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Abstract

Knowledge of population dynamics is essential for managing and conserving

wildlife. Traditional methods of counting wild animals such as aerial survey or

ground counts not only disturb animals, but also can be labour intensive and costly.

New, commercially available very high-resolution satellite images offer great

potential for accurate estimates of animal abundance over large open areas.

However, little research has been conducted in the area of satellite-aided wildlife

census, although computer processing speeds and image analysis algorithms have

vastly improved. This paper explores the possibility of detecting large animals in the

open savannah of Maasai Mara National Reserve, Kenya from very high-resolution

GeoEye-1 satellite images. A hybrid image classification method was employed for

this specific purpose by incorporating the advantages of both pixel-based and

object-based image classification approaches. This was performed in two steps:

firstly, a pixel-based image classification method, i.e., artificial neural network was

applied to classify potential targets with similar spectral reflectance at pixel level;

and then an object-based image classification method was used to further

differentiate animal targets from the surrounding landscapes through the

applications of expert knowledge. As a result, the large animals in two pilot study

areas were successfully detected with an average count error of 8.2%, omission

error of 6.6% and commission error of 13.7%. The results of the study show for the

first time that it is feasible to perform automated detection and counting of large wild

animals in open savannahs from space, and therefore provide a complementary

and alternative approach to the conventional wildlife survey techniques.
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Introduction

Knowledge of population dynamics is essential for managing and conserving

wildlife [1–3]. Traditional methods of counting wild animals such as aerial survey

or ground counts have many challenges [4]. First of all, most animals are very

sensitive to human disturbance and also to low-flying airplanes due to the engine

noise [5, 6], which may affect the accuracy of survey results. Second, traditional

counting methods are exceedingly time consuming and labour-intensive [7].

Third, though some current census methods can achieve relatively high accuracy,

balancing the need for accurate estimates of wildlife populations with survey costs

is a great challenge [8]. Also, the results of traditional survey methods can be

unreliable due to the observational bias [9] with a large standard error of survey

results [10, 11].

New, commercially available very high-resolution satellite images offer little

explored potential for accurate estimates of animal abundance over large open

areas. The most obvious advantage of the satellite-aided wildlife survey is silence,

i.e., surveys can be done without disturbing animals and therefore the result may

be more reliable as animals are not scared into hiding or escaping behaviour. In

addition, remote sensing based animal survey methods are less labour demanding

and possibly more cost effective than traditional methods, which use human

observers [12]. Other advantages include the large area coverage, frequent revisit

intervals, high-resolution, and the availability of multi spectral information.

Several studies have explored the possibility for automated recognition and

counting of animals from remotely sensed imagery [13, 14]. Most of these studies

used aerial photograph or either airborne or ground-based thermal imaging

[15, 16] instead of optical or multi spectral satellite imagery, due to previous

limitation in spatial resolution. The recent availability of sub-meter resolution

remote sensing imagery for civil applications has opened the possibility for

application of remote sensing in wildlife surveys [17]. For example, Laliberte and

Ripple [12] revealed the possibility of counting animals from high resolution

satellite images, and concluded that cattle could be counted, in the absence of

trees or shrubs, from 1 m resolution IKONOS panchromatic imagery. More

recently, Fretwell et al. [18] showed the possibility to identify and estimate

population sizes of emperor penguin colonies along the Antarctic coast using a

combination of medium resolution (15–30 m) Landsat 7 ETM+ and very high-

resolution (0.6–2.5 m) QuickBird satellite images. They concluded that remote

sensing imagery could be used to monitor penguin populations more cost

effectively than traditional aerial survey or ground counts [18].

With a new generation of very-high resolution satellite imagery such as

GeoEye-1, which has a resolution of 50 cm in the panchromatic band and 2 m

resolution in the four multispectral bands (blue, green, red, and infrared) when it

is sold to commercial customers, it should be possible to detect the presence of the

large animals in open areas from space. Similarly higher map accuracy should be

possible. However, there are certain aspects of prerequisites in utilizing the very-

high resolution satellite imagery to fulfil this objective. First of all, satellite imagery
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(optical) acquisition is subjective to weather conditions. Rains, and even merely

clouds in the air will render the usefulness of the image analysis. Therefore, good

weather conditions, i.e., sunny and cloudless, would be one of the prerequisites.

Second, animals under or around certain vegetation covering areas (trees or

shrubs) cannot be perfectly distinguished considering the overlap in features and

shadow. Therefore the ideal study areas should be large and open areas with as few

trees or shrubs as possible. Last but not least, compared with medium resolution

satellite imagery, the very high-resolution offers extra texture information as well

as more complicated scenarios to process. Therefore it may require innovative

approaches in image analysis.

Considering the prerequisites for the study areas, open savannahs in East Africa

would be ideal for our purpose. First of all, sunny, cloudless skies are normal

during the dry season. Second, the abundance of wildlife, especially of medium to

large-sized mammal species, makes it an attractive place to explore the possibility

of identify and count animals through use of space imagery.

Proper selection and design of image classification algorithm is important for

successful detection of wild animals from high-resolution satellite images. Pixel-

based classification methods (e.g., maximum likelihood classifier and artificial

neural network classifier), which use spectral reflectance to classify different

classes in the images, have proved to yield robust results. However, internal

variability and the ‘salt-and-pepper’ effect challenge the application of pixel-based

classification methods [19].

Object-based approach for classification or feature extraction of high resolution

satellite images is an active research topic, and it has been primarily applied in

urban areas for classification and extraction of urban objects [20], such as roads,

buildings, and even vehicles [21]. Instead of pixel-based classification using

spectral information, object-based approaches classify image objects by using both

spectral and spatial information based on the objects obtained from image

segmentation [22]. In addition, expert knowledge can be integrated as a rule set.

In land cover classification, object-based classification due to its better speckle

reduction generally results in higher accuracy than traditional pixel-based

classification methods [23–25]. However, the performance of object-based

classification directly relies on the image segmentation, and it is a great challenge

for the current segmentation algorithms to detect small, point-like objects

[26, 27]. Specifically, it is difficult to segment the image to recognize individual

animals as single objects without including other pixels from the background.

Since pixel-based classification is capable of classifying the potential targets

which have similar spectral reflectance at pixel level, while object-based

classification can further differentiate targets from the surroundings through the

application of expert knowledge, we proposed to use a combination of both

methods. A pixel-based classification as a first stage of the classification, followed

by object-based analysis to refine the results of the preliminary classification. In

essence, we intend to combine the advantages of each method at different spatial

scale (i.e., pixel level and object level).
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Therefore, the aim of this study is to explore the possibility of automated

counting of large animals in the open savannah of Maasai Mara National Reserve,

Kenya from very high-resolution GeoEye-1 satellite images by using a hybrid

pixel- and object-based image classification approach.

Materials and Methods

Study Area

The Serengeti-Mara ecosystem is among the most important and productive

rangelands in East Africa. The Maasai Mara National Reserve is part of the larger

Serengeti-Mara ecosystem stretching across the border of Tanzania and Kenya

covering an area of 25,000 km2. A combination of relatively high rainfall,

relatively low evaporation, and mainly volcanic soils give this area high forage

production potential. This area also supports the greatest densities of wild and

domestic herbivores in East Africa [28–30].

In the consideration of data processing efficiency and reducing the workload

involved in accuracy assessment, we conducted a pilot study by selecting two

representative pilot areas in the Maasai Mara National Reserve, Pilot A and Pilot B

(see Fig. 1). Both pilot study areas have equal size (1 km61 km) with various

landscapes including forest, shrub, grassland, bare soil, and sand; besides, there are

water bodies in pilot A. In addition to it, the main difference between these two

areas lies in the density of the animals. In Pilot A there are large herds of animals

(hundreds of animals) clustering around forest, while in Pilot B animals move in

lines along roads with few smaller herds (around 30 to 100).

Animal Species

The Serengeti-Mara ecosystem is home to populations of 1.3 million wildebeest

and 0.6 million Burchell’s zebra and Thomson’s gazelle each [31]. The wildebeest

is the dominant species of the Maasai Mara and the herd sizes can range from a

few to thousands of individuals [28, 29]. The great migration of wildebeest from

the Serengeti to the Maasai Mara National Reserve occurs during the month of

August to November [32]. The sheer numbers of animals that congregate during

migration make the wildebeest and zebra ideal candidate species to map through

use of satellite technology.

GeoEye-1 Satellite Imagery and Preprocessing

A 120 km2 GeoEye-1 satellite image was acquired on 11th August 2009 to capture

the migration of the large-sized herd animals (i.e., wildebeest and zebra) in the

Maasai Mara National Reserve, Kenya (Fig. 1). The GeoEye-1 satellite sensor was

developed by GeoEye and employs the most sophisticated technology ever used in

a commercial remote sensing system. GeoEye-1 is capable of acquiring image data

at 0.5 m panchromatic and 2 m multispectral resolution whilst having a revisit

time of less than three days [33]. The use of the GeoEye-1 image was authorized
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by the DigitalGlobe Foundation and it can be downloaded at figshare.com http://

dx.doi.org/10.6084/m9.figshare.1272037.

The 2-m resolution multispectral satellite images were found not sufficient to

detect the large animals (e.g., wildebeest and zebra) by using visual interpretation.

The Gram-Schmidt (GS) pan sharpening method was used as the pan-sharpening

technique to obtain multispectral images at 0.5 m resolution. The GS pan

sharpening method applies a component substitution strategy through the main

process, i.e., GS transformation and inverse GS transformation, which results in

pan-sharpened image in high spatial resolution [34]. GS pan sharpening surpasses

most of other image pan sharpening techniques, e.g. Intensity-Hue-Saturation

(IHS) transformation and color normalized (CN) in sharpening and preserving

both texture and spectral fidelity [35, 36]. Cubic convolution was used as the

image resampling technique. It was found more reliable than nearest neighbor

(strong edge effects were found in trial) in terms of preserving the geometric

fidelity, which is as vital for this study since the individual size of animals is only a

few pixels and visual interpretation is required.

Visual Interpretation of Large Animals from GeoEye-1

For this study, a sample of visually recognized animals was used to calibrate the

model and then validate the classification result. Adult wildebeests have a head-

and-body length of 1.5 to 2.5 m, while the length of the adult zebras can range

from 2.2–2.5 m [37, 38], a size which results in image objects of 3 to 4 pixels long,

and 1 to 2 pixels wide in the pansharpened image. Visual interpretation can be

subjective, therefore we invited five experienced wildlife researchers from Kenya as

visual interpreters. We selected 3 sampling areas (each with an area of

Fig. 1. Location of the Maasai Mara National Reserve in Africa (left) and the GeoEye-1 satellite image
acquired on 11th August 2009 during the migration season of the large-sized herd animals (middle),
and two pilot study areas are selected (right).

doi:10.1371/journal.pone.0115989.g001
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50 m650 m) from each pilot study area, 6 areas in total for accuracy assessment

(Fig. 2).

Hybrid Image Classification Method

The framework of the hybrid image classification method is presented in Fig. 3.

The main objective of pixel-based classification (i.e., artificial neural network) is

to detect the pixels, which may be an individual animal to guarantee as many

potential pixels being detected as possible leading to Type I errors (false positive

error). In object-based analysis, the aim is to eliminate the misclassified pixels, i.e.

to decrease Type I error introduced in the pixel-based classification.

Pixel-Based Artificial Neural Network

Since pixel-based classification methods solely rely on the spectral reflectance, it is

necessary to check spectral separability of large animals with surrounding

landscapes. Jeffries-Matusita (JM) distance between the animals and surrounding

landscapes was computed. The thresholds of JM distance can be used for

evaluating the spectral separability between samples in different classes, which is

the basis of deciding number of classes for classification and selection of training

samples. The JM distance is asymptotic to the value 2 ranging from 0 to 2 and the

spectral separability increases along with the value [39]. The result shows that

animals are separable from the landscapes except for the shadow (i.e., trees,

grassland, bare soil, sand and water bodies) in the image with values higher than

1.90 (indicating good separability).

Due to the very high spatial resolution of the GeoEye-1 images, the shadow of

trees is visible and therefore becomes an independent class for interpretation.

Visible large animals also have shadow proportional to their body sizes, which

contributes to their appearance in the images; however, these animals are much

smaller than trees, the edge of animals cannot be entirely separated from their

shadow. As a result, an animal and its shadow were not separable and became one

single object. This led to overlap between animals and shadow in feature space

(JM distance lower than 1.40), i.e., poor spectral separability (Fig. 4).

For the first step of pixel-based classification, we decided to use an artificial

neural network (ANN) classifier, which is a non-parametric image classification

approach which simulates the human learning process [40]. It is highly suitable

for situations where there is no prior knowledge of distribution functions of the

data or where the distribution is non-Gaussian [41]. In previous studies, ANN

classifier has repeatedly shown better performance than conventional image

classification techniques [42].

Training set selection is important for this machine learning method since it is a

non-parametric approach, and directly depends on the learning process. Based on

the result of spectral separability checking of animals and landscapes, we defined 6

classes: trees, grassland, bare soil, sand, water bodies, mixture of animals and the

shadow (as one class). Nonetheless, in some areas there might be variation within

one class in feature space, and in this situation, this class would be subdivided into
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Fig. 2. Animals in the 6 sampling areas for validation of the classification results: A1, A2 and A3 in
Pilot A, B1, B2 and B3 in Pilot B.

doi:10.1371/journal.pone.0115989.g002

Fig. 3. The framework of the hybrid image classification method, which consists of two parts: pixel-
based classification using artificial neural network classifier (left) andb object-based analysis (right).

doi:10.1371/journal.pone.0115989.g003

Spotting Wildlife from Space

PLOS ONE | DOI:10.1371/journal.pone.0115989 December 31, 2014 7 / 16



two or even more subclasses based on the distribution of its sub-classes in feature

space. 150 samples of animals were selected and 30 of them were randomly

selected as the testing set while the rest was training set. Number of samples for

other classes varied from 40 to 62. The samples were selected across the entire two

pilot study areas, which might include but not limited to the validation areas.

For the parameter optimization, external parameters (input layers) were

optimized by adjusting the training set and proportion of each class; the internal

parameters, e.g., the number of hidden layers, type of activation function (logistic

or hyperbolic), training rate, were set as the following: one hidden layer, logistic

activation function, a training rate ranging from 0.01 to 0.05, and training

momentum of 0.8.

Object-based analysis

The object-based analysis aims at eliminating the misclassified pixels in pixel-

based classification, which was conducted in eCognition Developer 8.7 (Trimble

GeoSpatial, Munich, Germany). The workflow is presented in Fig. 5.

Step A: Eliminating the surroundings. A 3*3 low-pass kernel was applied for

smoothing the image, to help classify objects like trees or shrubs [43]. Multi-

resolution segmentation (Table 1) and rule set based classification with

customized features, e.g., normalized difference vegetation index (NDVI) and blue

ratio (blue band divided by sum of all four bands) [44], was conducted (Table 2).

To avoid animals being misclassified as other objects, an additional rule was set,

that the objects could only be classified as surroundings if they exceeded a certain

size (20 pixels).

Fig. 4. Distribution of animals and surrounding landscapes in the feature space of bands of near-infrared, red and green.

doi:10.1371/journal.pone.0115989.g004
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Step B: Refine the detected animals. First, the animals outside the open areas

were erased by clipping the overlaid part of animals with the vegetation, shadow

or the water bodies. Then the primarily refined animals and vegetation areas were

imported into eCognition as thematic layers. Image segmentation was conducted

(Table 1) with thematic layer value being considered, and the objects (polygons in

Fig. 5. Framework of the object-based analysis, which is composed by two steps: A, refine the study area to eliminate the surroundings (left); B,
object-based analysis aims to refine the primarily detected animals by pixel-based classification (right).

doi:10.1371/journal.pone.0115989.g005
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the thematic layer) were assigned as two classes: animals and vegetation. We

developed specific rule set (Table 3) to remove further misclassified objects.

Accuracy Assessment

Three error categories were used for accuracy assessment: count error,

commission error and omission error. The count error was calculated by

comparing the number of animals from manual count and computer

classification [12]. The errors of remote sensing image classification can be

categorized into two types: commission error and omission error, which are the

basis for conducting accuracy assessment [45, 46]. Commission error, known as

the Type II error or false negative error, means that a pixel being incorrectly

associated with some class, which is absent in ground truth; omission error,

known as Type I error or false positive error, on the other hand, means that a pixel

belonging to a certain class but is not identified in classification results [39].

Results

The main objective of this study is to detect large animals in open savannahs by

using very high resolution GeoEye-1 satellite images. The classification result was

explicitly presented in all validation areas with commission and omission errors

(Fig. 6).

We used multiple interpreters for the validation of the results, to reduce the

subjectivity of single manual count. Therefore it is certainly possible that there is

disagreement. However the disagreement (with coefficients of variation 3.04%

and 4.86% in Pilot A and Pilot B) is very small, which indicates a high level of

consistency for the interpretation results. In the scenarios where interpreters have

different opinions, the objects with uncertainty (i.e., both the potential target and

classification result) will be discarded. As a result, all validation results presented

are subject to consensus. Based on the results by multiple interpreters, we assessed

the accuracy and summarized it for each validation area (Table 4).

Table 1. Segmentation parameters for object-based analysis.

Classification
objects

Segmentation
approach Segmentation scale Image layer weights Shape/color compactness/smoothness

Landscapes Multi-resolution 20 1,1,1,2 (B,G,R,NIR) 0.2/0.8 0.5/0.5

Animals Multi-resolution 6 1,1,1,1 (B,G,R,NIR) 0.1/0.9 0.5/0.5

doi:10.1371/journal.pone.0115989.t001

Table 2. Rule set for the landscapes classification, which may vary subject to characteristics of pilot study area.

Vegetation Shadow Water bodies

Rule Set NDVI $0.6; Area $20 pixels Brightness #315; Existence of trees or shrubs within 1 m area Blue ratio $0.18

doi:10.1371/journal.pone.0115989.t002
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From the accuracy results we found that the omission error of each pilot study

area was very close to each other; however the commission error of the samples in

Pilot A was around 5% higher than Pilot B. Chi-square test was conducted to

reveal the influence of animal density on the omission error and commission error

(the independence of animal density and error rates). The results indicate that

there is no statistically significant difference between the classification results for

both areas: x250.001, and p50.979 (for omission error), x252.264, and p50.132

(for commission error).

Discussion

Accuracy of Automated Animal Counting

First, the accuracy of the hybrid classification results (4% and 10.2% count error

for Pilot A and Pilot B, respectively) is comparable to the previous study of

automated counting of wildlife from aerial photos in 2003, in which the

researchers examined the computational classification results of three species from

separate aerial photos and selected areas for counting by generating random

subsets from the aerial photos. Specifically, the count error was 2.81% for snow

geese, 4.43% for Canada geese, and 10.17% for Caribou with average manual

counts from subsets 203, 240, and 186, respectively [12]. The fact that the

accuracy is close to the result of aerial photos in the previous study, indicates the

practical feasibility of using very high-resolution GeoEye-1 satellite imagery to

detect large wild animals in open savannahs. Second, the fact that the chi-square

test shows there is no statistically significant difference in commission error and

omission error in the two pilot study areas highlights the fact that spotting

animals in open savannahs from space is not being affected by different densities

of animals, supporting the appropriateness of this method.

If we further investigate the results, the commission error and omission error in

this study and its highlights that artificial neural network classifier successfully

extracted most of the potential pixels of animals and it is capable of handling

Table 3. Rule set for refining detected animals, integrated with expert knowledge.

Features Details

Distribution Objects next to vegetated areas should be excluded (not in open areas)

Size of objects Based on the upper limit of body sizes for large migratory animals, objects exceeds upper limit of the sizes (10 pixels, 2.5 m2)
will be split into two or more sub-objects by local minima of brightness

Individual-individual rela-
tionship

Make a buffer zone (0.5 m, the cell size) for the centroids of the detected objects and then merge the intersecting buffer
zones to get rid of redundant centroids to avoid the over-segmentation issue

Individual-Group relation-
ship

Dominant migratory animals live in herds: the objects with a distance to neighbor objects greater than 10 m will be excluded
from the final result

Layer values within the
objects

Most of the animals have a brightness lower than 315; however, some animals containing pixels from surroundings have a
slight higher value (315,325), with a high value of maximum difference of the four bands, greater than 1.45, indicates strong
local color contrast

doi:10.1371/journal.pone.0115989.t003
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Fig. 6. Classification results of animals in the 6 sampling areas for validation: A1, A2 and A3 in Pilot A;
B1, B2 and B3 in Pilot B.

doi:10.1371/journal.pone.0115989.g006
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images with complicated background. On the other hand, the object-based

analysis proved to be an effective method for controlling the Type I error to

guarantee the correctness of object identification. In this study we realize that, for

processing high resolution imagery, dealing with the complicated background and

image noise are still key issues that need further development. The algorithm and

steps developed in this study provides valuable first steps in dealing with these

issues.

Spotting Animals from Space

This study is the very first experiment to use highest spatial resolution (0.5 m)

commercial satellite imagery to directly spot and count wild large animals on

individual basis in open savannah environment. The study opens new frontier in

ecological monitoring and wildlife conservation. On one hand, compared with

traditional aerial survey, it offers extra economic and ecological benefits; on the

other hand, compared with previous studies of detecting trees or vehicles, it is a

great step forward that satellite imagery like GeoEye-1 or IKONOS have

possibility of spotting such small, point-like features within complicated

background. In this sense, it offers even broad prospects for utilizing the next

generation of very high-resolution satellite such as WorldView-4 (previously

named GeoEye-2) for spotting even smaller objects. With higher spatial

resolution, we might be able to directly separate the animals adjacent to each

other; with more bands available, different species might become separable by

spectral signature.

The approach presented in this study has some limitations that it detects large

mammals without distinguishing the various species. African drylands host

multiple large mammal species, and traditional biodiversity surveys are aimed at

monitoring the populations of these individual species. The overlap in size and

spectral signature among many of the antelope species, makes it difficult to

discriminate these species with currently available satellite technology. The

Table 4. Accuracy assessment of experimental result of automated counting of animals in 6 sampling areas in the study area.

Area No. Reference Classified Correct Count error Omission Commission

A1 76 90 74 14 [18.4%] 2 [2.60%] 16 [17.80%]

A2 155 166 140 11 [7.1%] 15 [9.70%] 26 [15.70%]

A3 72 78 69 6 [8.3%] 3 [4.20%] 9 [11.50%]

Pilot A 303 334 283 31 [10.2%] 20 [6.60%] 51[15.30%]

B1 40 41 38 1 [2.5%] 2 [5.00%] 3 [7.30%]

B2 53 55 49 2 [3.8%] 4 [7.50%] 6 [10.90%]

B3 57 60 53 3 [5.3%] 4 [7.00%] 7 [11.70%]

Pilot B 150 156 140 6 [4.0%] 10 [6.70%] 16 [10.30%]

Total 453 490 423 37 [8.2%] 30 [6.60%] 67 [13.70%]

doi:10.1371/journal.pone.0115989.t004

Spotting Wildlife from Space

PLOS ONE | DOI:10.1371/journal.pone.0115989 December 31, 2014 13 / 16



possibility to discriminate will improve however when higher resolution satellite

imagery would become available, e.g., WorldView-4.

The approach presented in this paper can be used to provide an estimate of the

total number of animals, irrespective of what species it is. This is useful

information in a system like the Mara-Serengeti ecosystems, where wildebeest and

zebra congregate in such high density and where it is difficult to estimate their

numbers reliably from sampling approaches made on the ground or from the air.

High variability of the population estimates are the result of the strong

congregation of these migratory species [1]. The technique proposed here allows

for a synoptic count of all animal species over larger areas, which could

complement the traditional sampling based approaches.

The other aspect considered in this study was the computational time. This is a

pilot study with an area of 1 km2 for each image and the computational time is

about 2 to 3 minutes. The ANN training process takes around half of this time.

While for the pixel-based the computational time increases linearly growth with

the study area. On the other hand, image segmentation is basically the time

consumed in object-based analysis (rule-based classification can be done in

seconds). Though it is very short time in this study (5 to 10 seconds), however

there will be a geometric growth of the processing time if this approach has been

put in practice due to the mechanism of object-based image segmentation. The

processing can take up plenty of hours if the area expanded to cover a full

GeoEye-1 satellite image which is approximately 225 km2, and therefore can be

challenging. Nonetheless, with rapid development of computational power and

new techniques, e.g., parallel computation, this issue can be appropriately

addressed and solution sorted out.
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