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Abstract 
Simulation models are widely used for studying physical processes such as surface runoff, sediment transport and 

sediment yield in catchments. Most models need case-specific empirical data for parameterization before being 
applied especially in regions other than the ones they have been developed. Sensitivity analysis is usually 
performed to determine the most influential factors of a model so that they can be prioritized for optimization. In 
this way uncertainties in model outputs can be reduced considerably. This study evaluates the commonly used 
modified universal soil loss equation (MUSLE) model used for sediment yield simulation for the case of the upper 
Malewa catchment in Kenya. The conceptual factors of the model are assessed relative to the hydrological factors 
in the model. Also, the sensitivity of the model to the choice of the objective function in calibration is tested. The 
Sobol’ sensitivity analysis method was used for evaluating the degree of sensitivity of the conceptual and 
hydrological factors for sediment yield simulations using the MUSLE model. Nash-Sutcliffe Efficiency (NSE) and 
the modified Nash-Sutcliffe Efficiency (NSEm) are used to test the sensitivity of the model to the choice of the 
objective function and robustness of model performance with sediment data measured from upper Malewa 
catchment, Kenya. The results indicate that the conceptual factors are the most sensitive factors of the MUSLE 
model contributing about 66% of the variability in the output sediment yield. Increased variability of sediment 
yield output was also observed. This was attributed to interactions of input factors. For the upper Malewa 
catchment calibration of the MUSLE model indicates that the use of NSEm as an objective function provides 
stable results, which indicates that the model can satisfactorily be applied for sediment yield simulations. 
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1 Introduction 
Knowledge on suspended sediment yields and their dynamics poses a major environmental challenge to catchment 

management (Owens et al., 2005; Zhou and Wu, 2008; Navratil et al., 2011; Qiu et al., 2012). Sediment yield from a 
catchment provides an important measure indicative of the trend and severity of land degradation (Mutua et al., 2006; 
Sadeghi and Saeidi, 2010). Information on soil erosion and sediment yield from catchments is important in achieving 
sustainable land use and maintaining water quality in streams, lakes and other water bodies. In addition, the estimation 
of the suspended sediment yield provides managers, engineers, hydrologists and geomorphologists with information 
that can be used for designing hydraulic structures such as dams, river morphological computations, and evaluation 
studies of the effects of various land use management practices (Kothyari et al., 1997; Lana-Renault et al., 2007; 
Sadeghi et al., 2008a; Sadeghi et al., 2008b). However, estimates of erosion and sediment yield are rarely available 
through measurements. This challenge is further compounded by the fact that catchments, as natural systems, are 
heterogeneous units with geomorphological characteristics and hydrological regimes that vary in both space and time 
(Onyando et al., 2005; Zhang et al., 2010; Zarris et al., 2011). 
Accurate estimations of soil erosion and sediment yield from catchments are therefore difficult to obtain. In order to 
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overcome this, models that provide proxy estimates of erosion and sediment yields are generally used (Onyando et al., 
2005; Mutua et al., 2006; Pandey et al., 2009; Wang et al., 2009; Hrissanthou et al., 2010; Haregeweyn et al., 2012; 
Wang et al., 2012). However, evaluation of the applicability of these models requires information on sensitivity, 
calibration and validation especially for regions other than the ones for which they were developed. This information is 
important in reducing output uncertainty and increasing user confidence in model ability making the simulations more 
effective (Qiu et al., 2012). 
Nevertheless, a number of studies (Onyando et al., 2005; Mutua et al., 2006; Sadeghi and Mizuyama, 2007; Pandey et 

al., 2009) have tested applicability of models for regions for which they had not been developed without calibration and 
found that sediment yields were satisfactorily simulated. A widely used model is the Universal Soil Loss Equation 
(USLE) model and its subsequent revised versions (Revised Universal Soil Loss Equation (RUSLE) and the Modified 
Universal Soil Equation (MUSLE) (Mishra et al., 2006; Sadeghi and Mizuyama, 2007). The USLE was developed to 
estimate long-term annual soil loss at plot scales of 22 m in length. Attempts to apply it for individual storm events and 
at larger scales than the 22 m length plots have been stated to lead to increased errors because it does not directly 
consider runoff which is a key component in sediment concentration (Kinnell, 2005). Nevertheless, its accuracy has 
been shown to increase when coupled to a hydrological rainfall excess model (Novotny and Olem, 1994). Modifications 
and improvements to USLE have also been proposed in literature. These include the RUSLE (Renard and Ferreira, 
1993), MUSLE (Williams, 1976) and USLE-M (Kinnell, 1998) models. Besides these, other approaches such as the use 
of sediment delivery ratios (SDR) in combination with gross erosion estimates from erosion models have also been 
explored for estimating sediment yields from catchments. Development of SDR models may require determining factors 
similar to those employed in USLE and other models. However, this becomes an unnecessary and time consuming 
procedure if the main goal is estimation of sediment yield, unless an SDR model already exists (Sadeghi et al., 2007a). 
In most applications where SDR have been used, they have been assumed constant yet they have been shown to vary for 
storm events (Walling, 1983; Kinnell, 2004; Chang, 2006). Due to these limitations, Williams and Berndt (1977) 
proposed to use the MUSLE model which replaced the rainfall factor with a runoff factor. Williams and Berndt (1977) 
argued that this eliminated the need of SDR and improved the prediction of sediment yield at the outlet of a catchment. 
Specifically, the MUSLE model estimates sediment yield on a single storm basis and the output is interpreted as 
sediment yield coming at the outlet of the catchment. This is computed based on a combination of runoff and catchment 
characteristics. The MUSLE model (Shown in Eq. (1)) has been used to estimate sediment yield in a number studies 
(Williams and Berndt, 1977; Walling, 1983; Sadeghi et al., 2004; Casagrande and De Paiva, 2005; Sadeghi and 
Mizuyama, 2007; Sadeghi et al., 2007a; Sadeghi et al., 2007b; Pandey et al., 2009; Zhang et al., 2009; Arekhi and 
Rostamizad, 2011). 

� � KLSCPqQY p
(� &�                  (1) 

where Y is the sediment yield from an individual storm in metric tons, Q is the storm runoff volume in m3, qp is the peak 
runoff rate in m3 sec-1, K is soil erodibility factor in Mg MJ-1 mm-1, LS is the slope length (dimensionless) and gradient 
factor (topographical factor) (dimensionless), C is the crop management factor (dimensionless), P is the erosion control 
practice factor (dimensionless), � and ( are location specific conceptual factors. 
In some studies, the MUSLE model has been calibrated to improve sediment yield simulation for new catchment 

conditions (Casagrande and De Paiva, 2005; Sadeghi et al., 2007a; Pongsai et al., 2010). However, most of these studies 
have not evaluated the sensitivity of the model factors. Sensitivity analysis provides a first step in modeling for 
determining the most influential parameters of a model, allowing for a reduction in the number of parameters 
incorporated during calibration (Saltelli et al., 2000; Nossent et al., 2011).This is normally realized by factor fixing (FF), 
where less influential parameters are set to a fixed value, or by factor prioritization (FP), where the focus is on more 
influential parameters that have the potential to greatly reduce the output uncertainty in a model (Sobol’, 1993; Saltelli 
et al., 2004; Hamm et al., 2006; Cibin et al., 2010; Nossent et al., 2011).This way sensitivity analysis provides 
information on the influence of specific parameter values on the associated model outcome and on the model processes 
thus facilitating the understanding and interpretation of models (Saltelli et al., 2000). Furthermore, little attention has 
been given to the impact of objective function on calibration, outlier effect of input data or consequence of extreme 
events in estimation of the model factors. Such testing is required to improve understanding of the model to assist in 
prioritizing model development activities and to gauge confidence in the model outputs. This paper describes evaluation 
of the MUSLE model by performing a variance based Sobol’ sensitivity analysis (Sobol’, 1993), testing the stability of 
model factors against choice of objective function and exploring the effect of an extreme event on the estimation of 
conceptual factors using results of the upper Malewa catchment. This catchment is part of the headwaters of Lake 
Naivasha Basin in Kenya. This Lake is a Ramsar6 wetland under decline, and sediments from upper Malewa catchment 
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the  progressive encroachment  and  loss  of  wetlands in  the  present  and  future,  Recognizing  the  fundamental  ecological  
functions  of  wetlands  and  their economic,  cultural,  scientific,  and  recreational  value.  It  is  named  after the  Iranian  town 
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have been attributed as one of the possible causes of the lake decline (Verschuren, 1999; Becht et al., 2005). However, 
availability of observed sediment data draining into this lake is non-existent. 
 
2 The study catchment 
The Malewa catchment is situated in the Kenyan Rift Valley approximately 70 km from Nairobi at a latitude of 0o 09� 

to 0o 55�S and longitude of 36o 09� to 36o 24�E. The maximum altitude is about 3,990 m above mean sea level (a.m.s.l) 
on the eastern side of the Aberdare Ranges to a minimum altitude of about 1,980 m (a.m.s.l). The catchment area is 
approximately 1,428 km2 and is part of the Lake Naivasha basin (Fig. 1). The present study focuses on the upper 
Malewa River catchment, which is approximately 382 km2, and Wanjohi River catchment, approximately 151 km2, 
which is a sub-catchment within the upper Malewa River catchment. Erosion and sediment yield from this part of the 
catchment has been postulated to cause degradation of the Lake ecosystem (Tarras-Wahlberg et al., 2002). The map of 
the location of the Malewa catchment, upper Malewa catchment and the Wanjohi River catchment are shown in Fig. 1. 
The sampling stations, at the outlet of the Wanjohi River Catchment, 2GB04 and the main upper Malewa catchment, 
2GB08 are also shown in Fig. 1. The sampling stations used are designated by the Water Resources Management 
Authority (WRMA) of the Kenya Government. 
 

 
Fig. 1  Location of upper Malewa catchment within the Naivasha basin showing the drainage network and gauging stations 

 
The major soils in the study area are of volcanic origin. The soils found on the mountain and major escarpments of the 

catchment are developed from olivine basalts and ashes of major older volcanoes. They are generally well drained, very 
deep (1.2-1.8 m) and vary from dark reddish brown to dark brown, clay loam to loamy soils with thick acid humic 
topsoil in shallow to moderately deep and rocky places (Rachilo, 1978; Nyandat, 1984). Climatic conditions in the 
study area are quite diverse due to considerable differences in altitude and relief. The annual mean temperature ranges 
from 8 oC to 30 oC. The rainfall regime within the catchment is influenced by local relief with the catchment being in 
the rain shadow of the Aberdare ranges to the East and the Mau Escarpment to the West. There are two rainy seasons 
experienced in this catchment. Long rains occurring in the months of March to May and the short rains experienced 
between October and November. The Malewa basin experiences an average annual rainfall of 610 mm, and the wettest 
slopes of the Aberdare ranges receive as much as 1525 mm. Figure 2 summaries the monthly average precipitation and 
temperature variation sin the Lake Naivasha catchment. 
 

 
Fig. 2  Monthly climate average distribution of temperature and rainfall for Lake Naivasha 
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The predominant land cover of the area of study consists of forest and scrubs which cover most of the Aberdare 
Ranges sloping downwards to the foothills. This comprises about 43% of the catchment. The rest is a mixture of 
agricultural land and grassland. 
 
3 Methodology 
 
3.1 Hydrological factors of the MUSLE model 
Ten storm events, flow discharges and suspended sediment yield at the outlet of the catchment were minutely recorded 

during the short raining period between the 21st Sept. 2007 and 13th Dec. 2007. Stream flow measurements were 
recorded every two hours using a diver and correlated with staff gauge readings installed at the outlet of upper Malewa 
River catchment shown in Fig. 1. The recording was pre-set for every two hour because time of concentration of the 
catchment was longer (�16 hours) following a precipitation. This is due to the predominant flat terrain preceding the 
Aberdare ranges. Flow rating equation for the station was later used to compute the flow discharges. Figure 3 shows the 
flow discharge measurements with daily precipitation recorded during the study period. Sediment samples were 
collected by lowering aDH-48 depth integrating sampler which was gently lowered into the stream and raised to the 
surface at the same rate. Three traverses were made across the stream section for a representative suspended sediment 
concentration at intervals of approximately one hour covering the rising and receding limbs of the hydrograph. Standard 
WhatmanTM 934-AHTM glass microfiber filters were used to filter samples. The filter papers were first dried in the oven 
for 1 h at 105 °C and then cooled overnight in a desiccator jar following the analytical procedure of Knott et al., (1992). 
Forthwith, the filtration analytical procedure (Knott et al., 1992) for determining sediment concentration in water 
samples was applied and necessary calculations were subsequently conducted. The weight of the sediment was 
converted into sediment yield in tons for a particular storm using the direct runoff volume obtained from the each storm 
hydrograph. Figure 4 illustrates the relation of observed sediment against observed runoff volume during the study 
period. 
 

 
Fig. 3  Daily total precipitation (top) and Hydrograph (bottom) during the study period 2007 

in upper Malewa catchment, Lake Naivasha Basin in Kenya 
 

 
Fig. 4 Sediment rating curve of upper Malewa catchment, Lake Naivasha Basin in Kenya 
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3.2 Physical factors 
Erosivity factors of volume and peak runoff rate were calculated from the storm hydrographs. These are shown in 

Table 3. The other physical variables of the model shown in Eq. (1) i.e. soil erodibility (K), topographical factor (LS), 
crop management (C) and soil erosion control practice (P)factors were determined based on the original methodology 
(Wischmeier and Smith, 1965; Wischmeier and Smith, 1978), and procedure suggested by Renard et al. (1997). The soil 
erodibility, crop management and soil erosion control practice factors, which are known to be sensitive to temporal 
variations than other catchment factors, were assumed constant since the study period was short, and no tillage activities 
were taking place during the study (Kinnell, 2005). 
The soil erodibility factor (K) for the study area ranged from 0.020 to 0.363Mg MJ-1 mm-1 for the entire catchment 

with an average of 0.230 Mg MJ-1 mm-1 (Hamududu, 1998). The topographical factor (LS) was calculated from ASTER 
DEM (30m resolution) based on overland flow theory proposed by Moore and Wilson (1992) and Mitasova et al. (1996) 
shown in Eq. (2). The authors developed a simple soil-erosion index, which accounts for major hydrological and terrain 
factors affecting erosion. This index is considered equivalent to the LS factor in RUSLE, which is a more improved 
version of determining the LS factor contrary to the traditional determination using the length which tends to 
overestimate erosion (Mitasova et al., 1996). The index considered the generation of overland flow based on upslope 
contributing area and integrating it into the Mitasova et al. (1996) LS model (Eq. (2)). The importance of replacing the 
slope length by upslope contributing area improves estimation of erosion in areas of concentrated flow and allows 
identification of areas with potential for gully erosion (Mitasova et al., 1996). 

  � � � � � �� � � �� �no
m

o brSinarAmrLS (1��             (2) 
where r is a point on a hill slope (x, y), A(r) is the upslope contributing area per unit contour width, 
 is the slope angle 
in degrees, oa  is 22.1m, ob  = 9%, m and n are conceptual factors. Values of m = 0.6, n = 1.3 were adopted for this 
study as they have been shown to give results consistent with the RUSLELS factor for slope lengths < 100m and slope 
angles < 14 degrees (Moore and Wilson, 1992)for slopes with negligible tangential curvature. Land use/cover map was 
generated by classifying an ASTER satellite imagery of August 2007 covering the area of study. For each land use/cover 
class, the cover management factor (C) from adopted from Hamududu (1998) were assigned to each land use/cover. The 
supporting conservation practice factor (P), study (Novotny and Olem, 1994; Renard, 1997; Hamududu, 1998; Sadeghi 
et al., 2007a). 
 
4 Model testing and evaluation 
 
4.1 Sensitivity analysis 
The MUSLE model was first tested using its original conceptual factors for each individual storm event. The output of 

this was then compared to the measured suspended sediment yield at the outlet of the catchment. Secondly, sensitivity 
analysis of the conceptual factors was undertaken to determine which factors or a combination of factors were more 
sensitive to the model output. This was done using the variance-based sensitivity analysis, to highlight the most 
sensitive parameter. This approach was preferred over other approaches such as one at a time (OAT), also known as 
local sensitivity which entail varying each parameter (by a given percentage) at a time while holding other factors 
constant (Hamby, 1994; Saltelli et al., 1999). The added value of the variance based sensitivity analysis approach, are 
highlighted compared to results of OAT approach. To achieve this analysis, MUSLE model input factors were 
categorized into three groupings based on the MUSLE model structure; conceptual, physical and hydrological input 
factors. Conceptual factors were � and ( that needed optimization through calibration. Physical factors were KLSCP 
which were estimated by remote sensing and GIS. These were assumed constant during the duration of study. 
Hydrological factors were runoff volume and peak runoff discharge which varied according to storm events and time of 
concentration. Thus sensitivity analysis was performed on both the conceptual and the hydrological factors using the 
Sobol’approach (Sobol’, 1993). Sobol’ (1993) provided an efficient method of estimating variance based sensitivity 
indices using Monte Carlo simulation. The method is a global and model independent sensitivity analysis that is based 
on variance decomposition. It aims to quantify the amount of variance that each parameter and their interactions 
contribute to the unconditional variance of the model output. Let the model be represented by a function 

 � �kxxxfY ...,,, 21�             (3) 
where x1, x2, ……, xk are independent input factors and Y is the model output.Sobol’ suggested the decomposition of the 
function f into terms of increasing dimensionality, i.e. 

! !!
#

�����
i i ij

kijik ffffxxxf ...12021 ...),...,,(
          

(4) 

where each term is function only of the factors in its index, i.e. � �jiijijiii xxffxff ,),( �� and so on. The 
decompositionis unique provided that the input factors are independent and that the individual terms

siiif ...21
in (4) are 

square integrable and have zero mean over the domain of existence. 
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The total unconditional variance is defined as: 
  ! !!

#

����
i i ij

kiji VVVyV ...12...)(               (5) 

where 
� �� �ii xYEVV �                     (6) 

� �� � jijiij VVxxYEVV ��� ,                    (7) 

and so on. Equation (5) contains k  terms of the first order iV , 
2

)1( �kk  terms of the second order 
ijV  and so on, till 

the last term of order k , for a total of 12 �k  terms. The 
ijV  

terms are the second order terms that explain that part of 

the effect of ix  and jx  
that is not described by the first order terms. This way the variance contributions of 

individual factors and their interactions, to the total output variance, can be determined. The variance contributions can 
then be computed as sensitivity indices: 

  
V
V

S i
i �                        (8) 

  
V
V

S ij
ij �                        (9) 

  !
*

���
ij

kijiTi SSSS ......12......                                (10) 

The first order index, Si, is a measure of the variance contribution of individual parameter xi to the total variance of the 
model output. The partial variance Vi shown in Eq. (8) is computed by the variance of the conditional expectation 
shown in Eq. (6). The Si is also called the main effect of xi on Y. It can be described as the fraction of the model output 
variance that would disappear on average when xi would be fixed to a value in its range. The impact on the model output 
variance of the interaction between factors xi and xj is given by Sij. STi is the result of the main effect of xi and all its 
interactions with the other factors up to the kth order. 
 
4.2 Input ranges distribution and data range 
It has been argued that assigning of data input range and specifying their associated probability distribution functions 

to be the most difficult and subjective stage when applying Monte Carlo analysis to hydrologic studies (Muleta and 
Nicklow, 2005). The reason being that it would be cost prohibitive to collect numerous, random samples of inputs to 
determine their true or approximate probability distribution functions and ranges. Moreover, it has also been argued that 
proper assignment of input ranges is more important on sensitivity analysis results than the knowledge of the actual 
probability distribution functions (Helton, 2008). In this study, the input factors and the irranges used in the sensitivity 
analysis and calibration were assumed to follow a triangular distribution. This was based on information of the factors 
reported in literature, previous studies and knowledge of the catchment. Also, a number of studies have suggested that 
simple distributions such as triangular may represent some factors better than uniform distribution (Haan et al., 1998; 
Muleta and Nicklow, 2005). Table 1 shows the assigned ranges for each input parameter. The ranges of � and � were 
obtained from literature and approximated to vary from 1 to 65 and 0.1 to 1 for � and � respectively. The ranges of 
runoff volume and peak runoff discharge were obtained from the measured values obtained during the study. 
 

Table 1  Model factors considered for sensitivity analysis and calibration 
Factors Minimum Maximum 

� 1 65 
� 0 1 
Q 0 30 
q 0 3 

 
4.3 Calibration and validation 
Calibration and validation of the model was then performed by splitting the data into two sets with each set composing 

near equal proportions in magnitude (i.e. a mix of high and low flows) of the observed sediments. The shuffled complex 
evolutionary-University of Arizona (SCE-UA) algorithm (Duan et al., 1992) was adopted for the optimization 
procedure of the factors of the model. The SCE-UA algorithm is a global optimization algorithm that combines the 
strength of the simplex method, random search, competitive evolution and complex shuffling (Duan et al., 1992). The 
Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), shown in Eq. (11), and the modified version of it by 
Legates and McCabe (1999), shown in Eq. (12), were chosen as the objective functions during the optimization process 
to approximate the conceptual factors. 
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Where iO  is measured sediment, iP  is simulated sediment, O  is the mean of measured sediment, N is the number of 
observations. NSE values can range from- � to 1. An ef	ciency of 1 is indicative of a perfect model prediction 
compared to the observed data. An ef	ciency near to 0 indicates that the model predictions are as accurate as the mean 
of the observed data, whereas an ef	ciency of < 0 occurs when the observed mean is a better predictor than the model 
estimate. Essentially, the closer the NSE is to 1, the more accurate the model is. The concept of using the two chosen 
objective functions was based on the fact that NSE in its original form has been known to be sensitive to  extreme 
values whereas the modified version has been shown to diminish this shortcoming by using the absolute values of the 
deviations to the first power (Legates and McCabe, 1999; Harmel and Smith, 2007). 
The model was evaluated against measured data using statistical criteria. Since the available measured data were few 

and sparse, model results were evaluated using the percent error (PE) as an additional statistical criteria. It has been 
previously recommended that multiple statistical evaluation of model performance is necessary to assess the amount of 
intrinsic (i.e. model structure) and extrinsic (i.e. data quality) uncertainty (Moriasi et al., 2007; Karpouzos et al., 2011). 
 
5 Results 
 
5.1 Sensitivity analysis 
The results of the OAT approach shown in Fig. (5) show that � had the steepest gradient suggesting that the smallest 

change in the parameter resulted in much larger change in sediment yield. Hence � was the most sensitive parameter 
followed by runoff volume, peak discharge and ( in that order. On the other hand, the results of the variance based 
sensitivity analysis show that � and ( are the most sensitive factors with each contributing about 27 and 12%, 
respectively in the variance of sediment yield output simulated by MUSLE model. This was followed by runoff volume 
and peak discharge contributing a variability of 11 and 5%, respectively. The results are presented in Table 2 and Fig. 2. 
In total, these four factors constitute 55% of the output variance of the model. The remaining 45% is due to 
non-linearity in the model and could be the result of interactions among factors. The total order index is an indication of 
the interaction of factors. Total interaction of � was reported as 35%, an increase of 8% of its individual contribution. 
Total interaction of ( , Q and q was reported as 31, 22 and 13%, respectively. Though ( , Q and q suggested less 
individual contribution of the variability of sediment yield output, they showed substantial influence on interaction with 
other input factors. These results were obtained by running a Monte Carlo simulation with a minimum sample size (n) 
of 10,240, resulting in 1,024 model executions, which was found to yield satisfactory convergence (Fig. 6) of sensitivity 
indices. 
 

 
Fig. 5 One at a time (OAT) sensitivity analysis of input factors �,(, Q, and q 
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Table 2  First order and total sensitivity indices 
Parameter First order indices Total order indices (normalized) 

� 0.270167 0.349661 
Runoff volume (Q) 0.112538 0.216536 
Peak discharge (q) 0.047670 0.125356 

( 0.119715 0.308448 
 

     
Fig. 6  Evolution of sensitivity to convergence (a) Main effect of individual parameter (b) Interaction with other factors 

 
5.2 Parameter stability under choice of objective function during calibration and validation 
Adopting the original conceptual factors of the MUSLE model with respective coefficient and exponent of 11.8 and 

0.56, resulted in over-estimation of sediment yields from the ten storms available during the study (Table 3, Fig. 7). The 
NSE of the model reported at -0.005 was also low suggesting the mean was a better predictor of sediment yield than the 
model. To improve this, calibration was initialed to fine tune the model factors to investigate whether there could be any 
model improvements. 
 

Table 3  Model performance using original conceptual factors (before calibration) 

Event # Date Q (m3) q (m3 s-1) Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

1 25-Sep-07 29.63 2.06 32.12 55.85 -73.89 
2 30-Sep-07 1.55 0.54 4.03 5.06 -25.51 
3 2-Oct-07 2.02 0.63 5.29 6.36 -20.26 
4 3-Oct-07 2.05 0.64 4.4 6.48 -47.12 
5 5-Oct-07 0.73 0.52 0.83 3.25 -289.55 
6 8-Oct-07 7.6 0.97 7.71 17.09 -121.53 
7 10-Oct-07 2.09 0.61 4.63 6.4 -38.13 
8 11-Oct-07 3.27 0.72 1.1 9 -719.48 
9 28-Oct-07 8.79 0.51 6.15 12.9 -109.81 
10 17-Nov-07 1.7 0.13 0 2.4 – 

 

 
Fig. 7  Measured and simulated sediment yield using original conceptual factors (before calibration) 

 
A choice of two objective functions allowed for testing the stability of parameter estimation under low and high 

magnitude events. Calibration using NSE as the objective function over the entire dataset resulted in improved model 
performance (NSE=0.97) with � estimated at 5.43 and ( at 0.613 (Table 4, Fig. 8). Notable though was the high 
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magnitude event of the 25th September 2007. This event was treated as an outlier event due to its high value compared 
to the other events. This was postulated to influence the calibration results and subsequently was excluded and the 
calibration repeated without it. The model performance reduced substantially (NSE=0.58) with � estimated at 6.44 and 
( at 0.45. Interestingly, it was found that even though the NSE value was low, the percent error of individual event 
estimates reduced significantly in six out of nine events (Table 5, Fig. 9). This was indicative that these factors were 
better than the ones estimated when the extreme event was included in the calibration. 
 

Table 4  Calibration using NSE with extreme value 

Event # Date Q (m3) q (m3 s-1) Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

1 25-Sep-07 29.63 2.06 32.12 31.91 0.63 
2 30-Sep-07 1.55 0.54 4.03 2.31 42.83 
3 2-Oct-07 2.02 0.63 5.29 2.96 44.02 
4 3-Oct-07 2.05 0.64 4.4 3.02 31.41 
5 5-Oct-07 0.73 0.52 0.83 1.42 -70.16 
6 8-Oct-07 7.6 0.97 7.71 8.73 -13.2 
7 10-Oct-07 2.09 0.61 4.63 2.98 35.67 
8 11-Oct-07 3.27 0.72 1.1 4.33 -294.13 
9 28-Oct-07 8.79 0.51 6.15 6.42 -4.39 
10 17-Nov-07 1.7 0.13 0 1.02 – 

 

 
Fig. 8  Measured and simulated sediment yield following calibration using NSE with the extreme value included 

 
The use of NSEm as objective function on the whole dataset resulted in increased accurate estimation of higher 

magnitude events than the use of NSE even though the NSEm index was lower (NSEm=0.76) than using NSE as an 
objective function. Events dated 25th Sept. 2007, 8th Oct. 2007 and 28th Oct. 2007 which were high in sediment yield 
measured at the catchment were estimated with percent error deviation of 3.95×10-7%, 9.5% and 6.89×10-5% 
respectively. This was better than NSE estimates for the same events reported as 0.63%, -13.2% and -4.4% respectively. 
The percent error estimates are shown in Table 4 and Table 6. Nevertheless, the rest of the events were slightly 
underestimated with the exception of the events of 11th Oct. 2007 and 17th Nov. 2007 which were poorly simulated in all 
cases. The factors � and ( estimated using the NSEm were estimated at 5.05 and 0.63 respectively when the outlier 
event of 25th Sept. 2007was included. 
However, model calibration using NSEm and excluding the extreme event resulted in an NSEm value of 0.44 (Table 7, 

Fig. 11). Interestingly though, the percent error of estimation of the individual events was much improved than the use 
of NSE with and without the inclusion of the extreme event. The percent error was also better than NSEm with the 
extreme event included in the calibration. Five out of nine of the events showed improved estimation of sediment yield. 
The conceptual factors, � and ( were estimated at 8.54 and 0.32, respectively. These were substantially different from 
the factors estimated using NSEm as the objective function and including the outlier event. 
An attempt was also done to calibrate the model by splitting the data samples into two; one for calibration and the 

other for validation. The results are highlighted in Tables 8-9 and Figs. 12–13. 
Calibration on this data yielded a NSE value of 0.88 (Fig. 12). On validation the NSE value was reported as 0.74. 

Much of this was contributed by the outlier event of 25th Sept. 2007. Excluding this event from the validation analysis 
the NSE value drops to -0.12. This was suggestive that observed mean of sediments was a better predictor than the 
model in the catchment based on the available data. However, re-calibrating the model using NSEm and subsequent 
validation (Fig. 13), the NSEm was reported as 0.48 on validation. On excluding the outlier event from the validation 
set, the NSEm subsequently improved to 0.67 indicative that the model was a better predictor than the mean. It was also 
noted that the conceptual factors estimated were different in both cases. Using NSE, � and ( were estimated at 7.13 and 
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0.42, respectively. Use of NSEm estimated � and ( at 8.54 and 0.32 respectively, which was similar to the results of 
NSEm calibration using the whole dataset but excluding the extreme event. This was suggestive that the factors 
obtained using NSEm as the objective function were much stable. 
 

Table 5  Calibration using NSE excluding the extreme value 

Event # Date Q (m3) q (m3 s-1) Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

1 25-Sep-07 29.63 2.06 32.12 19.52 39.21 
2 30-Sep-07 1.55 0.54 4.03 2.82 30.11 
3 2-Oct-07 2.02 0.63 5.29 3.39 35.94 
4 3-Oct-07 2.05 0.64 4.4 3.44 21.91 
5 5-Oct-07 0.73 0.52 0.83 1.97 -136.41 
6 8-Oct-07 7.6 0.97 7.71 7.52 2.57 
7 10-Oct-07 2.09 0.61 4.63 3.41 26.51 
8 11-Oct-07 3.27 0.72 1.1 4.48 -308.11 
9 28-Oct-07 8.79 0.51 6.15 5.99 2.547 
10 17-Nov-07 1.7 0.13 0 1.54 – 

 

 
Fig. 9  Measured and simulated sediment yield following calibration using NSE and excluding the extreme value 

 
Table 6  Calibration using NSEm with extreme value 

Event # Date Q (m3) q (m3 s-1) Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

1 25-Sep-07 29.63 2.06 32.12 32.11 3.95E-07 
2 30-Sep-07 1.55 0.54 4.03 2.14 46.94 
3 2-Oct-07 2.02 0.63 5.29 2.77 47.64 
4 3-Oct-07 2.05 0.64 4.4 2.83 35.8 
5 5-Oct-07 0.73 0.52 0.83 1.3 55.59 
6 8-Oct-07 7.6 0.97 7.71 8.44 9.46 
7 10-Oct-07 2.09 0.61 4.63 2.79 39.89 
8 11-Oct-07 3.27 0.72 1.1 4.1 272.98 
9 28-Oct-07 8.79 0.51 6.15 6.15 6.89E-05 
10 17-Nov-07 1.7 0.13 0 0.92 – 

 

 
Fig. 10  Measured and simulated sediment yield following calibration using NSEm and including the extreme value 
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Table 7  Calibration using NSEm excluding the extreme value 

Event # Date Q (m3) q (m3 s-1) Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

1 25-Sep-07 29.63 2.06 32.12 15.29 52.38 
2 30-Sep-07 1.55 0.54 4.03 3.82 5.33 
3 2-Oct-07 2.02 0.63 5.29 4.36 17.62 
4 3-Oct-07 2.05 0.64 4.4 4.4 3.95E-05 
5 5-Oct-07 0.73 0.52 0.83 2.95 254.4 
6 8-Oct-07 7.6 0.97 7.71 7.71 4.68E-07 
7 10-Oct-07 2.09 0.61 4.63 4.37 5.63 
8 11-Oct-07 3.27 0.72 1.1 5.33 384.82 
9 28-Oct-07 8.79 0.51 6.15 6.56 6.65 
10 17-Nov-07 1.7 0.13 0 2.48 – 

 

 
Fig. 11  Measured and simulated sediment yield following calibration using NSEm and excluding the extreme value 

 
 

Table 8  Calibration based on split sample using NSE (NSE = 0.88, � = 7.13, ( = 0.42). Validation (NSE = 0.74) 

Event # Date Q q Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

4 3-Oct-07 2.05 0.64 4.4 3.77 14.3 
7 10-Oct-07 2.09 0.61 4.63 3.74 19.3 
6 8-Oct-07 7.6 0.97 7.71 7.87 -2.03 
5 5-Oct-07 0.73 0.52 0.83 2.24 -168.25 
9 28-Oct-07 8.79 0.51 6.15 6.36 -3.45 
3 2-Oct-07 2.02 0.63 5.29 3.73 29.63 
2 30-Sep-07 1.55 0.54 4.03 3.13 22.37 
1 25-Sep-07 29.63 2.06 32.12 19.31 39.88 
10 17-Nov-07 1.7 0.13 0 1.78 – 
8 11-Oct-07 3.27 0.72 1.1 4.84 -340.82 

 

 
Fig. 12  Measured and simulated sediment yield based on split sample calibration and validation using NSE 
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Table 9  Calibration based on split sample using NSEm (NSEm= 0.68, � = 8.54, (  = 0.32). Validation (NSEm= 0.48) 

Event # Date Q q Measured 
sediment, (ton) 

Simulated sediment, 
(ton) Percent error 

4 3-Oct-07 2.05 0.64 4.4 4.4 1.88E-06 
7 10-Oct-07 2.09 0.61 4.63 4.37 5.63 
6 8-Oct-07 7.6 0.97 7.71 7.71 1.08E-05 
5 5-Oct-07 0.734 0.52 0.83 2.95 254.41 
9 28-Oct-07 8.8 0.51 6.15 6.56 6.65 
3 2-Oct-07 2.02 0.63 5.29 4.36 17.62 
2 30-Sep-07 1.55 0.54 4.03 3.82 5.33 
1 25-Sep-07 29.63 2.06 32.12 15.29 52.38 
10 17-Nov-07 1.7 0.13 0 2.48 – 
8 11-Oct-07 3.27 0.72 1.1 5.33 384.82 

 

 
Fig. 13  Measured and simulated sediment yield based on split sample calibration and validation using NSEm 

 
6 Discussion 
 
6.1 Sensitivity analysis 
OAT sensitivity analysis showed that � was the most sensitive parameter followed by Q, q and (. Incidentally, variance 

based sensitive analysis also suggest that � is the most sensitive parameter of the MUSLE model. However, this was 
followed by (, Q and q in that particular order. Though OAT is most widely used sensitivity analysis approach, it does 
not address sensitivity of the entire parameter distribution but rather sensitivity relative to point estimates chosen 
(Hamby, 1994). In cases where models are nonlinear and high-dimensional, OAT is known to be misleading because at 
some space of the input factors different patterns of sensitivity may exist or several factors may interact with each other 
(Saltelli, 1999; Muleta and Nicklow, 2005). On the contrary, global based techniques such as the variance based 
sensitivity analysis explore the full range of input factors, allows the exploration of sensitivity by simultaneously 
varying the input factors and any possible interactions among factors (Tarantola et al., 2002; Muleta and Nicklow, 2005). 
To show the added value of this argument, variance based sensitivity analysis results showed that the most sensitive 
factors of the MUSLE model were the conceptual factors with both contributing about 66% of the variability in the 
output sediment yield. The most revealing finding was the degree of interaction among input factors. The results 
showed that � had the highest total effect, though (, Q and q showed significant increase in variability of sediment yield 
due to interaction among them. In previous sensitivity and calibration studies where the model has been applied for 
sediment yield simulation, mostly integrated in SWAT (e.g. Muleta and Nicklow, 2005; Zheng et al., 2009; Song et al., 
2011), attention has been on the cover factor, soil erodibility factor, the practice support factor and runoff volume. In 
this study the physical factors were assumed constant as the duration of the study was short. Hence to test the 
applicability of the model, it was important to investigate the degree of influence of conceptual factors and their 
interaction with the runoff volume and peak. The runoff volume and peak discharge were accurately monitored over the 
duration of the study. Consequently, the conceptual factors were prioritized for calibration to determine the most 
optimal parameter values for the upper Malewa catchment in Naivasha, Kenya. 
 
6.2 Parameter stability under choice of objective function during calibration and validation 
Relatively few studies (Sadeghi and Mizuyama, 2007; Sadeghi et al., 2007a; Pongsai et al., 2010) have attempted to 

robustly test the MUSLE model outside the USA where it was originally developed. Furthermore, most commonly 
adopted objective function for model optimization in hydrological studies is the Nash-Sutcliffe Efficiency (NSE). Also 
rarely tested (McCuen et al., 2006) in model calibration is the effect of outlier or extreme values of the measured 
constituent on the stability of the estimated conceptual factors. This study stands alone from other studies that are based 
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on multi-objective functions and those that present a set of factors as is the case with pareto front approach. Instead, the 
study presents a simple approach of analyzing the impact of outlier and extreme event on parameter estimation during 
optimization which ideally affects calibration of models and remains a challenge to all calibration efforts in hydrology. 
This was tested using two different choices of objective functions with differing properties, NSE which is known to be 
biased towards extreme values and NSEm that minimizes the effect of the high magnitude values. Calibrating the model 
using the whole data with NSE as the objective function yielded an NSE value of 0.97 suggesting that the MUSLE 
model was well tuned. However, a close examination of the data determined that the NSE value was highly exaggerated 
due to a presence of a high magnitude event in the data. Exclusion of this event and re-calibrating the model yielded a 
reduced NSE value of 0.58 suggesting that the model performed less better than when the high magnitude event was 
included. Interestingly though, the percent error of individual event simulations reduced significantly in six out of nine 
events (Table 5, Fig. 9) (R2 = 0.59) compared to the use of NSE as objective function with the extreme event included 
(R2 = 0.56). This finding was in agreement with similar findings in other studies (Legates and McCabe, 1999; McCuen 
et al., 2006; Jain and Sudheer, 2008; Muleta, 2012) which have highlighted the limitation of NSE when used for model 
evaluation where the data set included extreme or outlier values. For example, McCuen et al. (2006) tested the efficacy  
of NSE using seven turbidity data which were regressed against discharged data. The authors found out that by 
censoring an outlier event in the analysis, the model performance improved significantly. 
Adopting the original conceptual factors of the MUSLE model resulted in overestimation of sediment yield. This was 

similar to findings reported by Sadeghi (2004) and Sadeghi et al. (2007a). However, this simulation yielded poor model 
efficiency criteria and hence calibration was initiated using NSE and compared with the output of NSEm. 
Results of NSEm showed that high magnitude events in the data set were more accurately simulated on calibration 

than the use of NSE as the objective function. Events of 25th Sept. 2007, 8th Oct. 2007 and 28th Oct. 2007 which had 
considerably high sediment yield measured at the catchment outlet were estimated with percent error deviations of 
3.95×10-07, 9.5 and 6. ×10-5%, respectively. This was better than NSE estimates for the same events reported as 0.63, 
-13.2 and -4.4%, respectively, though the rest of the events were slightly underestimated with the exception of the 
events of 11th Oct. 2007 and 17th Nov. 2007 that were poorly simulated in all cases. The coefficient of determination 
under this scenario was reported at R2 = 0.56 which was similar to model simulation when NSE was used with all events. 
The poor simulation of sediment by MUSLE for events of 5th Oct. 2007 and17th Nov. 2007 confirms further finding by 
Williams & Berndt (1977) and Sadeghi (2004)that MUSLE is unsuitable for prediction of sediment yield of small 
storms due to low discharge realized during such events. Poor simulation of sediment for the 11th Oct. 2007 was likely 
due to limited supply of sediment following exhaustion of sediment from previous day runoff. This agrees with studies 
of Walling and Webb (1982) that showed sediment exhaustion during subsequent runoff events in a number of 
catchments in Devon, UK. However, this is not the case for the 2nd and 3rd Oct. 2007 events. A possible explanation 
could be that during the two events, precipitation distribution varied spatially coupled with the fact that sediment 
sources are different throughout the catchment. This result compares favorably with that reported by Sadeghi and 
Mizuna (2007) for the case of Khanmirza catchment, Iran. 
Removal of the extreme event and re-calibrating the MUSLE model using NSEm as the objective function yielded 

improved simulation results with R2 = 0.60. The percent error of estimation of the individual events was improved than 
when NSE was used with and without inclusion of the extreme event. Interestingly, however, the NSEm value was 
reported at 0.44 which was much lower than the previous cases. NSEm has not been widely adopted and there is a lack 
of comparative literature on the same (Moriasi et al., 2007). Nevertheless, the findings in this study enhance the 
recommendation of Legates and McCabe (1999) suggesting the adoption of the NSEm over correlation-based measures 
and stating that NSE was sensitive to extreme values due to the squared differences in residuals. This findings also 
agree with recently published works by Muleta (2012) which also suggest that objective functions based on  
minimizing absolute value residuals were most effective when used to simulate both low and high flows. 
Further, testing of the model by attempting to split the data into two sets for calibration and validation also suggested 

the robustness of NSEm over NSE as an objective function. Calibration of the data yielded a NSE value of 0.88. 
Validation of the conceptual factors yielded an NSE value of 0.74. Much of this was contributed by the extreme event of 
25th September 2007. Excluding this event from the validation analysis the NSE value dropped to -0.12. This was 
suggestive that observed mean of sediments was a better predictor than the model in the catchment based on the 
available data. However, re-calibrating the model using the modified version of NSE and subsequent validation, the 
NSEm was reported at 0.48. On excluding the extreme event from the validation data set, the NSEm subsequently 
improved to 0.67 indicative that the model was a better predictor than the mean. It was also noted that the conceptual 
factors estimated were different in both cases. With NSE, � and ( were estimated at 7.13 and 0.42 respectively. NSEm 
estimated � at 8.54 and (  at 0.32 which was similar to the results of NSEm calibration using the whole dataset but 
excluding the extreme event. This was suggestive that the factors obtained using NSEm as the objective function were 
much stable than those obtained when NSE was used. These findings agree with those reported in literature 
emphasizing the need to use multiple efficiency criteria to assess model performance (Legates and McCabe, 1999; 
Krause et al., 2005; McCuen et al., 2006; Moriasi et al., 2007; Muleta, 2011; Muleta, 2012). Specifically, relying on 
NSE alone may lead to rejection or acceptance of a good or poor model and other indices are a necessary inclusion to 
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evaluate model performance. Consequently, these findings have wider implications in hydrological studies involving 
prioritizing model factor inputs, calibration and validation and highlight the need for careful assessment of the MUSLE 
model for sediment yield estimation. 
 
7 Conclusion and recommendations 
OAT and variance based (Sobol’) sensitivity analysis suggest that � was the most sensitive parameter in the model. 

Considering that OAT is limited to robustly explore factor prioritization due to input factor interaction in the whole 
factor distribution range, the Sobol’ method provided a quantification of the variance contribution of each parameter 
and the variance contribution of their interactions to the sediment yield output from the catchment. The results showed 
that the most sensitive factors of the MUSLE model were the conceptual factors with both � and (, contributing about 
66% of the variability in the output sediment yield. The most revealing finding was the degree of interaction among 
input factors. Of note was the significant increase in variability of sediment yield due to interactions among (, Q and q. 
Subsequently, the conceptual factors in the model were calibrated to determine their optimal values for the catchment. 
The calibration of the MUSLE model indicated that the use of NSEm as an objective function provided more stable 

results indicating that the model can be applied for sediment yield simulation in the upper Malewa catchment. NSE was 
found sensitive to extreme value events and the use of it alone can lead to judging a good model bad or a bad model 
being judged good. This raised the concern over continued use of NSE as an index of model evaluation and usage as 
objective function in model calibration. Ideally, the present study questioned the integrity of NSE as model efficiency 
criterion. NSEm has not been widely used; however, it provided insight into model evaluation by not over-emphasizing 
on model performance compared to NSE. This study recommends the adoption of the NSEm index, at least for 
sediment yield modeling and evaluation. This study further proposes regionalization of the calibrated versions of the 
model to test its efficacy in catchments with similar hydro-geomorphological conditions in the region of study. 
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