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In many industrial applications, fibre-reinforced polymers are in contact with rigid surfaces. The contact
behaviour of such polymers is both anisotropic and viscoelastic: the polymers exhibit viscoelastic
behaviour and the addition of short fibres results in a directionality in the material behaviour of the
composite. This work focuses on the contact problem of an orthotropic viscoelastic material in contact
with a spherical rigid indenter, in which the radius of the contact area is much larger than the fibre size.

A general form of anisotropic behaviour has been considered in order to describe materials with
a high degree of anisotropy. By using separation of variables a solution for the quasi-static contact
problem for viscoelastic and generally anisotropic materials is obtained by combining the linear theory
of viscoelasticity with the Hertz solution for elastic anisotropic materials as derived by Willis. The
developed contact model requires nine elastic material parameters in combination with one time
dependent material parameter as input, in order to characterise the behaviour of the material. It is shown
that the results of the developed model show good agreement with both isotropic and anisotropic
materials described in literature. Furthermore, it is shown that ignoring the anisotropy of a viscoelastic
material will result in an overestimate of the stiffness of the material.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Polymers reinforced with fibres are widely used in industry, where
often the polymer-fibre composite is in contact with a rigid counter
surface and in relative motion. Because the polymers have properties
that are not always desirable, such as low temperature resistance and
low stiffness, they are reinforced with fibres. In the same way as the
addition of fibres influences the material behaviour, they also modify
the contact behaviour and consequently the tribological behaviour of
tribo-systems containing these composites. In this work, the contact of
a fibre reinforced polymer with a rigid surface is studied. The fibre
reinforced polymer is modelled considering viscoelastic material
behaviour (due to the polymer matrix) and anisotropic material
behaviour (due to the orientation of the fibre in the composite). The
rigid surface is considered to be a spherical rigid indenter.

The behaviour of a viscoelastic material in contact with a
rigid spherical indenter is commonly modelled as an extension
of the Hertz solution [1,2] where the elastic parameters are
replaced by the viscoelastic parameters within the linear theory
of viscoelasticity. Contact models which include viscoelastic
ll rights reserved.
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material behaviour were developed, under certain restrictions,
by for instance Johnson [1], Lee and Radok [3] and Graham [4,5].
A more general viscoelastic contact model which includes all
previous solutions was developed by Ting [6].

The anisotropic behaviour of a material in contact with a rigid
spherical indenter is also often modelled after Hertz. Green and
Zerna [7], and Dahan and Zarka [8] modelled the contact behaviour
between transversally isotropic materials and spherical rigid inden-
ters. Contact models considering higher degrees of anisotropy
are less common. Among these, orthotropic materials are described
by nine independent elastic parameters and are one of the more
common type of anisotropic materials, examples are long fibre
reinforced composites. Contact models of orthotropic materials
involve numerical solutions due the large amount of parameters.
Willis [9] studied the Hertzian problem for anisotropic materials by
numerically solving an analytical solution, and Swanson [10] used
this procedure to study the orthotropic case. An approximation of the
contact model for orthotropic materials was developed by Yang and
Sun [11] and Tan and Sun [12]. They assumed that the contact
area and indentation depth for an orthotropic material could be
derived from the isotropic case, replacing the isotropic modulus by
the modulus in the loading direction.

Swanson [10] made a comparison between two different aniso-
tropic contact models: the approximate anisotropic contact model of
Yang and Sun [11] and Tan and Sun [12] and the orthotropic contact
model by Willis [9]. It was concluded that, for low degrees of
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Nomenclature

Roman symbols

A(t) time dependent contact area (m2)
ax, ay half widths of the elliptical contact area (m)
ax(t), ay(t) time dependent half widths of the contact area (m)
aðtÞ dimensionless time dependent contact area (–)
a(t) time dependent radius of the contact area (m)
E elastic modulus (Pa)
Ex,Ey,Ez elastic modulus in x-, y- and z-direction, respectively

(Pa)
FN applied normal force (N)
FN (t) time dependent applied normal force (N)
FðtÞ dimensionless time dependent applied normal force (–)
f(t) auxiliary function f ðtÞ ¼ pðtÞ=aðtÞ (–)
f−1(t) inverse of the auxiliary function f(t) (–)
G shear modulus (Pa)
Gyz, Gzx, Gxy shear modulus in the planes yz, zx and xy,

respectively (Pa)
H(t) heaviside function (–)
I1, I2 contour integrals that encapsulate the material prop-

erties in an anisotropic material, defining the contact
behaviour (Pa−1)

pðtÞ dimensionless time dependent pressure distribution (–)
p0 maximum contact pressure (Pa)
R radius of the indenter (m)
t time (s)
tn dummy variable of the convolution integral (s)

u displacement field vector (m)
uiðxiÞ displacement field depending on spatial variables (m)
uðtÞ normalised time function of the displacement field (–)
~uz Fourier transform of the normal component of the

displacement field
uz normal component of the displacement field (m)
x, y, z spatial variables, x and y are in the indentation plane

and z is along the direction of indentation

Greek symbols

δðtÞ time dependent indentation depth (m)
δ indentation depth (m)
δðxÞ Dirac delta function
εðtÞ time dependent strain (–)
εij; ε strain tensor (–)
λi retardation time of the creep compliance coefficient

i (s)
ν Poisson’s ratio (–)
sðtÞ time dependent stress (Pa)
sij; r stress tensor (Pa)
ϕðtÞ creep compliance function (Pa−1)
ϕðtÞ normalised creep compliance (–)
ϕr creep compliance at fully relaxed state (Pa−1)
ϕi creep compliance coefficient i (Pa−1)
ψðtÞ stress relaxation function (Pa)
ψðtÞ normalised stress relaxation (–)
ψ ijklðtÞ stress relaxation of the material in 3-D (Pa)

FN
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anisotropy, the approximate anisotropic contact model offers a good
agreement with the results of the orthotropic contact model. Rodri-
guez et al. [13] extended this approach to viscoelastic materials,
developing a contact model for viscoelastic anisotropic materials with
low anisotropy (Ez/Exo2). In the present study, a more general
viscoelastic anisotropic contact model is presented, valid for higher
degrees of anisotropy. The anisotropic behaviour is modelled follow-
ing the procedure of Willis [9] and Swanson [10]. This solution is
combined with the solution of the viscoelastic contact model from
Ting [6], under the assumption of separation of spatial and time
variables. Therefore this contact model requires nine elastic para-
meters, which give the information about the anisotropy of the
material, and only one time dependent function, which gives infor-
mation about the viscoelastic behaviour of the material. Under this
assumption, the solution of the contact problem describes a smooth
and rigid spherical indenter against an orthotropic viscoelastic-
isochronous material, meaning that the properties of the material
are time dependent and are described by one time function.

1.1. Coordinate system

To facilitate the discussion regarding the anisotropy of the
material, a system of coordinates is defined according to Fig. 1. The
direction of indentation corresponds to the positive z-axis, whilst
the x–y plane is the plane of initial contact.
z
x

y

Fig. 1. Schematic of the coordinate system used.
2. Elastic orthotropic contact

Willis [9] developed a model describing the anisotropic elastic
contact for a point load, and extended this to consider a pressure
distribution. The details of this procedure can be found in
Appendix A. The contact area is given by an ellipse with principal
axes ax and ay, defined as

ax ¼
3RFN
4

� �1=3

I1=31 and ay ¼
3RFN
4

� �1=3 I1=22

I1=61

ð1Þ

These expressions are similar to the solution by Hertz pre-
sented in [1]. The only difference is in the term representing the
elastic material properties, with I1 and I2 the numerical solutions
of two contour integrals. These depend on the nine material
properties of the orthotropic material and are defined in Eqs.
(2) and (3) , where ε¼ax/ ay and ~uz is the Fourier transform of the
normal displacement due to a point load and depends on all the
material properties. Details are given in Appendix A.

I1 ¼
Z 2π

0
~uzðε cos θ; sin θÞð cos θÞ2dθ ð2Þ

I2 ¼
Z 2π

0
~uzðε cos θ; sin θÞð sin θÞ2dθ ð3Þ
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3. Extension to viscoelasticity

To obtain a solution to the viscoelastic orthotropic contact
problem, first the auxiliary problem of a concentrated point load
applied to a viscoelastic orthotropic half-space is solved, similar to
the procedure of Willis [9]. The solution involves the separation of
time and space variables; the temporal solution is obtained, and
the applied spatial solution corresponds to the solution of Willis
[9]. To calculate the contact problem of a viscoelastic anisotropic
material indented by a rigid spherical indenter, the contact area
and pressure distribution used are the ones defined by Willis [9].

3.1. Solution of a point load in an anisotropic viscoelastic material

Following Willis [9], Swanson [10] and Ting [6], the equations
to solve are
�
 The stress and displacement, which must satisfy equilibrium

∂sij xi; tð Þ
∂xj

¼ 0 ð4Þ
�
 The strain-displacement relation
εij ¼
1
2

∂ui

∂xj
þ ∂uj

∂xi

� �
ð5Þ
�
 The linear viscoelastic stress–strain relation, valid for anisotro-
pic materials:

sijðxi; tÞ ¼
Z t

0
ψ ijklðt−tnÞ

∂εklðxi; tnÞ
∂tn

dtn ð6Þ

Where ψ ijklðtÞ is a fourth order time-dependent tensor that
corresponds to the stress relaxation functions of the material. The
indices indicate the x-, y- and z-directions, and xi denotes the
spatial variable, i.e. xx¼x, xy¼y and xz¼z.

It is considered that there is full contact between the half-space
and the indenter, i.e. no separation occurs within the contact area.
Furthermore, inertia is neglected, reducing the problem to a quasi-
static one. Assuming the separation of space and time variables
enables the definition of the displacement field u, the strain ε and
the stress s, respectively

ui xi; tð Þ ¼ ui xið Þu tð Þ ð7Þ

εij xi; tð Þ ¼ εij xið Þu tð Þ ð8Þ

sij xi; tð Þ ¼ sij xið ÞF tð Þ ð9Þ
where u tð Þ and F tð Þ indicate the time functions of the displacement
field and the applied load, respectively. These functions are
dimensionless, meaning that the dimension is kept by the spatial
variables. The dimensionless applied normal load, F tð Þ, is defined
by the Heaviside step function as

F tð Þ ¼H tð Þ ¼ 0 to0
1 t≥0

(
ð10Þ

For to0, the viscoelastic half-space is stress-free and at t≥0
the spherical indenter is pressed into the half-space. Similar to
Eqs. (7)–(9), it is possible to rewrite ψ ijkl tð Þas
ψ ijkl tð Þ ¼ ψ tð Þ⋅ψ ijkl ð11Þ
where ψðtÞ represents a normalised stress relaxation function,
describing the time-dependency of the material properties and the
constant tensor ψ ijkl behaves similar to the stiffness tensor of the
material. This enables the use of ψ ijkl as the common stiffness
tensor found in elasticity and therefore the stress–strain relation-
ship in spatial variables can be defined as sijðxiÞ ¼ ψ ijkl⋅εkl.
To solve the time dependent component of the displacement
field, u tð Þ, one of the stress boundary conditions is used, which is
defined in both the spatial and temporal variables

szz x; y; z¼ 0; tð Þ ¼ −δ xð Þδ yð ÞFNF tð Þ ð12Þ
where δ refers to the Dirac delta function with reciprocal

dimensions to the dimension of x or y. The temporal boundary
condition used is thenZ t

0
ψ t−tnð Þ ∂u tnð Þ

∂tn
dtn ¼ F tð Þ ð13Þ

Inverting the time dependent boundary condition of Eq. (13),
the time dependency of the displacement field u tð Þ can be
described by

u tð Þ ¼
Z t

0
ϕ t−tnð Þ ∂

∂tn
H tnð Þdtn ¼ ϕ tð Þ ð14Þ

in which the normalised creep compliance function ϕðtÞ is
related to the normalised stress relaxation function ψðtÞ byZ t

0
ψ t−tnð Þϕ tnð Þdtn ¼ t ð15Þ

The solution of the spatial displacement in the Fourier domain
is obtained identically to Willis [9], as described in Eq. (A.9) in
Appendix A.

3.2. Solution of the contact problem

The time dependent pressure distribution in the contact is
described in terms of the peak contact pressure p0 by Eq. (16),
where the contact area is an ellipse with principal axes ax(t) and
ay(t). The two principal axes of the contact area show identical
time dependency and can be written as axðtÞ ¼ ax aðtÞ and
ayðtÞ ¼ ay aðtÞ. The time dependency of the pressure distribution
is given by the dimensionless parameter pðtÞ

pðx; y; tÞ ¼ pðtÞp0 1−
x2

axaðtÞ
þ y2

ayaðtÞ

� �� �1=2

ð16Þ

The superposition of the spatial and temporal solutions for the
normal displacement is given by Eq. (17), where u t−tnð Þ is the
dimensionless time-dependent displacement field at time t, due to
a contact pressure that occurred at an instant tn, and η1 and η2 are
cos(θ) and sin(θ), respectively.

uz x; y;0; tð Þ ¼
Z t

0

p tnð Þ
a tnð Þ

∂u t−tnð Þ
∂tn

dtn⋅
πp0ay
4

Z 2π

0
~uz εη1; η2
� �

� 1−
η1x
ax

þ η2y
ay

� �2
" #

dθ ð17Þ

The first integral on the right side of the equation represents
the temporal solution, whilst the second integral is the spatial
solution for the orthotropic contact.

The time-dependent, quasi-static relative displacement of the
indenter into the half space is given by δ(t) in

uz�indenter þ uz�half�space ¼ δ tð Þ− Ax2 þ By2 þ 2Cxy
� �

FN F tð Þ ð18Þ

For the special case of a rigid spherical indenter, the terms A, B
and C in Eq. (18) are [1].

A¼ B¼ 1
2R

C ¼ 0 ð19Þ

Recognising terms between Eqs. (17) and (18) gives

FNF tð Þ
2R

¼
Z t

0

p tnð Þ
a tnð Þ

∂u t−tnð Þ
∂tn

dtn⋅
πp0ay
4a2x

Z 2π

0
~uz θð Þ cos 2 θð Þdθ ð20Þ



Table 1
Compliance coefficients and Retardation times for EPDM.

i ϕi (Pa−1) λi (ms)

ϕr 3.493�10−7

1 4.692�10−8 6.4
2 4.903�10−8 71.3
3 8.232�10−8 728.4

Fig. 2. Normalised creep functions for different materials.
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Applying an auxiliary function f(t) as defined in Eq. (21)

f ðtÞ ¼ pðtÞ
aðtÞ ð21Þ

and by using the commutative properties of convolution, it is
possible to invert the time dependent terms of Eq. (20), obtaining
a solution for the time dependency of the contact areaZ t

0
f −1ðt−tnÞ

∂HðtnÞ
∂tn

dtn ¼ f −1ðtÞ ¼ uðtÞ ¼ ϕðtÞ ð22Þ

where f−1(t) is the inverse function of f(t). The time-dependent
part of the peak contact pressure can be replaced by the time-
dependent part of the total contact force, as

FðtÞ ¼ pðtÞa2ðtÞ ð23Þ
And the time dependency of the contact area is given by

aðtÞ ¼ ½FðtÞ⋅ϕðtÞ�1=3 ð24Þ
As the total pressure is given by FNðtÞ ¼ FNFðtÞ, where FðtÞ

follows a Heaviside function, the solution of the viscoelastic
orthotropic contact can be expressed as the product of the contact
solutions in time and space [10]. The contact area is given by an
elliptical contact area of axes axðtÞ and ayðtÞ given by

axðtÞ ¼
3RF
4

� �1=3

½I1⋅ϕðtÞ�1=3; ð25Þ

ayðtÞ ¼
3RF
4

� �1=3 I1=22

I1=61

 !
½ϕðtÞ�1=3; ð26Þ

The creep compliance function, ϕðtÞ, has been normalised with
respect to the fully relaxed compliance, ϕr . Therefore, in the elastic
case, the normalised creep compliance function will be constant
and unity, ϕðtÞ¼ 1. From the definition of creep compliance in [6],
the contact area in the viscoelastic isotropic case is given by

aðtÞ ¼ 3RF
4

� �1=3 1−ν2

E
⋅ϕðtÞ

� �1=3
or aðtÞ ¼ 3RF

4

� �1=3 ϕðtÞ
2

� �1=3
ð27Þ
4. Results and discussion

To compare the results that are obtained using the newly
developed orthotropic viscoelastic isochronous contact model
with both elastic anisotropic and isotropic viscoelastic models
available in literature, the elastic and viscoelastic properties of
EPDM will be considered as reference. The elastic material proper-
ties were measured for EPDM samples by employing a tensile
tester, whilst the viscoelastic properties were characterised using
Dynamic Mechanical Analysis (DMA). The mean creep compliance
of the material is expressed as a series of discrete exponential
terms [15] given by

ϕðtÞ ¼ ϕr− ∑
3

i ¼ 1
ϕiexp

−t
λi

� �
ð28Þ

where ϕr indicates the creep compliance at a fully relaxed state
and λi indicates the retardation times. For the EPDM used in this
study, the elastic modulus is E¼4.39 MPa and the creep para-
meters are summarised in Table 1.

The results discussed in following paragraphs refer to an
indenter with a radius of R¼12.5 mm that is pressed against a
viscoelastic anisotropic EPDM body at an applied load FN¼2 N.

4.1. Influence of the normalised creep function

In Eq. (27) the elastic behaviour is represented by the Young’s
modulus E and the viscous behaviour by the normalised creep
compliance ϕ tð Þ. To study the influence of the viscous or time
dependent behaviour, the normalised creep functions of several
materials (EPDM, PU [14], PMMA [16] and PC [16]) are presented in
Fig. 2. These normalised creep functions will be multiplied with
the elastic properties of EPDM to calculate the contact area; the
results are shown in Fig. 3. Fig. 2 shows that at long times scales
the creep compliance function for all materials approaches unity.
The speed of this approach depends mainly on the retardation
times of the creep function. The normalised creep function for a
purely elastic material (i.e. ϕ(t)/ϕr¼1) is also shown.

The time dependency of the contact area is influenced by the
normalised creep compliance, but the magnitude of the contact
area is influenced by the elastic material parameters applied
[9,10].

It can be concluded that the relevance of a viscoelastic contact
model is highly dependent on the time-scale at which the contact
occurs in relation with the characteristic retardation times of the
viscoelastic material.
4.2. Influence of the elastic modulus in the plane of indentation (Ex)

The influence of a reinforcement of the material in the plane of
indentation on the contact area is illustrated in Fig. 4. The
reinforcement is applied as an increase of the elastic modulus in
one direction (x) of the x–y indentation plane without changing
the other elastic moduli, shear moduli or Poisson’s ratios. The
black solid line in Fig. 4(a) shows the contact area for the isotropic
case and the solid lines with markers show the contact areas for
various reinforcements of Ex. It can be seen that reinforcement
results in the contact area to decrease slightly with increasing Ex.
Fig. 4(b) shows the circularity or roundness of the contact area, i.e.
the ratio between the two primary axes of the contact area.
A circularity of 1.0 means that the contact area is circular and
deviating values indicate an elliptic shape of the contact area. The
contact area, which is circular for isotropic materials, becomes
increasingly elliptically shaped with increasing Ex.



Fig. 3. Influence of normalised creep compliance on the contact area.

Fig. 4. (a) Influence of increasing the elastic modulus in the indentation plane on
the contact area and (b) effect of different degrees of reinforcement on the
circularity of the contact area.

Fig. 5. (a) Influence of increasing the shear moduli on the contact area and (b)
effect of different shear moduli on the circularity of the contact area.

Fig. 6. (a) Influence of increasing Ez on the contact area and (b) effect of increasing
Ez on the circularity of the contact area.
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The reinforcement, using fibres, of a polymer matrix will not
only affect the Young’s modulus Ex, but also the shear modulus G.
The effects are illustrated in Fig. 5, in which the shear moduli in
different directions are varied from being constant to be depen-
dent on Ex, according to G¼Ex/2(1+ν). Fig. 5(a) shows that an
increase of the shear modulus results in a significant decrease of
the contact area, the effect being strongest for an increase of Gxz.
Fig. 5(b) shows that a change of the shear modulus also affects the
elliptical shape of the contact area.

4.3. Influence of elastic modulus in the direction of indentation (Ez)

Fig. 6 shows the influence of the elastic modulus in the direction
of indentation of the material on the contact area. In Fig. 6(a) the
isotropic case is represented by a solid black line, and increasing Ez is
represented by dashed lines. It can be seen that the contact area
decreases significantly with increasing the elastic modulus in the
direction of indentation (Ez). Comparing Fig. 6(a) with Fig. 4(a) shows
that increasing Ez has a stronger effect than increasing Ex. Fig. 6



Fig. 7. (a) Influence of different shear modulus on the contact area and (b) effect of
shear modulus on the circularity of the contact area.

Fig. 8. Comparison of the orthotropic viscoelastic isochronous contact model with
the isotropic viscoelastic contact model of Ting [6].

Table 2
Elastic properties of woven glass/epoxy composite [17].

Ex (warp) (GPa) Ey (Fill) (GPa) Gxy (GPa) Gxz (GPa) Gyz (GPa) ν (–)

21.95 21.8 3.52 1.84 1.72 0.08
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shows that an increase of the elastic modulus in the direction of
indentation, has no effect on the shape of the contact area, which
remains circular.

In Fig. 7(a), it is shown that an increase of any of the shear
modulus causes a decrease of the contact area. In the different
dashed lines each shear modulus varies as G¼Ez/2(1+ν), whilst the
other shear modulus remain constant. Each shear modulus affects
the contact area with different magnitudes depending on the
direction of the shear modulus, as seen in Fig. 7(b). Different
directions of shear modulus can affect the shape of the contact
area, from circular to elliptical, as seen in Fig. 7(b).
4.4. Comparison with viscoelastic isotropic contact models

Ting [6] describes a contact model for isotropic viscoelastic
materials. For the controlled load case, in which the normal load
follows a Heaviside step function, Ting’s radius of the contact area
is defined as

a tð Þ ¼ 3RFN
8

ϕ tð Þ
� �1=3

ð29Þ

Fig. 8 shows the results of a comparison between the newly
developed orthotropic viscoelastic isochronous contact model and
the isotropic viscoelastic contact model of Ting [6], using the
elastic and viscoelastic material parameters measured for EPDM.
The contact area shows a small difference of 0.35% between the
two models, which is only to be expected, as the models use
different input parameters. The input parameters required by the
orthotropic viscoelastic isochronous contact model are more
numerous and are determined with a range of different tests,
compared to the single input parameter of the Ting model.
Therefore, it can be concluded that, when used for isotropic
materials, the results of the orthotropic viscoelastic anisotropic
contact model agree with the results found in literature.

4.5. Viscoelastic anisotropy

To study the viscoelastic anisotropic contact model, an analysis
of a composite material made of FR-4 epoxy matrix reinforced
with 7628 woven glass fabric is made. The anisotropic elastic
properties of this composite have been described by Hutapea and
Grenestedt [17], shown in Table 2, while Shrotriya et al. [18]
characterised the viscoelastic properties, shown in Table 3.

Fig. 9 shows the calculated contact area the woven glass epoxy
composite in contact with a spherical indenter with a radius of
5 mm, at a normal load of 1 kN. The contact area was calculated
under three configurations
�
 The orthotropic case, calculated with the newly developed
orthotropic viscoelastic contact model, by using the elastic
material parameters listed in Table 2 and the normalised creep
compliance defined by the parameters in Table 1 (shown in
solid black squares).
�
 The isotropic case, calculated with the newly developed ortho-
tropic viscoelastic contact model, by using the elastic material
parameters corresponding to the warp direction, E¼21.95 GPa
and G¼3.52 GPa and the normalised creep compliance (shown
in white squares).
�
 The isotropic case by using Ting’s unidirectional viscoelastic
contact model, with as input parameters the (non-normalised)
creep compliance function of the composite in the warp
direction, defined by the parameters in Table 1 (shown in
asterisks).

The difference between the orthotropic contact area and the
contact area calculated using the creep compliance in the warp
direction is 23%. This can be explained by the large influence of the
shear moduli in each direction. Discounting these effects, i.e. by
using an isotropic viscoelastic contact model, will overestimate the
shear modulus of the material and thus predict a lower contact
area than an orthotropic viscoelastic contact model. Indeed,



Table 3
Retardation times λ and compliance coefficients ϕ

for woven glass/epoxy in the warp direction [18].

i ϕi (GPa
−1) λi (min)

ϕr 1:26� 10−1

1 3:81� 10−3 1:61� 101

2 5:48� 10−3 5:55� 102

3 2:29� 10−3 9:09� 103

4 5:62� 10−3 6:25� 104

5 1:32� 10−2 6:89� 105

6 1:33� 10−2 6:06� 106

7 1:55� 10−2 1:00� 108

8 1:05� 10−2 5:49� 108

9 1:57� 10−2 5:00� 109

Fig. 9. Contact area calculated for the woven glass epoxy composite.
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employing the orthotropic viscoelastic contact model with mate-
rial properties in the warp direction, i.e. the indentation direction,
results in similar low contact areas, as illustrated by the white
squares Fig. 9. The difference between the calculated contact areas
using the isotropic case in the warp direction and the unidirec-
tional viscoelastic model of Ting is about 2%. When applied to an
anisotropic, viscoelastic material, the use of an isotropic model
will overestimate the stiffness and result in a contact area that is
too small.
5. Conclusions

A model describing the contact behaviour of orthotropic
viscoelastic materials was developed by separating the temporal
and spatial variables. Employing this newly developed contact
model enables the study of the influence of various material
properties in the principal directions (x, y, z) and the influence of
the viscoelastic behaviour of the material. The model employs one
normalised creep compliance function for the mechanical proper-
ties, i.e. the viscoelastic behaviour is modelled isochronously.

The viscous behaviour of the material is modelled using the
normalised creep function, which influences the contact area by
means of the retardation times, without modifying the eventual
magnitude of the contact area. The influence of an increased
elastic modulus in one direction in the plane of indentation was
studied, and it was found that the contact area only decreases
slightly. However, because the Young’s modulus also affects the
shear modulus, the contact area for such a material may decrease
significantly. In the direction of indentation, an increase of the
elastic modulus causes a significant decrease of the contact area,
whilst the shear modulus influences the shape of the contact area,
which can vary from circular to elliptical depending on the
direction of the shear modulus. Results obtained using the newly
developed orthotropic viscoelastic isochronous contact model are
in line with results described in literature, both for isotropic and
anisotropic materials.
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Appendix A. A fully anisotropic contact model

Willis [9] solves the effect of a point load on an anisotropic half
space, and later uses the solution to solve the effect of a certain
pressure distribution on an anisotropic half space.

The problem is defined by the stress equilibrium
equation (where s indicates the stresses, repeated subscript
denotes summation, comma denotes differentiation), the stress–
strain equation for anisotropic materials, and the boundary con-
ditions.

sij;j ¼ 0 and sij ¼ cijkluk;l for z≥0 ðA:1Þ

szz ¼ −δðxÞδðyÞFN for z¼ 0 ðA:2Þ
Combining the two equations and introducing the convention

that Latin suffixes take values of x, y, z and Greek suffixes take
values of x, y

ciαkβuk;αβ þ ðciαkz þ cizkαÞuk;αz þ cizkzuk;zz ¼ 0 ðA:3Þ
Taking the Fourier transform in the x and y-directions, denoting

ξ¼(ξ1, ξ2) as the Fourier transform parameters and x¼(x, y), the
displacement in the Fourier domain is

~uk ξ; zð Þ ¼ ∑
6

A ¼ 1
akA ξð Þ exp imA ξð Þz½ � ðA:4Þ

where

cizkzm
2
A þ ciαkz þ cizkαð ÞξαmA þ ciαkβξαξβ

� 	
akA ¼ 0 ðA:5Þ

mA is one of the six roots, obtained by setting the determinant of
the matrix in Eq. (A.5) to zero. As the displacement must be finite
far from the load, only the roots with positive imaginary parts are
retained. By substituting these roots back in Eq. (A.5) the first two
rows of the ratios a1A=a3A and a2A=a3A are obtained. By applying the
Fourier transform to the boundary conditions and substituting Eq.
(A.4), the remaining constants are obtained

∑
3

A ¼ 1
½mAða1A=a3A Þ þ ξ1�a3A ¼ 0 ðA:6Þ

∑
3

A ¼ 1
½mAða2A=a3A Þ þ ξ2�a3A ¼ 0 ðA:7Þ

∑
3

A ¼ 1
½cxxzzξ1ða1A=a3A Þ þ cyyzzξ2ða2A=a3A Þ−czzzzmA�a3A ¼ −i

π
ðA:8Þ

And the normal displacement in z¼0 due to a concentrated
normal load is known in its Fourier transform as

~uz ξ;0ð Þ ¼ ∑
3

A ¼ 1
akA ξð Þ ðA:9Þ

By inverting this Fourier transform, assuming that the contact
area is an ellipse with principal axes (ax and ay) and with a
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pressure distribution given by

p x; yð Þ ¼ p0 1−
x2

a2x
−
y2

a2y

 !1=2

ðA:10Þ

The normal displacement can be solved by numerically, by
evaluating the following contour integral

uz x; y;0ð Þ ¼ p0
πay
4

Z 2π

0
~uz

ay
ax

cos θ; sin θ

� �

⋅ 1−
cos θ x

ax
þ sin θ y

ay

� �2
" #

dθ ðA:11Þ

The contact area can be expressed by

ax ¼ 3RFN
4

� �1=3

I1=31 and ay ¼ 3RFN
4

� �1=3 I1=22

I1=61

ðA:12Þ

where

I1 ¼
Z 2π

0
~uz ε cos θ; sin θð Þ⋅ cos θð Þ2dθ ðA:13Þ

I2 ¼
Z 2π

0
~uz ε cos θ; sin θð Þ⋅ sin θð Þ2dθ ðA:14Þ

More details of this procedure can be found in Willis [9] and
Swanson [10].
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