH − MAA

Extent (106 km2)
Max 1.85 0.45 0.26 0.46 1.03
Min 0 −0.63 −0.56 −0.64 −2.59

MA − MAP MO − MAP MV − MAP MM − MAP MH − MAP

Perimeter (103 km)
Max 5 0.08 8.88 3.97 11.38
Min −7.14 −13.81 −1.18 −3.03 −1.21

Fig. 5. Difference between monthly mean Antarctic sea ice extents computed using five average methods.

Friedman test. Among them, MV agrees most closely with MAA, in the range from −0.56 × 106 to
0.26×106 km2 (Table 1). Higher extent estimates are provided byMA, whereasMH generally indicated
lower extent estimates for most of the months, especially for December. The highest difference value
(1.85 × 106 km2) was recorded by MA in Dec-2004, with values recorded in Dec-1988 and Dec-1993
almost reaching that level. The largest negative difference (−2.59× 106 km2) was recorded byMH in
Dec-1998, followed by Dec-1993. Apparently, December is a special month in which use of the five
methods results in substantially different monthly extent estimations (see Fig. 5).

Fig. 6 presents a comparable display for Antarctic sea ice perimeters. The MM perimeters are the
only perimeters that are close to MAp (the average perimeter of the five monthly extents), with the
narrowest range being −3.03 × 103 km to 3.97 × 103 km (Table 1). The MH perimeters indicate
substantial overestimations followed by the MV perimeters, whereas the MO perimeters indicate
underestimations followed by the MA perimeters. Like the ice extent, however, all five methods gave
significantly different ice perimeters as compared toMAp by the Friedman test. The highest difference
(11.38×103 km) was recorded byMH in Nov-1996, with the difference reported for Dec-1979 almost
reaching that level. The largest negative difference (−13.8×103 km)was recorded byMO in Dec-1983,
followed by Dec-1999 and Dec-2010. Consistent with what we found for monthly extent estimations,
December is apparently a special month because use of the five methods resulted in monthly average
extents with entirely different perimeters.

We grouped the daily sea ice extent and perimeter for each calendar month and plotted their
statistical distributions as box plots (Fig. 7). The ice extents showed similar variations for all the
months and indicated a maximum deviation in December. For perimeter estimation, however, there
is a large variance indicated for the distances betweenwhiskers on the boxes for each calendarmonth.
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Fig. 6. Difference between monthly mean Antarctic sea ice perimeters computed using five average methods.

Fig. 7. Statistical distributions of monthly sea ice extents and perimeters.

For December, the lowerwhisker indicates a value that is only half of that of the upper whisker, which
suggests a highly dynamic range for the daily perimeters for December. We therefore inferred that
when the daily sea ice changes dramatically in one calendar month, it is easier to obtain different
mean extents and perimeters.

Fig. 8 presents the five monthly mean ice extents overlaid on the covering function that displays
the frequency of ice appearance in space. The extent of MA is the most widely spread extent and
has spatial coverage similar to the covering function. MF indicates the smallest extent, which is only
slightly larger than the core set of the covering function. The boundaries of MV and MM are in close
agreement and represent the midrange of the monthly mean ice extents that were determined using
the five averagingmethods.MO indicates similar extents asMV andMM but its boundary does not well
coincide with the MV andMM boundaries.

Gaps among themonthly average boundaries often appear in the area where the covering function
changes markedly. Based on the five-part Antarctic regional sectoring, the Weddell Sea and Indian
Ocean have very different boundaries of the sea ice, followed by the Bellingshausen/Amundsen Seas
(Fig. 8). The average ice extents in the Western Pacific Ocean and the Ross Sea were relatively more
consistent. In theWeddell Sea and Indian Ocean, a irregular area of open water surrounded by sea ice,
appears during a few days in Dec-2004, causing gradual changes in the covering function and most
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Fig. 8. Locations of the five monthly boundaries overlaid on the covering function of the Dec-2004.

of the gaps occur there. Another large open water exists in the Ross Sea during the entire month of
December. This stable condition corresponds to a stable covering function and therefore results in
more consistent monthly boundaries.

We checked the daily ice extent for Dec-2004 and confirmed that the daily ice extents spread over
a large range of 14.1×106–7.1×106 km2. This indicates that there is a large variance in the extent of
the sea ice in Dec-2014, shrinking towards a half of its area in a single month. The biggest difference
between the five mean extents can reach 3.7 × 106 km2, which cannot be ignored by the users of the
monthly December data.

4. Discussions

The upward trend of the sea ice extent is clearly indicated for the period November 1978–Decem-
ber 2014. Four out of five averaging methods provide statistically significant rates of approximately
24±2.3×103 km2 yr−1. This result has increased from the 17.1±2.3×103 km2 yr−1 trend reported
by Parkinson and Cavalieri (2012) for themonthly deviations for the period ending in December 2010,
and even more from the 11.1 ± 2.6 × 103 km2 yr−1 trend for the shorter period ending in December
2006. We also observed this increasing trend from Fig. 2, which indicates that the positive rate has
had a stable growth since 2007. Therefore, as the ending year was postponed and updated, we have
additional proof regarding the growing trend of the Antarctic sea ice extent. In addition to the length-
ening time span and associated addition of new data, including inconsistent source data and changes
in the processing method may also cause changes in the trend. For example, Eisenman et al. (2014)
found that the current Bootstrap Antarctic sea ice extent data set (Version 2) produced substantially
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larger trends for a given time period than the Version 1 that was used prior to 2007. The accumulative
effect of these uncertainties and error propagation in the process of calculating trend must be further
studied in the future.

The comparison is reversed for the Antarctic sea ice perimeters. The trend in sea ice extent agrees
closely among all the averagingmethods, whereas the trend in sea ice perimeters differs substantially
among the averaging methods for all time spans (Fig. 4). It is interesting to note that a transition
occurred for all the methods in 1996. The difference between MV and MH diminished rapidly and all
the methods maintained stable rates after 1996. This transition year coincides with the change in
sensors in 1995 (Eisenman et al., 2014). Although some methods indicate positive trends and others
indicate negative or non-significant trends, the magnitude of the rate is small as compared with the
image resolution of 25 km. Furthermore, the length of the sea ice boundary measured on remote
sensing images depends upon the image resolution. We therefore recommend that when reporting
the trend in sea ice perimeters, the data source should be clarified and the averagingmethod that was
applied in the evaluation of the monthly deviation should be specified.

Interestingly, ice extents and perimeters show different temporal patterns for different calendar
months. The minimum monthly perimeter occurs in March, which is later than the smallest sea
ice extent appearing in February. This inconsistency is caused by the shape of the ice boundary.
Although in February the ice shrinks to its minimum range, the shapes of the ice boundaries are
highly irregular. In March, when the sea ice first starts to expand but initially at a slow rate, the
shape of ice outline becomes more convex and smooth, which results in a shorter perimeter than
in February. The maximummonthly perimeter occurs in December rather than September, when the
maximum extent appears. In addition to the shape factor, the occurrence of open water during the
retreat and melt of ice plays an important role in December and January. According to the definition
of perimeter in this study, the lengths of interior open water boundaries are included in the total
perimeter calculation. As for the common features, the extent and perimeter both have their largest
variability in December. Therefore, December is a special month that exhibits the most sensitivity to
different averaging methods.

The spatial spread of monthly average ice extents can be determined with the use of random sets.
A comparison of the five different averaging methods indicates that MM is in close agreement with
the mean of the five averaging methods and performs best in both extent and perimeter analysis.
Moreover, MM is a robust statistic that includes measurements in which extreme observations, e.g.,
daily ice extent outliers, have little effect on the monthly average result. MM also has a physical
meaning that the region is covered by sea ice for 50% of the time period. We therefore suggest MM
as a widely applicable method for the averaging process in studies on sea ice. MV indicates a similar
area size for the monthly extent and is calculated by arithmetically averaging daily ice extent in a
conventional way. This makes the trend of MV comparable with the rates of ice extent reported in
previous publications. The advantage of MV , however, is that its output is a geometric object instead
of a single average value. We could know where the mean extent is located in space rather than its
magnitude only. Because MV indicates a substantially higher estimate for the perimeter, we put MV
at second place in our recommendation list of averaging methods. MO performs well for estimating
monthly extent. However, MO shows definite underestimations for perimeters, which are probably
caused by the smoothing effect resulting from its averaging process. As has been noted in Eisenman
et al. (2014), MA is likely to merge unexpected pixels into the ice edge, and thus overrates the ice
extent. Among the five methods, only MH takes a realization as its solution, whereas the others use
theminimization process. In this case,MH tends to have amore irregular shape, thus leading to a larger
perimeter and unpredictable ice extents as compared to the other averaging methods. Moreover,
computation ofMH is five times more time-consuming than the other averaging methods.

The sensitivity analysis performed in this paper is based on the comparison of five averagingmeth-
ods. A reference on the ‘‘ground truth’’ is needed to determine whichmethods producemore accurate
boundaries. Any reliable ground truth of monthly extents, however, does not exist in the real world.
The sea ice extents change to a very low degree during a single day and a daily image only captures
a snapshot of the ice state. The daily extents are integrated artificially to monthly average extents for
the purpose of a trend analysis. Therefore, monthly mean extents resulting from integration depend
upon the averaging method used in the processing and do not have an unambiguous true correspon-
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dence with the situation in the real world. Even if images with a high spatial resolution would be used
to extract the location of an ice edge, it is still impossible to validate the boundary of the monthly sea
ice extent.

The gaps among sea ice boundaries derived from different methods, as shown in Fig. 8, tend to
appear in the areas where the covering function changes rapidly. These areas usually occur where
the sea ice retreats or expands continuously in space within several days in a month. For example, in
December, formation of short-lived open water in the Weddell Sea and Indian Ocean and retreat of
the ice edges in the Bellingshausen/Amundsen Seas correspond to large departures in the estimated
mean extents. Because the Antarctic is a huge area (tens of millions of square kilometers), improved
estimates can possibly be obtained if the sea ice boundary is studied locally in more detail (Zhao et al.,
2015), e.g. at those areas where gaps occur. In addition to the month of December, other months that
have large variations in daily extents and perimetersmay also have distinctmonthly averages, e.g., the
months of April and May for the ice extent and the months of January and February for the perimeter.

5. Conclusions

In this paper, we investigated the variation of trends in the Antarctic sea ice extent and perimeter
using five different averaging methods applied to daily data obtained from satellite images. Random
sets were used to take uncertainties into account. The averagingmethods provided a new perspective
for determining the spatial location of the monthly mean ice extent rather than the conventional
method, which only extracts a single value. Our results confirmed the statistically significant upward
trend of Antarctic sea ice extent for the period November 1978–December 2014. The trends of the sea
ice perimeter for the same period, however, were not consistent across the five different averaging
methods. For all the other observation years, the trends of sea ice extent are more concentrated than
those of the perimeter. In summary, the perimeter is more sensitive to the averaging methods. In
addition, large gaps amongmonthly sea ice boundariesmay occur in the regionswhere sea ice retreats
or expands in a single month. We therefore should give more attention to estimations in theWeddell
Sea and Indian Ocean, especially during the month of December, when the daily sea ice experience is
more dynamic.
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