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a b s t r a c t

Particulate matter (PM) air quality in Europe has improved substantially over the past decades, but it still
poses a significant threat to human health. Accurate regional scale maps of PM10 concentrations are
needed for monitoring progress in mitigation strategies and monitoring compliance with statutory limit
values. Chemistry transport models (CTM) use emission databases and simulate the transport and
deposition of pollutants. They deliver such maps but are known to be inaccurate. A promising approach is
to use geostatistics to model the relationship between the in situ observations and the CTM. This has
been shown to be more accurate than using either observations or CTM's alone. This paper presents a
spatially varying coefficients (SVC) geostatistical model as an extension of the standard spatially varying
intercept (SVI) geostatistical model. SVC allowed the regression coefficient to vary spatially according to a
covariance function, the parameters of which were estimated from the data. It was built as a Bayesian
hierarchical model and implemented using Markov chain Monte Carlo. The procedure was applied to
Airbase PM10 observations and LOTOS-EUROS simulated PM10 for central, southern and eastern Europe.
Model-fit diagnostics showed that SVC delivered a better fit to the data than SVI. Mapping the spatially
varying coefficients allowed identification of the locations where the CTM performed well or poorly. This
could be used for objective CTM evaluation purposes. The posterior predictive simulations were also used
to map median PM10 concentrations as well as the probability of exceeding the 50 mg m�3 EU daily PM10
concentration threshold. Although posterior median prediction accuracy was similar for SVI and SVC, SVC
better modelled the process and yielded narrower credible intervals. As such, SVC was more appropriate
for quantifying uncertainty and for mapping threshold exceedances. The resulting maps may be used to
guide air quality assessment and mitigation strategies, including those related to health impacts.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Although particulate matter (PM) air quality in Europe has
improved substantially over the past decades it still poses a sig-
nificant threat to human health (EEA, 2007). Short-term exposure
to PM has frequently been associated with increased human
morbidity and mortality (Brunekreef and Holgate, 2002). Long-
term exposure to PM is considered to have a strong effect on
health (Dockery et al., 1993; Pope et al., 1995) and particulate
matter has recently been classified as carcinogenic (Loomis et al.,
2013). Health impact studies conclude a reduced life expectancy
of 3e12 months in large parts of Europe (EEA, 2007). The European
air quality standards currently focus on PM10 (PM < 10 mm in
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diameter) and PM2.5. Many European countries have problems
adhering to the allowed annual number of exceedances of the daily
limit value of 50 mg m�3 for PM10.

Accurate regional scale maps of PM10 concentrations are
needed for monitoring progress in mitigation strategies and
monitoring compliance with statutory limit values. Moreover, ac-
curate background maps are needed for air pollution modelling,
management and exposure estimation in urban agglomerations
(Beelen et al., 2013). Generation of these maps is challenging
because PM concentrations are only measured at a limited number
of locations. Moreover, regional scale chemistry transport models
(CTM) systematically underestimate observed PM10 concentra-
tions, due to uncertain knowledge on emissions and formation
pathways (Stern et al., 2008). Hence, they do not provide accurate
regional background maps. Alternatively, empirical models could
be used to predict PM10 at locations where it is not measured.
Thesemodel the relationship between covariate predictor variables
and the pollutant of interest and are based typically on regression
(Brauer et al., 2011) or geostatistics (Lloyd and Atkinson, 2004).
Empirical models may give accurate results, but are restricted to the
conditions under which they are developed. A promising new di-
rection is the integration of measured observations with CTM
output to provide maps of air quality, which has been shown to be
more accurate that using either alone (van de Kassteele and Stein,
2006; Denby et al., 2008; Candiani et al., 2013). In a geostatistical
context the CTM is a covariate and the measured observations are
the response variable.

A central assumption in geostatistical modelling is stationarity
of the mean and covariance. Stationarity of the mean implies the
relationship between themeasured observations and the CTM does
not vary over the geographic domain. Stationarity of the covariance
implies residual variance is constant over the domain and that
observations at any pairs of points separated by a given geographic
distance are equally correlated. The performance of a CTM shows
spatial variability, leading to a non-constant relationship with the
observations. Furthermore, given the different sources and com-
ponents of PM and the influence of meteorological conditions, the
level of residual variance and the nature of the spatial auto-
correlation is likely to vary in space and time. This suggests a
regression model for PM10 that uses CTM output as a covariate
should accommodate non-stationarity of the mean and perhaps
residuals. Non-stationarity in the regression coefficients may be
accommodated using a spatially varying coefficients (SVC) model
(Gelfand et al., 2003; Finley, 2011). Recent studies have also
considered non-stationarity in the covariance (Haskard and Lark,
2010; Anderes and Stein, 2011; Hamm et al., 2012) although, in
practice, adopting a spatially varying regression coefficients model
often reduces the problem of non-constant residuals variance. Such
models are of particular interest because theymay yield better fit to
observed data and improved inference. A further important point is
that modelling the spatial variability in the relationship between
the CTM output and the measured observation allows exploration
of the spatial variability in the performance of the CTM. This offers
improved insight into the CTM.

In this research geostatistics was used to model the relationship
between the CTM and the measured observations. Candidate geo-
statistical regression models were SVC and two simpler sub-
models: the standard geostatistical spatially varying intercept
(SVI) model and simple linear regression (SLR). The CTM used was
LOTOS-EUROS (Schaap et al., 2008), which is used widely for
regional and continental level modelling. Study objectives were to:
(i) assess the candidate models' fit to the observed data as well as
their prediction accuracy; (ii) gain insight into the CTM's perfor-
mance by quantifying the spatial variability in the relationship
between the CTM output and the observations; and (iii) develop
maps of average PM10, with associated estimates of uncertainty, as
well as the probability of exceeding 50 mg m�3 on any given day.
2. Methods

2.1. Models

A geostatistical model can be considered an extension of the
commonly used linear regression model

yðsÞ ¼ b0 þ
Xp
k¼1

bkxkðsÞ þw0ðsÞ þ εðsÞ (1)

where y is the response variable, xk are predictor variables, b0 is the
intercept and the bk’s are the regression slope coefficients. This
model differs from simple linear regression (SLR) because both the
response and predictor variables are spatially referenced, where s
denotes location. Further, the residual error is partitioned into two
components: w0(s) and ε. Here w0(s) is a spatially correlated
random effect. There are n w0’s, corresponding to n locations and
these are assumed to follow a multivariate normal distribution:
w0 ¼ (w0(s1), w0(s2),…, w0(sn))u~MVN(0, s02R(f0)), where 0 is a
zero vector, s20 is variance parameter and Rðf0Þ is a n � n spatial
correlation matrix. The non-spatial residual component is assumed
to be uncorrelated normally distributed: ε(s)~N(0, t2).

The correlation between w0(si) and w0(sj) is a function of their
geographic separation, hence:

Rijðf0Þ ¼ r
�
hij;f0

�
(2)

where r(,) is the correlation function, hij is the Euclidean distance
between si and sj and f is a vector containing the parameters of the
correlation function (e.g., rate of decay, smoothness). The covariance
matrix s20Rðf0Þmust be positive definite, which can be achieved by
choosing a valid correlation function (Cressie, 1993). In classical
geostatistics, b0 þ

Pp
k¼1bkxkðsÞ, t2, and s20 are referred to as the

trend, nugget, and partial sill, respectively. This model has been
applied widely for air pollution mapping (e.g., Lloyd and Atkinson,
2004; van de Kassteele and Stein, 2006; Denby et al., 2008).

The random effectsw0 are spatially correlated and provide local
adjustment to the regression intercept. Hence b0 þ w0(s) can be
thought of as a spatially varying intercept (SVI) and Model (1) is
referred to as SVI. Removing the w0(s) reduces (1) to SLR.

Model (1) assumes the regression coefficients are constant
across the domain which, as discussed in Section 1, may not be a
realistic. Gelfand et al. (2003) and Finley (2011) addressed this by
including slope-coefficient-specific random effects, denoted wk, to
(1) as follows

yðsÞ ¼ b0 þ
Xp
k¼1

bkxkðsÞ þw0ðsÞ þ
Xp
k¼1

wkðsÞxkðsÞ þ εðsÞ (3)

The wk(s)’s, k ¼ 1,…,p, are defined analogous to the w0’s, each
with its own set of variance and spatial correlation parameters: s2k
and fk. Although the wk's may vary spatially, they do so according
to a correlation structure that is, itself, stationary. In terms of
classical geostatistics one can think of different variograms for the
intercept and for each slope coefficient. Hence bk þ wk(s) is a
spatially varying coefficient and (3) is referred to as SVC.
2.2. Parameter estimation and prediction

In order to use the models it is necessary to estimate the
parameter values. These are the regression coefficients,
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b¼(b0, b1,…, bp), and the correlation and variance parameters,
q ¼ ðt2; s20;…;s2p;f0;…;fpÞ. Classical geostatistics has proceeded
using the method-of-moments approach where a model is fitted to
the sample variogram of the regression residuals or by using
maximum likelihood estimation. The estimated parameters are
then used directly for prediction at unknown locations, a procedure
known as spatial interpolation or kriging. These methods are
reviewed in standard texts (Cressie, 1993; Diggle and Ribeiro, 2007;
Webster and Oliver, 2008).

The research presented in this paper adopted a Bayesian
approach for parameter estimation and for prediction at unknown
locations. There are two key reasons for this choice. First, the
Bayesian approach characterizes uncertainty at all stages in the
modelling process and then propagates this through to prediction
at unknown locations. In contrast, the classical approaches,
mentioned above, use the estimates of q directly without consid-
ering their associated uncertainty. Ignoring uncertainty in the
covariance parameter limits inference about model parameters and
prediction (Diggle and Ribeiro, 2007). Second, the Bayesian
approach is flexible because it allows the development of complex
hierarchical models. SLR and SVI can be specified using the
method-of-moments or maximum likelihood approaches; howev-
er, the authors are not aware of any such implementation for SVC.

Under Bayes theorem the parameters' posterior distribution is
proportional to the product of the likelihood and parameters' prior
distribution (Gelman et al., 2013):

PosteriorfPrior� Likelihood (4)

This posterior distribution is then used for inference. Where
prior knowledge of a parameter is not available a non-informative
prior is used. For most real-world problems analytical solutions do
not exist and the posterior distribution is simulated using Markov
chain Monte Carlo (MCMC) (Lunn et al., 2013; Gelman et al., 2013).
Markov chains are simulated for multiple starting values and
allowed to converge. The m post-convergence simulated values are
used subsequently to predict w0, wp and then y at an unknown
location, s0. The simulated values of b, q,w0(s0),wp(s0) and y(s0) are
then used for inference.

The reader is referred to the Supplementary material for a
summary of the procedures used in this paper.
1 http://acm.eionet.europa.eu/databases/airbase/(accessed 26 September 2014).
2.3. Model evaluation

Model evaluation has received extensive attention in both the
statistics and air quality literature. Two approaches were used to
evaluate the candidate models. These were (1) statistical goodness-
of-fit of the model to the observed data and (2) validation of the
model predictions against a hold-out dataset.

Three widely used model goodness-of-fit criteria were used.
These were the deviance information criterion (DIC) (Spiegelhalter
et al., 2002), the predictive model choice criterion (D) (Gelfand and
Ghosh, 1998, Equation (5) with k/∞), and the scoring rule (SR) of
Gneiting and Raftery (2007, Equation 27). These criteria evaluate
both the closeness of the average of the m predicted values to the
observed data as well as the spread of the individual predictions
around the observed data. All three criteria also penalize increasing
model complexity.

When comparing the candidate models, the preferred model
will yield predictions with low variance that are, on average, close
to the observed data whilst having low model complexity. Larger
values of SR and lower values of DIC and D indicate a better fit to the
data.

In the second approach a proportion of the observations were
held out when themodel parameters were estimated. The posterior
predictions at the hold-out locations were then compared to the
observations at those locations. General procedures for air quality
model evaluation were discussed by Borrego et al. (2008) and
Thunis et al. (2012, 2013). The specific case of PM10 was discussed
by Pernigotti et al. (2013). In line with those approaches the root
mean square (prediction) error (RMSE), bias and the R2, were
calculated.

RMSE ¼
Xn�

i¼1

ðyðsiÞ � byðsiÞÞ2
,

n�

bias ¼
Xn�

i¼1

ðyðsiÞ � byðsiÞÞ
,

n�

where byðsiÞ is the median of the posterior predictive distribution
and y(si) is the measured observation, both at si, and n* is the
number of held-out observations. Thunis et al. (2012, 2013)
developed this further to define themodel quality objective (MQO):

RMSE
2U

<1 (5)

where U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðUrðyðsiÞÞ � yðsiÞÞ2
q

is the observation uncer-
tainty, Ur(y(si)) is the relative uncertainty for a given value of y(si)
and n is the total sample size. For this paper the relative uncertainty
was set to a constant Ur ¼ 0.25, in line with Thunis et al. (2012).
Pernigotti et al. (2013) proposed a more extensive evaluation of the
relative uncertainty; however, that lies outside of the scope of this
study.

3. Study area and data

3.1. Study area

The study area was mainland European countries with a sub-
stantial number of available PM10 observations. The countries
included were Portugal, Spain, Italy, France, Switzerland, Belgium,
The Netherlands, Germany, Denmark, Austria, Poland, The Czech
Republic, Slovakia and Slovenia. Other eastern European countries
and the Balkan states were excluded owing to a lack of publicly
available data. The United Kingdom, Ireland and Scandinavia (with
the exception of Denmark) were excluded because they do not
share a land border with the other countries. Additionally, the
Scandinavian countries had few observations and are remote from
the European mainland. In principle the presented methods could
be extended to a wider geographic area; however, for this paper
the study area was restricted to the above-listed contiguous
countries.

All data were projected to the European Terrestrial Reference
System 1989 (ETRS) Lambert Azimuthal Equal-Area (LAEA) pro-
jection which gives a coordinate reference system for the whole of
Europe. Distance units are specified in kilometres throughout.

3.2. Observed measurements

Air quality observations for the European Economic Area were
available via Airbase (Air quality dataBase).1 Daily PM10 concen-
trations were extracted for two 2-week periods: 1e14 April 2009
and 1e14 June 2009. June 2009was characterized by a stable period
of low concentration of PM10 (overall maximum: 64 mg m�3;
maximum daily median: 17 mg m�3 for all countries). PM10

http://acm.eionet.europa.eu/databases/airbase/


N.A.S. Hamm et al. / Atmospheric Environment 102 (2015) 393e405396
concentrations in April were higher and fluctuated in both space
and time (overall maximum: 185 mg m�3; maximum daily median:
42 mg m�3). These two periods were chosen so that the geo-
statistical models could be evaluated under contrasting conditions.
Furthermore, interpretation of the April results is supported by
Banzhaf et al. (2013), who described two European air pollution
events for 2e7 April 2009 and 11e16 April 2009. Four example days
(3, 5, 13 April and 11 June) are shown in Fig. 1. These were chosen to
correspond to the April 2009 events whereas 11 June 2009 was a
low-pollution day.

Airbase daily values are averaged over the within-day hourly
values when at least 18 hourly measurements are available,
otherwise no data are provided. The total number of daily obser-
vations varied between 215 and 238 for the relevant days. Airbase
monitors are classified by type of area (rural, urban, suburban) and
by type (background, industrial, traffic or unknown). Only rural
background monitors were used. This is common for comparing
measured observations to coarse resolution CTM simulations
(Denby et al., 2008). Monitoring sites above 800 m altitude were
also excluded. These tend to be located in areas of variable topog-
raphy and the accuracy of the CTM for locations that shift from
Fig. 1. Observed values for 3, 5, 13 Apri
inside to outside the mixing layer is known to be poor. No further
quality control was performed on the data.

3.3. LOTOS-EUROS (CTM) data

LOTOS-EUROS (v1.8) is a 3D CTM that simulates air pollution in
the lower troposphere. The simulator projection is normal longi-
tudeelatitude and the standard grid resolution is 0.50+

longitude �0.25+ latitude (approximately 25 km � 25 km). LOTOS-
EUROS simulates the evolution of the components of particulate
matter separately. Hence, this CTM incorporates the dispersion,
formation and removal of sulphate, nitrate, ammonium, sea salt,
dust, primary organic and elemental carbon and non-specified
primary material, although, it does not incorporate secondary
organic aerosol. Hence, a systematic underestimation of observed
PM10 levels is present in the LOTOS-EUROS validation, which is a
common feature of CTMs (Stern et al., 2008) For a detailed
description of LOTOS-EUROS the reader is referred to Hendriks et al.
(2013) and the references therein.

The hour-by-hour calculations of European air quality in 2009
were driven by the European Centre for Medium Range Weather
l and 11 June 2009. Units: mg m�3.
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Forecasting (ECMWF) meteorology. Emissions were taken from the
MACC (Monitoring Atmospheric Composition and Climate) emis-
sions database (Pouliot et al., 2012). Emissions fromwild fires were
neglected. Boundary conditions were taken from the global MACC
service (Flemming et al., 2009). The LOTOS-EUROS CTM, in this
configuration, has participated in international model comparison
studies showing that LOTOS-EUROS is state-of-the-art (Solazzo
et al., 2012).

The LOTOS-EUROS hourly model output was averaged to daily
mean PM10 concentrations. LOTOS-EUROS grid cells that were
spatially coincident with the Airbase observations were extracted
and used as the covariate necessary for the geostatistical modelling.
The LOTOS-EUROS grids were projected to the ETRS89 LAEA coor-
dinate reference system. The projected grid had a resolution of
25 km � 25 km.
3.4. Model specification and implementation

Following (3) SVC is specified as:

yðsÞ ¼ b0 þ bLExðsÞ þw0ðsÞ þwLEðsÞxðsÞ þ εðsÞ (6)

where x is the LOTOS-EUROS simulated PM10, y is the square root of
the observed PM10 and other terms are as defined previously. The
corresponding SVI and SLR sub-models are given as
y(s) ¼ b0 þ bLEx(s) þ w0(s) þ ε(s) and y(s) ¼ b0 þ bLEx(s) þ ε(s),
respectively. The observed PM10 was square-root transformed in
order to better meet the assumptions of the above linear model.
The predictions were back transformed prior to mapping.

In Model (6) b0 þ w0(s) is the spatially varying intercept and
allowed the offset between the CTM and the observations to vary
spatially. bLE þ wLE(s) is the spatially varying coefficient that
allowed the relation between the CTM and the observations to vary
spatially. Where b0 þ w0(s) is close to zero and bLE þ wLE(s) is close
to unity, the CTM is accurate.

The spatial correlation functions for both w0 and wLE and were
assumed to be exponential r(hij,fk)¼exp(�fkhij) where fk is the
spatial decay parameter. Exploratory data analysis using other
correlation functions yielded comparable results. For the expo-
nential function the effective spatial range is the geographic distance
at which the spatial correlation is negligible. This is typically taken
as �logð0:05Þ=fkz3=fk km, which is the geographic distance
where the spatial correlation drops to 0.05 (r¼0.05) (Diggle and
Ribeiro, 2007). Note that, for an exponential correlation function,
the largest correlations are exhibited at relatively short separations,
for example �logð0:5Þ=fkz0:7=fk km for r¼0.5.

The priors for b0 and bLE were both given normal distributions
and set to N(0,105). The variance parameters (t2, s20 and s2LE)
received inverse Gamma (IG) distributed priors with shape hyper-
parameter equal to 2 and scale obtained from sample variograms
of the SLR model residuals. With a shape of 2, the IG prior has mean
equal to the scale and an infinite variance. Defining priors with a
large variance aims to make them non-informative, whilst the
choice of an IG distribution for the variance parameters ensures
that they are positive or zero. The spatial decay parameters, f0 and
fLE were both given uniform distributions and set to Unif(0.001,3).
This corresponds to an effective ranges between 1 and 3000 km,
which is approximately the maximum extent of the domain.
Further guidance about the choice of priors is given by Banerjee
et al. (2004) and Finley (2011).

For each day SLR and SVI were fit using the spBayes R package
(Finley et al., 2014) whereas SVC was written in Cþþ. All models
were run on a Linux workstation and used Intel's Math Kernel Li-
brary for efficient matrix operations.
For each model, three MCMC chains with dispersed parameter
starting values were run for 50,000 iterations. Each SVC chain took
approximately 30 min to run for each day. Chain trace plots and
Gelman-Rubin diagnostics (Lunn et al., 2013; Gelman et al., 2013)
were used to identify convergence at ~ 15,000 iterations. Parameter
inference, goodness-of-fit diagnostics (DIC, D and SR), and predic-
tive maps were based on the post-convergence samples. To calcu-
late the model-validation diagnostics (bias, RMSE and R) models
were re-run excluding a 25% hold-out sample. The model-
validation diagnostics were then calculated using these 25% hold-
out samples, whereas U (Equation (5)) was calculated across all
observations, n, on a given day.

The median of the posterior distribution and the 95% credible
intervals were calculated for all parameters (b0, bLE, t2, s2, f).
Similarly posterior samples of spatial random effects (w0’s and
wLE’s) and predictions (y's) were summarized by the median and
95% credible interval and mapped.
4. Results

4.1. Model evaluation and comparison

The validation diagnostics, evaluated for a 25% hold-out sample,
are shown in Tables 1 and 2. As expected, the CTM systematically
underestimated observed PM10. The R2, between the CTM and the
observations, was low and the RMSE was large. The RMSE met the
MQO (RMSE <2U) for all days in April, with the exception of 11, 12
and 13 April. The RMSE for the CTM predictions did not meet the
MQO for any day in June. Maps showing the residuals between the
measured observations and the CTM output, y(s)� x(s), for the four
exemplar dates are shown in Fig. S1 in the Supplementary material.
As expected the CTM generally underestimated observed PM10.

Tables 1 and 2 also show the validation diagnostics for the three
regression models. Adopting SLR led to a clear reduction in the bias,
an increase in R2 and a reduction in the RMSE compared to CTM.
TheMQO objectivewas met for all days except 14 April and 13 June.
For April, adopting the two spatial models (SVI and SVC) did not
lead to a consistent change in the bias relative to SLR; however, the
R2 increased and the RMSE decreased. For June adopting the two
spatial models also did not lead to a consistent change in the bias
relative to SLR; however, the R2 increased and the RMSE decreased.
For RMSE the MQO was achieved for all dates for both SVI and SVC.
The reduction in the RMSEwas less substantial in June than in April.
Overall, these validation diagnostics show that the spatial models
are preferred to SLR; however, they did not distinguish between SVI
and SVC.

The 25% hold-out sample was selected at random. Choosing a
different random hold-out would yield different numeric results
but was not expected to lead to different conclusions. To verify this,
the above process was repeated for different hold-out samples. This
led to small differences in the numeric values but did not change
the above conclusions. The results for a second hold-out run are
included in the Supplementary material (Tables S1 to S2).

As discussed in Section 2.3, models can be compared using the
DIC, D and SR model-fit diagnostics. These are presented in Table 3
(April) and Table 4 (June). In all cases the two spatial models gave a
substantially better fit to the data than SLR. For April, all three di-
agnostics gave substantial support for SVC over SVI. For June all
three diagnostics supported SVC over SVI, although for the DIC
diagnostic, this evidence was less strong on 2, 7e10 and 13 June,
particularly on 8 and 9 June. This suggests that, on these two days,
there is weaker evidence to support the notion that the relationship
between the simulations and the observations varies spatially. The
overall conclusion is that SVC is preferred to SVI.



Table 1
Table showing the validation diagnostics computed for the 25% hold-out sample for April.

Day R2 Bias RMSE 2U

CTM SLR SVI SVC CTM SLR SVI SVC CTM SLR SVI SVC

1 0.22 0.33 0.63 0.59 7.60 �1.43 1.33 2.01 14.64 11.08 8.28 9.16 15.92
2 0.35 0.45 0.78 0.77 9.39 �0.94 0.46 0.95 15.08 10.19 6.48 6.64 17.26
3 0.47 0.67 0.74 0.74 12.12 2.09 2.25 2.71 19.06 12.02 10.45 10.70 21.16
4 0.56 0.67 0.82 0.82 17.62 3.94 4.10 4.45 25.25 14.30 10.77 10.96 25.46
5 0.59 0.66 0.80 0.82 13.96 �0.32 0.55 2.03 20.95 12.62 9.73 9.41 23.41
6 0.38 0.46 0.77 0.75 11.58 �0.08 2.18 2.67 19.04 13.96 9.48 9.87 21.25
7 0.32 0.47 0.74 0.73 9.25 1.69 1.02 0.73 16.09 13.17 8.79 9.00 17.34
8 0.41 0.56 0.72 0.71 5.90 �1.66 �0.64 �0.24 11.75 9.99 7.62 7.72 13.87
9 0.47 0.38 0.54 0.59 4.24 1.18 1.28 1.71 9.79 8.10 7.01 6.94 12.28
10 0.34 0.16 0.57 0.63 5.36 2.65 1.80 1.49 10.57 9.08 6.55 5.94 12.74
11 0.11 0.57 0.71 0.71 8.75 1.14 0.65 1.15 20.76 10.16 7.81 7.62 16.12
12 0.47 0.48 0.81 0.85 14.47 1.13 0.01 �0.01 23.06 17.11 10.58 9.46 20.20
13 0.55 0.52 0.74 0.77 13.67 1.04 �1.02 �1.53 22.60 16.34 12.22 11.79 21.69
14 0.43 0.27 0.41 0.43 10.50 �0.38 �1.35 �1.46 17.56 20.57 17.65 17.37 19.60

Table 2
Table showing the validation diagnostics computed for the 25% hold-out sample for June.

Day R2 Bias RMSE 2U

CTM SLR SVI SVC CTM SLR SVI SVC CTM SLR SVI SVC

1 0.35 0.39 0.64 0.60 8.24 0.16 0.39 0.38 10.74 6.37 4.85 5.14 8.87
2 0.36 0.42 0.67 0.64 8.27 �1.84 �1.00 �0.72 10.49 6.28 4.59 4.78 9.62
3 0.16 0.26 0.44 0.43 9.16 �0.17 �0.34 �0.22 11.47 6.60 5.82 6.08 9.68
4 0.18 0.33 0.53 0.52 7.24 �1.21 �1.23 �0.68 10.20 7.34 6.03 6.26 9.20
5 0.14 0.20 0.58 0.57 6.57 0.18 0.11 0.39 10.13 7.34 5.36 5.36 9.16
6 0.33 0.46 0.58 0.49 8.10 1.44 1.30 1.51 10.15 5.00 4.44 5.06 8.79
7 0.15 0.01 0.21 0.22 6.09 �0.11 �0.37 �0.31 8.51 6.13 5.24 5.31 6.95
8 0.11 0.11 0.32 0.32 5.19 1.39 1.36 1.48 7.52 4.25 3.78 3.97 6.56
9 0.10 0.12 0.35 0.37 6.74 �0.80 �0.77 �0.57 8.56 5.22 4.53 4.41 7.00
10 0.12 0.19 0.41 0.33 7.18 �1.56 �0.95 �0.60 9.65 6.67 5.66 5.82 7.81
11 0.22 0.16 0.50 0.52 5.66 �1.26 �0.67 �0.16 7.67 6.00 4.67 4.43 6.76
12 0.13 0.11 0.65 0.68 5.63 �1.05 �0.69 �0.57 8.72 7.20 4.66 4.32 7.65
13 0.18 0.16 0.59 0.60 6.99 �1.20 �0.97 �0.36 10.93 9.24 6.64 6.31 8.95
14 0.31 0.37 0.64 0.62 6.89 �1.47 �1.67 �1.49 9.50 6.81 5.63 5.36 9.18
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4.2. Estimation of the model parameters

The posterior estimates of the regression coefficients are shown
in Fig. 2 (April) and Fig. 3 (June) for SLR, SVI and SVC. For June the
credible intervals overlapped and there was no significant differ-
ence in the estimated values between the three models. Exceptions
were observed in April, where on several days bLE was larger for
SLR. Recall that SVI and SVC both modelled spatial autocorrelation
in the residuals whereas SLR did not. This may lead to differences in
the posterior regression coefficient estimates, depending on the
spatial structure on any given day.
Table 3
Table showing the goodness-of-fit diagnostics for April.

Day DIC D SR

SLR SVI SVC SLR SVI SVC SLR SVI SVC

1 681 494 474 569 164 132 �274 47 103
2 670 426 400 551 111 89 �267 138 190
3 726 468 452 682 138 114 �314 96 141
4 759 590 543 770 265 188 �345 �58 39
5 708 600 503 631 288 148 �299 �77 93
6 697 532 509 646 212 162 �299 �16 53
7 685 494 466 583 174 129 �280 32 108
8 607 475 447 422 166 122 �208 33 114
9 589 534 527 377 243 189 �179 �58 16
10 580 488 444 364 184 123 �177 12 123
11 646 464 425 486 147 105 �240 71 152
12 740 563 548 699 233 193 �322 �31 22
13 711 585 561 654 258 207 �307 �52 3
14 641 556 533 493 249 187 �242 �43 22
If the credible interval for bLE would include zero for SLR or SVI
this would imply that there is no significant relationship between
the observations and the CTM. The same interpretation cannot be
applied for SVC, where it is necessary to consider maps of the
spatially varying coefficient bLE þ wLE(s) and whether the location-
specific credible intervals include zero.

Fig. 4 shows the posterior estimates of bLE þ wLE(s) for 3 and 5
April. On 3 April the observations and the CTM showed a signifi-
cant relationship over much of the domain, although there is
considerable variability in the value of bLE þ wLE(s). This should be
close to 1 if the CTM is accurate. There was a clear band of high
Table 4
Table showing the goodness-of-fit diagnostics for June.

Day DIC D SR

SLR SVI SVC SLR SVI SVC SLR SVI SVC

1 529 332 313 291 83 65 �128 187 249
2 514 381 374 262 104 88 �103 145 192
3 524 375 315 270 97 62 �105 175 281
4 544 395 360 292 110 79 �125 143 229
5 589 450 439 351 147 115 �168 77 145
6 497 431 414 240 143 109 �83 70 144
7 555 442 433 314 139 119 �143 81 129
8 482 415 413 230 139 113 �75 66 126
9 474 418 416 222 143 117 �70 56 115
10 539 448 441 293 151 124 �125 58 111
11 471 357 346 216 100 79 �62 150 215
12 548 377 365 305 104 83 �137 148 204
13 606 475 469 375 158 135 �183 61 104
14 513 428 409 258 138 104 �98 79 155



Fig. 2. Estimates of the intercept, b0 (top) and slope, bLE (bottom), coefficients for April 2009. Blue circles indicate SLR, black triangles indicate SVI and orange squares indicate SVC.
The symbol indicates the posterior median value and the bars the 95% credible interval. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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values across Spain, France and Belgium, as well as Poland. By 5
April this band of high values had shifted to lie across central
Germany, The Czech Republic and Poland. There was no significant
relationship between the CTM and the observations over most of
Spain, Italy, Portugal and western France where the observed
PM10 concentrations were low compared to central and eastern
Europe. Results from other days can be interpreted in a similar
Fig. 3. Estimates of the intercept, b0 (top) and slope, bLE,
way. An example for 11 June, a low pollution day, is given in the
Supplementary material (Fig. S2).

Fig. 5 shows the posterior estimates of bLE þ wLE(s) for 13 April
for both SVI and SVC. On this day there was a localized high-
pollution event centred over north-west Germany and the
Netherlands. A significant relationship between the CTM and the
observations occurred mainly in a band covering this area.
coefficients for June 2009. Other details as for Fig. 2.
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Estimates of b0 þw0(s) for SVI (Fig. 5(c)) and SVC (Fig. 5(d)) are also
shown. The pattern for b0 þ w0(s) (SVI) was similar to bLE þ wLE(s).
This is because residual variation was modelled by w0 for SVI but
was partitioned between w0 and wLE for SVC. A similar phenome-
non was observed for other days.

The posterior estimates of the uncorrelated residual variance, t2,
are shown in Fig. 6. These were clearly largest for SLR. SVI and SVC
incorporated a spatially correlated random effect, w0 with variance
s20. SVC incorporated an additional spatially correlated random ef-
fect, wLE with variance s2LE . The w0 and wLE accounted for much of
the residual variability, hence t2 was reduced. This led to more
accurate prediction and, in part, this also explains why the
goodness-of-fit diagnostics favoured SVI and SVC over SLR. The
posterior median of t2 was lower for SVC than for SVI, but the
credible intervals overlapped. Further discussion on s20 and s2LE is
not central to this paper. The estimates of s20 and s2LE are presented
in the Supplementary material (Figs. S3 and S4) but are not dis-
cussed further here.

Themedian value of f0 for the SVImodel were consistent in both
months, with the effective range lying between 500 and 1500 km.
SVC tended to have a longer median effective range than SVI (be-
tween 1000 and 2500 km). SVC gave a more flexible auto-
Fig. 4. Maps showing the posterior median of bLE þ wLE(s) for 3 & 5 April 2009. Blue (right p
interpretation of the references to colour in this figure legend, the reader is referred to the
correlation structure because both the intercept and slope were
allowed to varyand thismayaccount for these differences; however,
the 95% credible regions overlapped so strong conclusions cannot be
drawn. The wide 95% credible intervals, up to 3000 km, are
consistent with other studies. For SVC, the median effective range
for fLE varied between 2600 and 2800 km across all days in both
months, with credible intervals up to 1200 km wide. The posterior
estimates of the effective range are illustrated in Figs. S5 and S6 in
the Supplementary material. Finally, the geostatistical definition
of the effective range should be clarified. This is the spatial sepa-
ration for which the spatial correlation between two points be-
comes small (r¼0.05). The exponential decay means that the
strongest correlation is shown at much shorter distances. Taking
r¼0.5 yields a correlation length of ~110, 350 and 580 km, corre-
sponding to an effective range (r¼0.05) of 500, 1500 and 2500 km
respectively. These correlation lengths correspond approximately to
the size of the structures shown in Figs. 4, 5, 7 and 8.

4.3. Mapping

Fig. 7 shows the posterior predicted median, 95% credible in-
terval and probability of exceeding 50 mg m�3 for both SVI and SVC.
anel) indicates that the 95% credible interval for bLE þ wLE(s) does not include zero. (For
web version of this article.)



Fig. 5. Maps showing the posterior median of bLEþwLE(s) and b0 þ w0(s) for 13 April 2009. Also shown (b) is whether the credible interval for bLE þ wLE(s) includes zero.
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The mapped posterior median was similar for the two maps. The
95% credible interval was narrower for SVC than for SVI. The area
with a high probability of exceeding the 50 mg m�3 was more
tightly focused for SVC. In general, it was observed that the pos-
terior medians were similar for SVI and SVC although the 95% in-
terval was wider for SVI. Probability-of-exceedance depends on
both the posterior median and the posterior variance. Because SVC
fits the data better it is expected to give more realistic estimates of
exceedence probabilities. This figure illustrates several important
benefits of the hierarchical Bayesian methodology presented in this
paper: (1) it provides a framework for building SVC, (2) it allows
uncertainty in the predictions to be fully quantified and (3)
following from the two previous points, exceedence probabilities
can be calculated properly.

Fig. 8 shows the posterior median and probability-of-
exceedance maps for 3 and 5 April for the SVC model. This clearly
shows the high pollution event that developed over northern
France and Belgium in early April and was then transported east
through 4e6 April. An example for a low-pollution day, is given in
the Supplementary material (Fig. S7).
5. Discussion

The results presented in Tables 1 and 2 show that the raw CTM
output was biased and relatively inaccurate. Combining the ob-
servations and CTM output is therefore recommended since this
substantially reduced the bias in the predictions, increased the
accuracy and increased the R2 between the observations and pre-
dictions. Three regression models were used to achieve this: the
non-spatial SLR and the spatial SVI and SVC models. All showed an
improvement relative to the raw CTM output. The goodness-of-fit
and validation diagnostics both showed that the two spatial
models were preferred to SLR. The goodness-of-fit diagnostics
showed that SVC fitted the data better than SVI; however, for
predicting the median PM10 concentration the validation di-
agnostics showed that SVI and SVC were similar. On the other hand,
the single random effect in the SVI soaked up enough of the re-
sidual spatial variability to deliver accurate median predictions.
There is a further point to note. The validation diagnostics were
evaluated at the median prediction and did not take into account
the variance of the posterior predictions. Indeed discussion of



Fig. 6. Posterior estimates of t2 for April and June. Other details as for Fig. 2.
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model prediction uncertainty was given almost no attention in the
air quality model evaluation literature cited in Section 2.3. This was
addressed by the goodness-of-fit diagnostics, which considered
also the deviance. Two models that deliver similar median pre-
dictions but with different variances would not be distinguished by
the validation diagnostics. If mapping the median value is the
objective then both models will deliver similarly accurate results
and the more parsimonious SVI would suffice.

The flexible structure of SVC allowed the residual variability to
be partitioned between the random intercept and random slope.
This offered two additional benefits that SVI did not offer. First, it
allowed exploration of the relationship between the observations
and the CTM. Second SVC better represented the processes and
yielded predictions with lower variance. These points are explored
further below.

Maps of the spatially varying coefficient were used to identify
geographic areas where the CTM performed relatively well or
relatively badly. Of particular interest is bLE þ wLE(s) since this
shows whether and where the CTM reproduces the variability in
the observations. The intercept, b0 þ w0(s) adjusts for bias. A sys-
tematic SVC analysis over a longer time series would provide in-
dependent information on model performance, which can vary per
region or per season. Hence, these maps could be used to target
development of the CTM and associated emission databases and
could be recreated for future versions of the CTM and used as part
of its evaluation.

In this study, low or insignificant values of bLE þ wLE(s) were
generally associated with low PM10 concentrations. There are
several reasons why, at low PM10 concentrations, simulation of
the actual pollution gradients is more difficult. First, during
conditions with low PM10 concentrations, the uncertainty asso-
ciated with the measurements (at least 15% (Hitzenberger et al.,
2004)) is large relative to the spatial gradients. Second, the
impact of station representativeness is lower during high pollu-
tion episodes. This is because secondary inorganic aerosols
dominate the PM10 mass and the impact of primary pollutants,
due to local emissions, are relatively small (Weijers et al., 2011).
Evidence for this comes from the smaller relative difference be-
tween regional, urban background and traffic stations during
high-pollution episodes. Third, CTMs generally are more accurate
for secondary inorganic components, which have a relatively low
contribution at low PM10 concentrations. During clean air con-
ditions spatial gradients are normally low and determined by
natural PM components such as dust, sea salt and organics which
are associated with the largest uncertainties in their source
strength and formation processes. The detailed chemical
composition data for these components are few, limiting the
possibility to validate the model. Finally, meteorological condi-
tions during times of low PM10 concentration are characterized
by wet and windy conditions. Simulation of precipitation
amounts and timing of rainfall events remain challenging. The
SVC offers a complementary approach to evaluate whether or not
the model developments lead to more accurate characterization
of background conditions, based on a large number of available
PM10 measurements.

The model evaluation showed that SVC fitted the data better
than SVI, but that the posterior median predictions were similar for
bothmodels. This was reflected in the final mapping which showed
that the posterior median (kriged) surfaces were similar for both
models but that the SVI generally had wider posterior prediction
credible intervals. The fit, and hence the predictions were tighter
for the SVC. This had a further consequence for the threshold ex-
ceedance maps, which were shown to be more accurate for SVC.
The potential health impacts of PM10 were outlined in Section 1.
The 50 mg m�3 is an EU limit set for health reasons. This is an
important result when such maps are used for air quality assess-
ment and management. The analysis could be extended to other
limit values and other pollutants.

Classical geostatistics has also been used to calculate exceed-
ance probabilities (e.g., Denby et al., 2008). Such approaches may
underestimate the exceedance probability because they do not
account for variability in the estimates of the variance parameters,



Fig. 7. Posterior median predicted (kriged) values, width of the 95% credible interval and probability of exceeding 50 mg m�3 for SVI and SVC for 13 April 2009. Units (aed): mg m�3.
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Fig. 8. Posterior median predicted (kriged) values and probability of exceeding 50 mg m�3. Units (aeb): mg m�3.
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q ¼ ðt2; s20;fÞ. In contrast, the Bayesian approach presented here
does exactly that. Further, the authors are not aware of a compa-
rable model where the parameters can be estimated using method-
of-moments or maximum likelihood estimation. The imple-
mentation presented here took advantage of the flexibility of
Bayesian hierarchical modelling.

Future research should be directed towards modelling a larger
set of dates. Interest also lies in mapping other air quality compo-
nents as well as joint mapping of multiple pollutants (e.g., PM10
and PM 2.5). Challenges include working with smaller data sets as
well as the development of the joint model.

Finally, there are two data quality issues that have not been
addressed, but which provide worthwhile and challenging subjects
for future research. First, automatic measurement devices for PM10
oftenmeasure PM10underdifferent conditions (higher temperature
and lower relative humidity) than ambient, which leads to variable
losses of semi-volatile PM-components. In general, these effects are
dependent on device, PM10 composition, ambient conditions and,
thus, space and time. Correction factors are used to avoid systematic
differences with the gravimetric reference method, although these
are not always perfect. The complexity of sampling PM10 and the
lack of a true references will cause additional variability that may
violate the stationarity assumption. This has received limited
attention in the literature (van de Kassteele et al., 2006) but should
be addressed in future. Second, this paper did not account for the
spatial support (resolution) of the simulations and the observations.
The supportof the simulations is nominally 25km,but the supportof
the observations is unclear. Rural observations were deliberately
chosen because they represent the ambient background conditions
over a large area, but the actual size of this area is not clearly defined.
This issue should receive future attention.

6. Conclusions

This paper presented a geostatistical spatially varying co-
efficients (SVC) model for modelling the relationship between in
situ observations and the LOTOS-EUROS simulator output. This
showed a better fit to the data than the standard spatially varying
intercept (SVI) model. Both SVI and SVC gave a better fit than
simple linear regression (SLR). SVC allowed exploration of the
locations where the simulator performed well or poorly that was
not possible with SVI. This gave new insight into the performance
of the CTM and could be used for future CTM evaluation. A
similar rationale could be applied to other models. SVC gave a
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better fit to the data, whereas the accuracy for predicting the
posterior median PM10 concentration at unknown locations was
similar to SVI. SVC was preferred for mapping threshold ex-
ceedance, because its fit yielded narrower credible intervals.
Exceedance probabilities relate both to the median and the
variance. This was applied to estimate the probability of
exceeding the 50 mg m�3 EU daily PM10 concentration threshold.
Hence such maps could be used to support air quality assessment
and management, including those related to health impacts. It is
concluded that SVC is a promising geostatistical method for
coupling CTM output with in situ observations to map air quality
at the European scale.
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