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[1] In this paper, we present an approach to extracting mineralogic information from thermal infrared (TIR)
spectra that is not based on an input library of pure mineral spectra nor tries to extract spectral end-members
from the data. Instead, existing modal mineralogy for a number of samples are used to build a partial least
squares regression (PLSR) model that links the mineralogy of the samples to their respective TIR spectral
signatures. The resulting PLSR models can be applied to a larger group of samples for which the mineralogic
composition can be estimated from the TIR spectra alone. Thermal infrared reflectance spectra were recorded
from 1330-625 cm™' (7.5 to 16.0 um). The method is tested on igneous rocks from a porphyry copper
deposit in Yerington, Nevada. As a reference, modal mineralogic composition was determined with tradi-
tional polarization microscopy on thin sections. Partial least squares regression models were developed to
link the thermal infrared spectra to the thin section determined mineral modes of alkali feldspar, plagioclase
and quartz, as well as the average plagioclase composition information. Results indicate that rock samples
can be classified successfully in a quartz-alkali feldspar-plagioclase diagram based on thermal infrared spec-
troscopy and partial least squares regression modeling. Estimated errors for the mineralogic composition
model results were found to be smaller or equal to traditional methods with errors of +£5.1% (absolute) for
alkali feldspar, £8.5% (absolute) for plagioclase and +6.9% (absolute) for quartz. The regression model
for plagioclase composition predicted with estimated errors of +-7.8 mol% anorthite.
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1. Introduction

[2] Optical mineralogy has been a successful and
commonly used analytical method by petrologists
for many decades. With the help of a petrographic
microscope, thin sections of rock samples can be
analyzed to reveal, among others, mineralogic
composition, textures and overprinting relation-
ships between minerals. Alternatively, infrared
spectroscopy has been used in mineralogic studies
[e.g., Hunt and Turner, 1953; van Ruitenbeek et al.,
2005]. Different analytical approaches measure the
reflected, transmitted, absorbed or emitted portion
of infrared radiation as a function of wavelength,
which influence the information we can extract
from the spectroscopic data [e.g., Hecker et al.,
2010; Ramsey, 2004]. Historically, reflectance
measurements in the short-wave infrared region
have received most of the attention. A number of
important rock-forming silicate minerals (such as
quartz and most feldspars), however, are indistinct
in short-wave infrared spectra and show conspicu-
ous spectral features only at longer wavelengths
[Salisbury et al., 1991]. Existing literature has
shown that thermal infrared (TIR) spectra can be
used successfully to identify rock-forming minerals
in samples [e.g., Salisbury and D Aria, 1992;
Vaughan et al., 2005] as well as to give quantitative
information on minerals in a rock sample [e.g.,
Feely and Christensen, 1999; Milam et al., 2007,
Ramsey and Christensen, 1998; Ruff, 1998].

[3] Most existing studies [e.g., Feely and
Christensen, 1999; Gillespie, 1992; Milam et al.,
2004; Ramsey, 2004; Ramsey et al., 1999; Thomson
and Salisbury, 1993] extract quantitative mineral
abundance information from TIR spectra by means
of a linear spectral mixture analysis (SMA). The
fundamental assumption is that the measured rock
spectrum is a linear combination of its components
(minerals), weighted by each mineral’s areal fraction.
Typically, the fractions of each possible mineral are
varied until the resulting rock spectrum shows the
least root mean square error as compared to the
measured rock spectrum. Earlier studies have shown
that the assumption of linear mixtures is essentially
true in the thermal infrared wavelength region for
rocks or coarse particulate samples, where surface
reflection dominates and volume scattering (energy
passing through the grains) is minimal [e.g., Feely
and Christensen, 1999; Ramsey and Christensen,
1998; Thomson and Salisbury, 1993]. To function
properly and give reliable results, SMA algorithms

require a database that contains spectra of all mineral
components that are to be expected in the rocks to be
analyzed. Missing end-members can either result in
large root mean square errors or are partially (but
incorrectly) compensated by linear combinations of
other minerals [Rogge et al., 2006]. Especially with
complex mineral groups (like feldspars and amphi-
boles) it can be challenging to acquire pure sample
material and representative spectra for all composi-
tional and structural variations within the group.
Furthermore, an over-complete spectral database
(i.e., containing spectra that do not occur in the
rock spectrum to be unmixed) can lead to an
increased error of the abundance estimates similar
to an incomplete database [Rogge et al., 2006].

[4] In this paper, we present a different approach
to extracting mineralogic information from TIR
spectra that is not based on an input library of
pure mineral spectra nor tries to extract spectral
end-members from the [e.g., Bandfield et al., 2000].
Instead, modal mineralogy information on a num-
ber of samples is used to build a quantitative multi-
variate partial least squares regression (PLSR) model
that links the mineralogy of the samples to their
respective TIR spectral signatures. The resulting
PLSR model can be applied to another set of
samples, for which only TIR spectra are available,
and modal mineralogy can be estimated quickly and
inexpensively from TIR spectra. The methodology
has potential to a) partially replace expensive and
time consuming laboratory analyses (such as thin
section analysis or x-ray diffraction), b) conduct
modal determination from TIR spectra directly in
the field and c¢) be upscaled to airborne data for
mapping of spatial mineralogic patterns on TIR
imagery. Here we assess the methodology on a
petrographically well-defined sample data set from
Yerington, Nevada [Dilles, 1984; Dilles and
Einaudi, 1992] and test how well thermal infrared
reflectance spectroscopy and PLSR can estimate
modal percentages of the main rock forming
minerals in samples.

2. Methodology

2.1. Modal Mineralogy

[51 Modal mineralogy from optical microscopy was
chosen as the reference method to compare the
PLSR results to. This petrographic information (see
Data Set S1 in the auxiliary material) stems from
Dilles [1984] and Dilles and Einaudi [1992] and
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was collected on igneous samples (ranging from
gabbroic and andesitic to granitic) from a porphyry
copper deposit in Yerington, Nevada.! Hydrother-
mal alteration in the area created distinct zones
of potassic, sodic-calcic, quartz-sericite and tour-
maline alteration. Areas close to neighboring sedi-
mentary rocks show skarn alteration. Alkali
feldspar, plagioclase and quartz (Afsp, Plg, Qtz)
modes were determined in percent of the thin sec-
tion area (areal%) with traditional polarization
microscopy [Dilles, 1984]. These areal% data were
not converted to typical volume% used for mineral
modes sensu stricto since spectroscopy is sensitive
to areal% as well. Error estimates for the modal
mineralogy are similar to those typically quoted in
literature, with accuracies of +5-15% for major
minerals (>10% of area) and +£<5% for minor
minerals (<10% of area) [Feely and Christensen,
1999; Hamilton and Christensen, 2000]. In altered
samples, for each mineral phase the percentage of
alteration as well as the alteration product was taken
into account. This ensures that the tabular modal
descriptions represent the current mineral composi-
tion of the samples (after alteration) and gives the
best possible basis for comparison to TIR spectra.

[6] Plagioclase composition (Plgcomp) was deter-
mined using the a-normal method [Deer et al.,
1992] on several grains per thin section, and
confirmed with electron microprobe on selected
samples, with corresponding errors approximately
£1-2 mol% and £ 1 mol%, respectively. In samples
with zoned plagioclase, compositions were esti-
mated on several spots from core to rim of individ-
ual grains and the results were averaged.

2.2. Thermal Infrared Spectroscopy

[7] Since coverslips ruled out spectroscopy directly
on the thin sections, the corresponding offcuts from
the thin section production were used in the TIR
reflectance spectroscopy assuming that mineral
modes were similar. The 105 sample blocks were
prepared for the spectral measurements by grinding
the measurement surface with 80 grit silicon car-
bide. This removed remnants of epoxy glue, sodium
cobaltinitrite staining and saw markings from the
surface to be measured. The blocks were washed
with distilled water and left to air dry for a day.

[8] The thermal infrared reflectance spectra were
recorded with the Bruker Vertex 70 FTIR

'Auxiliary material data sets are available at ftp://ftp.agu.org/
apend/gc/2011gc004004. Other auxiliary material files are in the
HTML. doi:10.1029/2011GC004004.

spectrometer situated at the University of Twente,
Faculty of ITC (UT-ITC). In order to measure
spectra that are quantitatively comparable to remote
sensing emission imagery [Hecker et al., 2010;
Korb et al., 1999; Salisbury et al., 1994], the
standard laboratory instrument was customized to
allow for directional-hemispherical reflectance
measurements of large rock samples. A custom-
built, diffuse gold-coated integrating sphere of 150
mm diameter was attached to an external port of
the instrument. The beam path was modified such
that it leaves the spectrometer through a con-
necting funnel and enters the equatorial plane of
the sphere. A folding mirror placed slightly off the
sphere’s center deflects the near-collimated beam
downward and through the 30 mm sampling port
at the sphere’s south pole onto the sample material.
The incidence angle onto the sample is 10 degrees
off-normal and all reflection directions are inte-
grated by the sphere and measured by the Mer-
cury-Cadmium-Tellurium detector situated near the
north pole of the sphere. The folding mirror in the
center of the sphere works as a baffle and pre-
vents the first specular reflection from entering
the detector. The entire spectrometer, funnel and
integrating sphere assembly was purged with N, gas
to suppress CO, and H,O features in the resulting
spectra. For more details on the UT-ITC instrument
setup and data reduction to absolute reflectance
spectra, see Hecker et al. [2011].

[6] Spectra were recorded from 1330-625 cm !
(7.5 to 16.0 um) at a resolution of 4 cm™'. A
Labsphere Infragold diffuse gold standard was
used as a reference before each new sample. For
the reference as well as sample measurement, 512
scans were co-added. Additionally, each sample
was measured a total of eight times (without moving
the sample) and averaged again to improve signal-
to-noise ratio. Repeatability of the FTIR measure-
ments is high for most of the spectral range with
standard deviations of the eight repeat measure-
ments per sample around 0.0015 reflectance units
(roughly 0.6% of a typical reflectance value of
0.25). The standard deviation increases to 0.0080
toward the far end of the wavelength range where the
limits of the detector sensitivity range are reached.
Total measurement time for a reference and eight
sample measurements was around 30 min (including
purge delays of 2 min after placing the gold standard
or sample under the integrating sphere).

[10] For this particular study a 20 mm port reducer
with the same diffuse gold coating was mounted to
the sampling port to prevent incident energy from
leaking past the edges of the sample blocks. This
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reduces the measurement spot from about 25 mm to
20 mm diameter on the sample surface (about a
third of the entire offcut’s surface area). The central
part of each block was measured except for very
heterogeneous samples, where the most represen-
tative part of the block was selected for measure-
ment. For two samples, duplicate measurements
were done at the beginning and the end of the
measurement series (spanning several months) to
test for possible drift in detector sensitivity as well
as for sampling errors (i.e., slightly different mea-
suring spot on the sample surface). The difference
in the duplicates usually stays within 0.01 reflec-
tance units, with an occasional value up to 0.02.

2.3. Partial Least Squares Regression

[11] Partial least squares regression (PLSR) is a
quantitative multivariate statistical tool that allows
for the analysis of data with strong correlations and
with noise [Wold et al., 2001]. In a first step, a
PLSR model is built, using a training set of samples
for which the spectral information as well as the
modal mineralogy is known. In the second step,
the resulting PLSR model can be applied to new
samples for which only spectra are available, and
the modal mineralogy is modeled from the TIR
spectra alone. In this study four PLSR models were
built to predict alkali feldspar, plagioclase and
quartz modes, as well as the average plagioclase
composition in the samples.

[12] Contrary to the more general multiple linear
regression model, PLSR can also handle data sets
with more variables than samples. Hence, it is
especially useful for spectroscopic data sets that
contain reflectance values at hundreds to thousands
of wavelengths. While originally developed for the
field of chemometrics, PLSR has been applied to a
number of spectroscopic studies in diverse appli-
cation fields such as vegetation studies [e.g., Asner
and Martin, 2008], soil mechanics [Yitagesu et al.,
2009] and land degradation [Farifieh et al., 2007].
Goetz et al. [2009] used PLSR to build a predictive
mineral model from near and short-wave infrared
spectra recorded on gangue material on a conveyor
belt. [Cudahy et al., 2001, 2009] applied PLSR for
the first time to thermal infrared spectra of rock
samples and compared them to X-ray diffraction d-
spacing results.

[13] PLSR creates a regression model that uses a set
of predictor variables X (in our case the TIR spec-
tra) to predict the occurrence and concentration of a
set of response variables Y (in our case the modal
mineralogy of the samples from the thin section

analysis). Similar to a principal component analysis
(PCA), the high dimensional X matrix is reduced to
a few factors or latent variables by a projection to
an orthogonal system of small dimensionality. The
main difference being that in a PCA, the variance in
X is maximized while in a PLSR the covariance
between X and Y is maximized [Esbensen, 2006].
This causes the first few factors to contain the spec-
tral content that is most representative and predictive
of the Y values while higher number factors contain
spectral content that is either not related to the
particular predicted Y or contains noise. In this
paper we used the nonlinear iterative partial least
squares (NIPALS) algorithm as implemented in
The Unscrambler software [Camo Software, 2010].
For a more detailed introduction to PLSR theory
and algorithms, the reader is referred to excellent
existing literature [e.g., Esbensen, 2006; Geladi
and Kowalski, 1986; Wold et al., 2001].

2.3.1. Pre-processing

[14] A typical pre-processing chain for PLSR input
data consists of data transformation, mean-centering
and scaling [Wold et al., 2001]. While PLSR does not
have any particular prerequisites in terms of variable
distribution [Chin, 1998], a symmetric histogram is
preferred [Wold et al., 2001]. For this particular data
set, the response variables (mineral modes) were
transformed with arcsine (modes of alkali feldspar
and quartz as well as the composition of the plagio-
clase) or power transformation (plagioclase modes)
to improve the symmetry of their histograms. To
improve numerical stability and facilitate interpreta-
tion [Wold et al, 2001], predictor and response
variables were mean-centered by subtracting the
average of the individual variable [Geladi and
Kowalski, 1986]. Scaling of variables is important if
they do not share the same value ranges. In those
cases, variables with small value ranges will be
under-represented in the final model. For this data set,
no scaling was applied since all variables are already
expressed in percentages and cover, therefore, the
same value range. Not scaling the spectral variables
has two further advantages: first, the resulting
regression coefficients are directly interpretable in
terms of spectral features of minerals and second,
it prevents measurement noise in low reflective parts
of the spectrum from influencing the model results.

2.3.2. Validation

[15] During the building of the PLSR model (i.e.,
projection of the TIR spectra into orthogonal fac-
tors), the main spectral information that is
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explaining the mineral modes is compressed in the
first few factors, while later factors contain mainly
noise. The validation of the PLSR model has two
main purposes: a) to separate the factors that con-
tain useful information from those that are consist-
ing mainly of noise and b) to supply a quantitative
measure of the expected error in the model. This
quantitative measure of the overall “goodness of
fit” is represented by a root mean square error of
prediction (RMSEP) that is defined as

N 2
27:1 i 7yi‘ref)

n

RMSEP =

where y; is the modeled response variable, y; ;s the
true measured response variable and n is the num-
ber of samples.

[16] RMSEP can either be calculated on an entirely
separate validation data set (not included during the
model building), or by cross validation, an iterative
process that withholds each time a number of
samples from of the model building set. The limited
number of samples (105, plus two duplicates) and
the level of uncertainty in the thin section data
make the use of an independent validation data set
(e.g., 1/3 of all samples not available for model
building) undesirable. Instead, a segmented cross
validation was used, where samples were split up
into 10 segments. The samples were first ordered
by the variable to be predicted and successively
one-for-one distributed into the 10 segments. This
technique ensures that each segment contains an
equal number of samples with low, medium and
high values of a particular response variable. The
two duplicates were each assigned to the same
group as their respective original measurement, to
prevent the same sample from occurring in the
model building as well as validation set.

[17] The PLSR model is built 10 times, each time a
different segment is kept out of the model building
set and used for validation. RMSEP values are
calculated for each segment and averaged to form
the overall RMSEP of the model.

2.3.3. Number of Factors

[18] The selection of the proper number of factors is
imperative for a good regression model: too small
and the model will not be able to account for the

complexity of the mixed samples, too large and the
model will over-fit the data set, as it begins to
model the noise rather than the data itself. As a
guideline, the number of factors that creates the best
prediction (i.e., smallest RMSEP) was considered
optimal (Figures S1, S3, S5, and S7 in Text S1). If
the predicted error only decreased minimally when
including an extra factor, we decided to not include
the extra factor, as a model with less factors is more
robust when applied to new data [Esbensen, 2006].
In the case of the plagioclase composition model,
the RMSEP plot had a local minimum at five and a
global minimum at eight factors. The model using
eight factors was observably overfitting the cali-
bration data: the loading weights started to become
very unspecific and noisy, and the regression
coefficients stopped showing spectral features
characteristic of the mineral being modeled (for
examples of loading weights and regression coef-
ficients see the results section). In this particular
case, the local minimum at five factors in the
RMSEP plot was used as the cutoff.

2.3.4. Prediction

[19] As the final stage in the PLSR modeling, the
previously built models are used to predict sample
fractions for the modeled minerals from the TIR
spectroscopy. For that purpose the PLSR model’s
regression coefficients are applied to thermal
infrared reflectance spectra with unknown mineral
modes, where the predicted variable

y =By + B1X1 + B, X> + ... + B,X,

where y; is the predicted response variable (e.g.,
quartz modes), B to B,, the regression coefficients
at all wavelengths, X; to X, the reflectance values at
all wavelengths and B, the regression coefficient
bias. In a final step, the inverse of the earlier data
transformations are applied to revert the prediction
results to compositional information in the original
units of areal percentages.

3. Results

3.1. TIR Spectra

[20] The igneous rocks studied here are typically
intermediate in acidity and contain two feldspars,
quartz, and sometimes amphiboles or pyroxenes

Figure 1.

Thermal infrared spectra from a selection of samples as an illustration of their spectral content. The major

spectral features are labeled with the mineral that causes it. Qtz = quartz, Mcl = microcline, Na_plag = sodic plagio-
clase, Hbl = hornblende, Ca_plag = calcic plagioclase, Ms = muscovite.
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Figure 2. Loading weights (factors 1 to 4) and regression coefficients of the alkali feldspar model displayed as func-
tions of wavelength. Wavelengths with regression coefficient values far from zero are influential for PLSR model.

that have features in the TIR rock spectra. Addi-
tionally, alteration minerals that occur frequently
are sericite, secondary alkali and plagioclase feld-
spar, epidote and chlorite. Figure 1 shows examples
of TIR rock spectra from this study with the most
diagnostic features in the reststrahlen band (about
8—12 pm). The range of 12.5-14.0 um contains
additional features of feldspar (Figure 1c) and
quartz (Figure 1d). Figure lc is an example in
which all TIR active minerals have been albitized
by alteration and the TIR spectrum only shows
features of Na-plagioclase. Most other samples,
however, are strongly mixed spectra with over-
lapping features of several minerals in the rest-
strahlen band (e.g., Figures la and 1b) that can
make mineral identification difficult and quantifi-
cation impossible without multivariate modeling or
mixing analysis.

3.2. PLSR Model Outputs

[21] The main outputs of a PLSR model are the
RMSEP plot, the loading weights and the regres-
sion coefficient spectra (Figure 2 and Text S1). We
will illustrate the use and the interpretation of each

of these output data sets on the example of the
alkali feldspar model. The plagioclase, quartz and
plagioclase composition models are explained in
detail in Text S1.

3.2.1. RMSEP Plot

[221 The RMSEP plot shows the predicted mean
error (from the cross validation analysis) as a
function of the number of factors used. For the
alkali feldspar model, the predicted error increases
again after a global minimum at six factors, as the
model starts fitting noise in the data (Figure S1 in
Text S1). Since the gain in RMSEP between a
model of five and six factors is minimal, we chose
to use the more robust five factor model.

3.2.2. Loading Weights

[23] Since our predictor variables are spectral data,
the resulting loading weights and regression coef-
ficients can be plotted and interpreted as spectra as
well. The loading weights of a factor show which
wavelengths are important in defining that particu-
lar factor. Through spectral interpretation of the
loading weights, we can understand which minerals
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and mineral combinations drive the particular
PLSR model factor and, therefore, have a positive
or negative link with the predicted variable.

[24] Under a negative link we understand that
inverse features of a particular mineral reduce the
modeled amount in case those features are present.
This is best explained in the case of the simple
quartz model (Text S1): If only factor 1 was used,
samples with large albite content would have
modeled quartz modes that are too high (due to
overlaps in the quartz and albite reststrahlen fea-
tures). The second factor is used to compensate for
this effect and will reduce the quartz estimates in
samples that are rich in albite, and increase the
quartz estimates if samples are poor in albite.
Hence, loading weights as well as regression coef-
ficients (see below) can contain positive as well as
inverse features of minerals to come up with an
optimal modal estimate for the predicted mineral.

[25] For the alkali feldspar model, the loading
weights of factor 1 (Figure 2) are strongly domi-
nated by microcline, with reststrahlen features at
8.56, 9.24, 9.48 and 9.81 (all wavelengths are in
units of pm). There are also features at 12.98, 13.37
and 15.35 that are caused by microcline. Loading
weights of factor 2 show a negative link with a
quartz spectrum and a positive link with a couple of
microcline features at 9.49 and 9.82. Loading
weights of factor 3 show a negative link with a few
albite features at 9.78 and 15.25, and a weak posi-
tive link with microcline features at 8.57, 8.76,
9.28, 9.47, 9.66, 12.69, 13.45. The 8.31 feature
could not be assigned to a mineral. The loading
weights of factor 4 are dominated by albite. The
features show a negative link with albite at 8.58,
9.64, 9.81, 9.95, as well as the four features
between 12.5 and 14 and the feature at 15.21.
Furthermore, a broad feature at 10.78 indicates a
link with more Ca-rich plagioclase, such as labra-
dorite or bytownite. The loading weights of factor 5
(not displayed here) show clear structure but the
features could not be assigned to a particular min-
eral spectrum.

3.2.3. Regression Coefficients

[26] Regression coefficients summarize the rela-
tionship between the predictor variables and the
response variable. While the loading weights show
the influential wavelengths that define a particular
factor, the regression coefficients show the influ-
ential wavelengths for the entire PLSR model.
Wavelengths where the regression coefficients are
close to zero have a negligible influence on the

prediction of a particular response variable, while
large positive and large negative values indicate
wavelengths that have a strong positive and nega-
tive link with the response variable in question.
Applying the regression coefficients to thermal
infrared spectra with unknown mineral modes
results in a predicted value of that particular
mineral.

[27] The regression coefficient spectrum of the
alkali feldspar model combines the information
from the loading weights of factors 1 to 5. Most
spectral features are linked positively to spectral
features of microcline (8.62, 8.99, 9.28, 9.40, 9.47,;
all wavelengths in units of pum). The features at
8.21 and 8.62 are negatively linked to quartz, and
features at 12.69, 13.12, 13.43 and 15.21 are neg-
atively linked to albite. At the 10.78 wavelength,
typical for Ca-rich plagioclase, the coefficients are
nearly zero, thus showing that this wavelength
region is not relevant in determining alkali feldspar
modes. No evidence of other minerals was detected
in the regression coefficients of the alkali feldspar
model.

[28] In a similar fashion, the regression coefficients
of the other three models were analyzed (see
Text S1 for details). The plagioclase model is
guided by a combination of different albite features,
as well as a Ca- plagioclase feature. Quartz and
microcline features are included to a lesser degree
in predicting the plagioclase amount in the sample.

[29] The quartz model is a very simple model that
contains only two factors. The regression coefficients
also represent the simplicity of this model, which is
driven mainly by the presence of quartz features and
to a lesser degree by the absence of albite features.

[30] The plagioclase composition model is the most
complex model. The local minima in the RMSEP
plot show that the projection of the predictor spec-
tra to latent variables is not yet ideally predicting
the response variable, and that the data set possibly
contains one or several outliers. Since all reason-
able outliers (e.g., vague data description, uncertain
mineral identification in thin section study) had
been removed from the data set earlier, no unjusti-
fiable outlier removal, to artificially improve model
performance, was implemented at this stage. As a
consequence, the loading weight spectrum of the
plagioclase composition model contains an accu-
mulation of many mineral features and possibly
noise. From the identifiable features, it appears that
the plagioclase spectrum is mainly driven by sodic
and calcic plagioclase as well as quartz content.
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Figure 3. PLSR modeling results predicted (from spectroscopy) versus measured (from thin section) in areal percen-
tages within the samples. Dashed line is regression line between measured and predicted values. Thin solid line repre-

sents the 1:1 line. Open circles indicate duplicate samples.

3.3. Measured Versus Predicted

[31] After applying the regression coefficients to
the spectral measurements and inverting the pre-
processing transformation, the TIR spectrum of
each sample predicts alkali feldspar, plagioclase
and quartz modes, as well as a plagioclase compo-
sition. The PLSR modeling prediction results show
the modeled percentage of a mineral in the TIR
spectrum of the sample compared to the measured
composition from the thin section analysis
(Figure 3). Performance parameters of the various

models are summarized in Table 1. The alkali
feldspar (Afsp) model (Figure 3a) works well
(R?=0.81). It does contain, however, a small group
of samples that contain 20-30% Afsp in the thin
section measurements but only 5-15% in the PLSR
model results. They do not show any common
lithology or alteration patterns that could explain
this discrepancy and for this reason they were kept
in the model as is. The RMSEP for the Afsp model
is +5.1% absolute, which is equivalent to the lower
end of the error estimate of the reference method.
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Table 1. Summary of PLSR Modeling Results per
Mineral
Mineral®

Afsp Plg Qtz Plgcomp
Number of factors used 5 4 2 5
RMSEP [in % abs.] 5.1 8.5 6.9 7.8
R? 0.81 0.80 0.70 0.59
Slope (of regr. line) 0.86 0.82 0.79 0.61

*Mineral abbreviations used are as follows: Afsp = alkali feldspar;
Plg = plagioclase; Qtz = quartz; Plgcomp = plagioclase composition.

[32] The plagioclase model (Figure 3b) performs
well (R* = 0.80). Samples with very low to no
plagioclase show a larger spread in their model
results than the rest of the samples. The RMSEP of
the plagioclase prediction is £8.5% absolute and
can be attributed to the value range of the plagio-
clase percentages.

[33] The quartz model (Figure 3c) has an R? of 0.70.
The prediction residuals show that the variance
increases with increasing quartz content. This result
can (at least partially) be attributed to the thin section
reference method, which has a growing estimated
error with increases in quartz content. The RMSEP
for quartz is +6.9% absolute for the entire model.
However, samples with less than about 30% quartz
(in our case most igneous samples without the
influence of quartz-sericite alteration) model better
with a RMSEP of +5.8% absolute.

[34] The relationship between the measured versus
predicted plagioclase compositions (Figure 3d) has

an R? 0f 0.59, which is weaker than for the previous
models. We suspect that the reference values from
the thin section analysis overestimate the average
anorthite content of plagioclase for samples with
>Anyo due to the common procedure to measure
core, intermediate zone and rim. The intermediate
zones (and rims) dominate the area, but with most
samples showing normally zoned plagioclase crys-
tals (i.e., with calcic cores), averaging the mea-
surements overestimates the calcic component as
compared to spectroscopic results. The RMSEP of
the plagioclase composition prediction has an esti-
mated error of about £8 mol % anorthite. There are
clusters of samples that plot well off the regression
line: a cluster at measured Ansg (that plots above the
line) represents hornblende gabbroic rocks and
other rocks with a distinct lack of Afsp. The cause
for this is not understood and can also not be iden-
tified in the loading weights of the plagioclase
model. A second cluster at a measured Ans; (that
plots below the regression line) represents samples
that have been slightly altered to chlorite, epi-
dote =+ sericite. The main spectral feature of chlorite
around 9.86 um could easily interfere with the
oligoclase-feature at the same wavelength. It has
to be noted, however, that no quantitative, con-
sistent link could be made between the residuals
of the plagioclase composition prediction and the
amount of chlorite (or epidote/sericite for that
matter) in the sample.

A

Figure 4. Quartz-alkali feldspar-plagioclase diagram with thin section measurements (black dots) connected by a
line to the corresponding composition predicted from the spectroscopic data (gray diamonds). Clusters a to e are
described in the text. Triangle subdivisions are according to Le Maitre [1989]. For field labels see Figure 5.
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scopic predictions (gray diamonds). The smaller symbols and the shaded areas indicate the corresponding error
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Le Maitre [1989].

3.4. Ternary Plot

[35] The modal mineralogy from thin section mea-
surements and PLSR modeling on spectroscopic data
are represented in a QAP (quartz-alkali feldspar-
plagioclase) plot for plutonic rocks (Figure 4) [Le
Maitre, 1989]. The modal mineral percentages of
the three minerals were normalized to 100% before
plotting. Although not strictly applicable to altered
igneous rocks, we plot both the altered and unaltered
rocks on the QAP diagram to compare the results of
both methods. Contrary to the recommendations of
Le Maitre [1989], the extreme sodic end-member
of the plagioclase group (Ang-Ans) was kept with the
plagioclase count rather than summing them up with
the alkali feldspar modes since the sodic plagioclases
form part of a continuous albite-oligoclase mixture
sequence. Five clusters of samples are discernible in
the QAP diagram: a) the monzogranite group, b) the
quartz monzodiorite group, c) the tonalite to quartz

diorite group, d) the gabbros and e) a cluster in the
top third of the QAP diagram containing samples
rich in quartz and very poor in feldspars. Those of
cluster ) have undergone quartz-sericite (Fpyrite,
+tourmaline) alteration, where the feldspars are
mainly replaced by fine-grained sericite. The same
five clusters are also visible in the PLSR predicted
compositions from the spectroscopic data (Figure 4).
Only a few predictions (under 8%) do cross into
another cluster. This demonstrates that we can use the
combination of TIR spectroscopy and PLSR model-
ing to classify rock samples in a QAP ternary diagram.

3.5. Error Estimates

[36] In order to illustrate the order of magnitude of
the QAP plot uncertainties, ternary error regions
were plotted for the reference method as well as for
the PLSR prediction (Figure 5). The error regions
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show how their spatial extent changes with location
in the QAP plot. One random sample each was
selected from clusters a, ¢ and e. For the reference
method uncertainty, the average of the quoted error
estimates (£10% for major minerals and +5% for
minor minerals) were added and subtracted from
the original areal percentages. These error-modified
points were normalized to 100%, added to a QAP
diagram and the convex hull of the resulting points
was used as the ternary error region. For the
uncertainties in the spectroscopic predictions, the
quartz, alkali feldspar and plagioclase model
RMSEPs (Table 1) were added and subtracted from
the respective original predicted values, normalized
to 100% and the convex hull of the resulting points
was used as the ternary error region.

[37] Sample y325 with roughly similar propor-
tions of quartz, alkali feldspar and plagioclase
shows a relatively small and isotropic prediction
uncertainty field (Figure 5). Other samples (e.g.,
y695) have modal values along the edge of the
QAP diagram or close to a corner. As negative
values are not physically possible, the uncertainty
fields are truncated at the edge of the triangle and
become anisotropic in shape. Samples with
Q + A + P totaling much less than 100% prior to
normalization (e.g., y695 Q + A + P = 52%)
show larger error fields as small errors of 6-8%
result in large error regions after the normalization.
Figure 5 shows that in all three cases the measured
and predicted uncertainty fields overlap and are not
significantly different from each other.

[38] To illustrate the reproducibility of the method,
the duplicate samples are highlighted by open cir-
cles in Figures 3 and 5. In all cases the PLSR pre-
dictions based on the duplicate measurements plot
very close to the originals and always within a 2%
absolute margin. Since the duplicate measurements
were taken several months later and on a different
spot on the sample, the small deviations show that
error propagation through sampling error and
instrument noise and drift contributes less than 2%
absolute to the overall uncertainty.

4. Discussion

[39] Table 1 and Figure 3 summarize some of the
key parameters of the four PLSR models applied in
this study and Text S1 provides some additional
information. The loading weights and regression
coefficients show that the models are driven by the
most important mineral components in which we
are interested. No spectral features of unexpected or

accessory minerals were detected in the models,
which implies that the bases for the models are
robust. The quartz model is based on only two
factors due to its distinct spectral features with no
variations due to composition. Using only two
factors also greatly reduces the risk of overfitting
the data, which is important when the model is
applied to another data set or study area of interest.
The alkali feldspar and plagioclase models use five
and four factors, respectively. Many of the factors
show similar features in the loading weights but
with different relative feature depths and slight
shifts in wavelengths. These factors are required to
account for changes in composition and mineralogy
in the alkali feldspar and plagioclase group and are
not a sign of redundancy or overfitting. The cross-
validation results and the clear structure in all
loading weights give confidence that these 4-5
factor models are also robust and applicable to other
data sets. Since “plagioclase composition” does not
have a spectral signature as such, and depends on
the amount and compositions of the different pla-
gioclase minerals in the rock, the plgcomp model is
more complex and less straight forward than the
other three. The RMSEP plot (Figure S7) shows
local minima, which are a sign of remaining outliers
in the data. While the loading weights of the pla-
gioclase composition model are clearly driven by
spectral features of various plagioclase composi-
tions, the regression coefficients show less structure
than in other models and display some noise.

[40] Figure 2 shows that the reference method and
the predicted values from spectroscopy have dis-
crepancies but the relative contributions of refer-
ence method and model toward these errors are
irresolvable. Ideally, we would like to confirm the
results with a reference method that has a smaller
uncertainty and is less dependent on specialist
interpretation than thin section analysis. X-ray dif-
fraction (XRD) is generally a qualitative process
that identifies minerals in the sample, but not their
amounts. Quantitative XRD strives to give quanti-
tative mineralogic information but uncertainties
with thin section analysis is often cited around 10%
[Amaral et al., 2006] which does not represent a
significant enough reduction in reference method
uncertainty as compared to the £5-15% for major
minerals in thin section analysis. X-ray fluores-
cence (XRF) and scanning electron microprobe in
turn give quantitative chemical information on a
sample or on a small spot on a sample, respectively.
Both require a model (based on order of mineral
crystallization from melt) to get from oxide chem-
istry to normative mineralogy. Many of the samples
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in the study area have undergone hydrothermal
alteration by different fluids at different tempera-
tures and intensities. They do not necessarily follow
the normative models. Hence, the methods men-
tioned above would not significantly improve the
uncertainties in the reference method.

[41] Three samples (sample numbers y538, y645
and y697b) of the monzogranite cluster (Figure 4,
cluster a) show large differences between thin sec-
tion and PLSR prediction. In two cases (y645 and
y697b) the thin section observation included a fine-
grained matrix, which may have resulted in mis-
identification of minerals. Two quartz-sericite
(£pyrite, +tourmaline) altered samples (y695 and
y574) show large QAP differences with the thin
section results (Figure 4, cluster e). Also in the case
of these two samples, the discrepancies can par-
tially be attributed to the fine-grained nature of the
samples, which could hamper the identification of
remaining feldspar relicts under the microscope. An
additional source of increased uncertainty for these
samples is inherent to the modeling method itself:
A PLSR model developed on a sample set with
many typical and only a few extreme compositions
has difficulties in predicting the extremes of the
value range. This problem is evident in low pla-
gioclase (Figure 3b) and high quartz (Figure 3c)
samples that show large spreads in the measured
versus predicted plots. The problematic samples are
in both cases the quartz-sericite altered rocks. Since
most (non-altered) samples do not contain any
substantial amounts of white mica, the PLS models
do not include any sericite features in the loading
weights and appear to have problems modeling
those samples properly. To increase the prediction
accuracy it can be considered to model pervasively
altered rocks separately in the future.

[42] In order to put the modeled accuracies of this
study into context, we compare it to those reported
with the commonly applied spectral mixture anal-
ysis (or unmixing): Feely and Christensen [1999]
reported typical unmixing uncertainties for major
minerals in igneous rock samples of +5-10%
absolute. For those results all types of feldspars
were considered together. The results for alkali
feldspar and plagioclase alone were considerably
less reliable and were not specified. Wyatt et al.
[2001] determined plagioclase modes to within 5—
10% absolute. In comparison, the results presented
here perform well (Afsp £ 5.1%, Plg + 8.5%,
Qtz £ 6.9% all absolute). Milam et al. [2004, 2007]
deconvolved TIR spectra of igneous rocks, coarse
plagioclase sand, and polymineralic sand mixtures
and modeled plagioclase compositions to within

6 mol% An. By comparison, plagioclase com-
positions modeled in this study had uncertainties
of 7.8 mol% An.

[43] While results are comparable between PLSR
and SMA, the two techniques have thoroughly
different approaches and requirements. As men-
tioned in the introduction, the challenge of SMA is
the a priori definition of a set of representative
reference spectra for all expected mineralogic
compositional and structural variations in the rocks
to be analyzed. Its strength, on the other hand, is
that if a set of reference spectra can be defined
accurately, SMA can be applied to different study
areas without any additional field information
available (e.g., planetary sciences). In contrast to
SMA, PLSR does not link sample spectra to a
spectral end-member reference library. Instead,
existing modal mineralogy for a number of samples
are used to train the model to extract the required
information automatically from the thermal infrared
spectra. While not required for building the model,
a spectral library can be very helpful when inter-
preting the internal structures of a PLSR model: by
comparing loading weights and regression coeffi-
cients to mineral spectra, one can analyze what
minerals and mineral combinations drive a partic-
ular PLSR model.

[44] PLSR is especially useful for many ongoing
projects that do have existing information on com-
position for a number of samples on hand, which
can be used to train the PLSR models and get
modal estimates from TIR spectra on the rest of the
samples. The most prospective sources of compo-
sitional information are mineral modes by thin
section analysis or QXRD, since features in TIR
spectroscopy are coupled to the mineralogic com-
pounds in rocks. Alternatively, one could also
attempt the use of whole rock or trace element
geochemistry results as long as their concentrations
are correlated with the mineral modes present in the
rocks.

[45] The minimum number of samples required to
build a reliable PLSR models based on spectros-
copy is 20-50 well defined samples [Esbensen,
2006]. For mineralogic data sets with considerable
uncertainties most authors prefer a slightly larger
sample set of 50—100 samples. A prime example of
where PLSR could be used on existing data sets
would be a mining operation: data from different
analytical methods for samples from diverse parts
of the deposit exist and can be used to link TIR
spectra to the existing data sets. While mineral
modes are the TIR spectroscopy could be used at
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the mine face, on drill cores or in sorting operations
to determine mineralogy and possibly ore content.
However, care has to be taken when PLSR models
are transported from one study area to another. The
models and the estimated prediction errors (RMSEP)
remain valid as long as the new samples come
from the same population, i.e., they have compa-
rable mineralogic compositions. If that is not the
case, prediction errors will increase and the model
should be re-calibrated using samples from the new
study area.

[46] Thermal infrared spectra give us information on
the average mineralogic composition of the sample,
while thin section analysis with optical methods or
electron microprobe can reveal information on
compositional zonation of grains or whether a
mineral was stable in a given assemblage. To com-
bine spatial information with spectral information,
drill cores or flat samples can be imaged in the
shortwave infrared by hyperspectral sample ima-
gers, such as SisuRock (SisuRock Hyperspectral
Core Imaging Station, Spectral Imaging Ltd, 2011,
available at http://www.specim.fi/media/product-
brochures/sisurock-verl-11.pdf) for which a ther-
mal infrared option is currently being developed.
Furthermore, thermal infrared spectroscopy has the
capacity to be upscaled to routine measurements in
the laboratory or field, or to airborne imagery.
While the current measurement setup of directional-
hemispherical reflectance was chosen for future
comparison to airborne data, routine laboratory and
field applications would benefit from the larger
energy throughput of a bi-directional setup, which
would reduce the measurement time to well under a
minute per sample. A similarly operating system
(bi-directional) has been developed by CSIRO
Australia for routine drill core measurements and
has recently been extended to TIR wavelengths
[Huntington et al., 2010]. Future work will have to
demonstrate whether PLSR derived models, as
described in this paper, can also be applied to air-
borne TIR imagery.

5. Conclusions

[47] Thermal infrared spectroscopy in combination
with partial least squares modeling can be used to
estimate the modal mineralogy of igneous rock
samples. In this study, TIR spectra were linked to
thin section-determined alkali feldspar, plagioclase
and quartz contents, as well as plagioclase compo-
sition. Rock samples were successfully classified in
a QAP diagram based on TIR spectroscopy and
PLSR modeling. PLSR-modeled alkali feldspar

modes are within a +5.1% estimated absolute error
of those determined by thin sections. The plagio-
clase model performs well for all samples except
those that contain very low or no plagioclase at all.
Estimated errors for all samples are +8.5% abso-
lute. Modeled quartz modes stay within +5.8%
absolute for samples containing less than 30%
quartz. If samples with high quartz contents (i.e.,
quartz-sericite altered) are included in the model,
the estimated error increases slightly but remains
below +7% absolute. For the plagioclase group, a
PLSR model was built that predicts plagioclase
composition with discrepancies of £7.8 mol% An.

Acknowledgments

[48] The authors would like to thank Keith Milam, Steven
Ruff and Benoit Rivard for their suggestions that greatly
improved the clarity of this document.

References

Asner, G. P., and R. E. Martin (2008), Spectral and chemical
analysis of tropical forests: Scaling from leaf to canopy
levels, Remote Sens. Environ., 112(10), 3958-3970.

Amaral, P. M., J. Cruz Fernandes, and L. Guerra Rosa (2006),
A comparison between X-ray diffraction and petrography
techniques used to determine the mineralogical composition
of granite and comparable hard rocks, Mater. Sci. Forum,
514-516, 1628-1632.

Bandfield, J. L., P. R. Christensen, and M. D. Smith (2000),
Spectral data set factor analysis and end-member recovery:
Application to analysis of Martian atmospheric particulates,
J. Geophys. Res., 105(E4), 9573-9587, doi:10.1029/
1999JE001094.

Camo Software (2010), The Unscrambler X: All-in-one multi-
variate data analysis and design of experiments package, ver-
sion 10.0.1, software, Oslo.

Chin, W. W. (1998), The partial least squares approach to
structural equation modeling, in Modern Methods for Busi-
ness Research, edited by G. A. Marcoulides, pp. 295-336,
Lawrence Erlbaum Assoc., Mahwah, N. J.

Cudahy, T. J., J. Wilson, R. Hewson, P. Linton, P. Harris,
M. Sears, K. Okada, and J. A. Hackwell (2001), Mapping
variations in plagioclase felspar mineralogy using airborne
hyperspectral TIR imaging data, paper presented at Interna-
tional Geoscience and Remote Sensing Symposium, Inst. of
Electr. and Electron. Eng., Sydney, N. S. W., Australia.

Cudahy, T. J., et al. (2009), Drill core logging of plagioclase
feldspar composition and other minerals associated with
Archean Gold Mineralization at Kambalda, Western Australia,
using a bi-directional thermal infrared reflectance system, in
Remote Sensing and Spectral Geology, edited by R. Bedell,
A. P. Crosta, and E. Grunsky, pp. 223-235, Soc. of Econ.
Geol., Littleton, Colo.

Deer, W. A., R. A. Howie, and J. Zussman (1992), An Intro-
duction to the Rock-Forming Minerals, 696 pp., Addison
Wesley Longman, Harlow, Essex.

Dilles, J. H. (1984), The petrology and geochemistry of the
Yerington batholith and the Ann-Mason porphyry copper

14 of 15



"f&#2: Geochemistry _ ")
*  Geophysics |~ HECKER ET AL.: TIR AND PLSR TO DETERMINE MINERAL MODES
"/ Geosystems | 7

10.1029/2011GC004004

deposit, western Nevada, 389 pp., Stanford Univ., Stanford,
Calif.

Dilles, J. H., and M. T. Einaudi (1992), Wall-rock alteration and
hydrothermal flow paths about the Ann-Mason porphyry cop-
per deposit, Nevada—A 6 km vertical reconstruction, Econ.
Geol., 87(8), 1963-2001, doi:10.2113/gsecongeo.87.8.1963.

Esbensen, K. H. (2006), Multivariate Data Analysis in Prac-
tice: An Introduction to Multivariate Data Analysis and
Experimental Design, 5th ed., 598 pp., Camo, Oslo.

Farifteh, J., F. van der Meer, C. Atzberger, and E. J. M.
Carranza (2007), Quantitative analysis of salt-affected soil
reflectance spectra: A comparison of two adaptive methods
(PLSR and ANN), Remote Sens. Environ., 110(1), 59-78,
doi:10.1016/j.rse.2007.02.005.

Feely, K. C., and P. R. Christensen (1999), Quantitative com-
positional analysis using thermal emission spectroscopy:
Application to igneous and metamorphic rocks, J. Geophys.
Res., 104(E10), 24,195-24,210, doi:10.1029/1999JE001034.

Geladi, P., and B. R. Kowalski (1986), Partial least-squares regres-
sion: A tutorial, Anal. Chim. Acta, 185, 1-17, doi:10.1016/0003-
2670(86)80028-9.

Gillespie, A. R. (1992), Spectral mixture analysis of multispec-
tral thermal infrared images, Remote Sens. Environ., 42(2),
137145, doi:10.1016/0034-4257(92)90097-4.

Goetz, A. F. H., B. Curtiss, and D. A. Shiley (2009), Rapid
gangue mineral concentration measurement over conveyors
by NIR reflectance spectroscopy, Miner. Eng., 22(5),
490-499, doi:10.1016/j.mineng.2008.12.013.

Hamilton, V. E., and P. R. Christensen (2000), Determining
the modal mineralogy of mafic and ultramafic igneous
rocks using thermal emission spectroscopy, J. Geophys.
Res., 105(E4), 9717-9733, doi:10.1029/1999JE001113.

Hecker, C., M. van der Meijde, and F. D. van der Meer (2010),
Thermal infrared spectroscopy on feldspars—Successes, lim-
itations and their implications for remote sensing, Earth Sci.
Rev., 103(1-2), 60-70, doi:10.1016/j.earscirev.2010.07.005.

Hecker, C., S. J. Hook, M. van der Meijde, W. Bakker, H. van
der Werff, H. Wilbrink, F. van Ruitenbeek, B. de Smeth, and
F. van der Meer (2011), Thermal infrared spectrometer for
earth science remote sensing applications—Instrument mod-
ifications and measurement procedures, Semsors, 11(11),
10,981-10,999, doi:10.3390/s111110981.

Hunt, J. M., and D. S. Turner (1953), Determination of mineral
constituents of rocks by infrared spectroscopy, Anal. Chem.,
25(8), 11691174, doi:10.1021/ac60080a007.

Huntington, J., L. Whitbourn, P. Mason, M. Berman, and M. C.
Schodlok (2010), HyLogging—Voluminous industrial-scale
reflectance spectroscopy of the Earth’s subsurface, paper pre-
sented at Art, Science and Applications of Reflectance Spec-
troscopy Symposium, ASD Inc., Boulder, Colo., 23-25 Feb.

Korb, A. R., J. W. Salisbury, and D. M. D’Aria (1999), Ther-
mal-infrared remote sensing and Kirchhoff’s law: 2. Field
measurements, J. Geophys. Res., 104(B7), 15,339-15,350,
doi:10.1029/97JB03537.

Le Maitre, R. W. (1989), 4 Classification of Igneous Rocks and
Glossary of Terms: Recommendations of the International
Union of Geological Sciences, Subcommission on the System-
atics of Igneous Rocks, 193 pp., Blackwell, Oxford, U. K.

Milam, K. A., H. Y. McSween, V. E. Hamilton, J. M. Moersch,
and P. R. Christensen (2004), Accuracy of plagioclase com-
positions from laboratory and Mars spacecraft thermal emis-
sion spectra, J. Geophys. Res., 109, E04001, doi:10.1029/
2003JE002097.

Milam, K. A., H. Y. McSween, and P. R. Christensen (2007),
Plagioclase compositions derived from thermal emission
spectra of compositionally complex mixtures: Implications
for Martian feldspar mineralogy, J. Geophys. Res., 112,
E10005, doi:10.1029/2006JE002880.

Ramsey, M. S. (2004), Quantitative geological surface pro-
cesses extracted from infrared spectroscopy and remote sens-
ing, in Infrared Spectroscopy in Geochemistry, Exploration
Geochemistry and Remote Sensing, edited by P. L. King,
M. S. Ramsey, and G. A. Swayze, pp. 197-213, Mineral.
Assoc. of Can., Quebec, Que., Canada.

Ramsey, M. S., and P. R. Christensen (1998), Mineral abun-
dance determination: Quantitative deconvolution of thermal
emission spectra, J. Geophys. Res., 103(Bl), 577-596,
doi:10.1029/97JB02784.

Ramsey, M. S., P. R. Christensen, N. Lancaster, and D. A.
Howard (1999), Identification of sand sources and transport
pathways at the Kelso Dunes, California, using thermal infra-
red remote sensing, Geol. Soc. Am. Bull., 111(5), 646662,
doi:10.1130/0016-7606(1999)111<0646:10SSAT>2.3.CO;2.

Rogge, D. M., B. Rivard, J. Zhang, and J. Feng (20006), Iterative
spectral unmixing for optimizing per-pixel endmember sets,
IEEE Trans. Geosci. Remote Sens., 44(12), 3725-3736,
doi:10.1109/TGRS.2006.881123.

Ruff, S. W. (1998), Quantitative thermal infrared emission
spectroscopy applied to granitoid petrology, PhD thesis,
234 pp., Ariz. State Univ., Tempe.

Salisbury, J. W., and D. M. D’Aria (1992), Infrared (8—14 pm)
remote sensing of soil particle size, Remote Sens. Environ.,
42(2), 157-165, doi:10.1016/0034-4257(92)90099-6.

Salisbury, J. W., L. S. Walter, N. Vergo, and D. M. D’Aria
(1991), Infrared (2.1-25 pm) Spectra of Minerals, Johns
Hopkins Univ. Press, Baltimore, Md.

Salisbury, J. W., A. Wald, and D. M. Daria (1994), Thermal-
infrared remote sensing and Kirchhoff’s Law: 1. Laboratory
measurements, J. Geophys. Res., 99(B6), 11,897-11,911,
doi:10.1029/93JB03600.

Thomson, J. L., and J. W. Salisbury (1993), The midinfrared
reflectance of mineral mixtures (7—14 um), Remote Sens.
Environ., 45(1), 1-13, doi:10.1016/0034-4257(93)90077-B.

van Ruitenbeek, F. J. A., T. Cudahy, M. Hale, and F. D. van der
Meer (2005), Tracing fluid pathways in fossil hydrothermal
systems with near-infrared spectroscopy, Geology, 33(7),
597-600, doi:10.1130/G21375.1.

Vaughan, R. G., S. J. Hook, W. M. Calvin, and J. V. Taranik
(2005), Surface mineral mapping at Steamboat Springs,
Nevada, USA, with multi-wavelength thermal infrared images,
Remote Sens. Environ., 99(1-2), 140-158, doi:10.1016/.
rse.2005.04.030.

Wold, S., M. Sjostrém, and L. Eriksson (2001), PLS-regression:
A Dbasic tool of chemometrics, Chemom. Intell. Lab. Syst.,
58(2), 109-130, doi:10.1016/S0169-7439(01)00155-1.

Wyatt, M. B., V. E. Hamilton, H. Y. McSween Jr., P. R.
Christensen, and L. A. Taylor (2001), Analysis of terres-
trial and Martian volcanic compositions using thermal
emission spectroscopy: 1. Determination of mineralogy,
chemistry, and classification strategies, J. Geophys. Res.,
106(E7), 14,711-14,732, doi:10.1029/2000JE001356.

Yitagesu, F. A., F. van der Meer, H. van der Werff, and
W. Zigterman (2009), Quantifying engineering parameters
of expansive soils from their reflectance spectra, Eng. Geol.
Amsterdam, 105(3—4), 151-160, doi:10.1016/j.enggeo.2009.
01.004.

15 of 15




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


