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In this study, we tested whether the inclusion of the red-edge band as a covariate to
vegetation indices improves the predictive accuracy in forest carbon estimation and
mapping in savanna dry forests of Zimbabwe. Initially, we tested whether and to
what extent vegetation indices (simple ratio SR, soil-adjusted vegetation index and
normalized difference vegetation index) derived from high spatial resolution satellite
imagery (WorldView-2) predict forest carbon stocks. Next, we tested whether inclu-
sion of reflectance in the red-edge band as a covariate to vegetation indices improve
the model’s accuracy in forest carbon prediction. We used simple regression analysis
to determine the nature and the strength of the relationship between forest carbon
stocks and remotely sensed vegetation indices. We then used multiple regression
analysis to determine whether integrating vegetation indices and reflection in the
red-edge band improve forest carbon prediction. Next, we mapped the spatial varia-
tion in forest carbon stocks using the best regression model relating forest carbon
stocks to remotely sensed vegetation indices and reflection in the red-edge band.
Our results showed that vegetation indices alone as an explanatory variable signifi-
cantly (p < 0.05) predicted forest carbon stocks with R2 ranging between 45 and
63% and RMSE ranging from 10.3 to 12.9%. However, when the reflectance in the
red-edge band was included in the regression models the explained variance
increased to between 68 and 70% with the RMSE ranging between 9.56 and 10.1%.
A combination of SR and reflectance in the red edge produced the best predictor of
forest carbon stocks. We concluded that integrating vegetation indices and reflec-
tance in the red-edge band derived from high spatial resolution can be successfully
used to estimate forest carbon in dry forests with minimal error.

Keywords: forest carbon stocks; vegetation indices; red-edge band; high spatial
resolution satellite imagery; dry forests; savanna woodlands

1. Introduction

Terrestrial ecosystems play an important role in understanding biosphere–atmosphere
interactions especially the global carbon cycling. Increased emissions of greenhouse
gases particularly carbon dioxide in the atmosphere are responsible for global warming
and climate change. Carbon sequestration by terrestrial ecosystems particularly forests
is considered an important pathway to mitigate the greenhouse effect and climate
change (Gibbs et al. 2007). In this context, measurement of forest characteristics such
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as carbon stocks is important in fulfilling the requirements of the United Nations
Framework Convention on Climate Change, particularly the Kyoto Protocol and the
Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiative.
The Kyoto Protocol advocates for measuring and monitoring carbon stocks in terrestrial
vegetation based on the knowledge that changes in the forest carbon stocks influences
concentrations of atmospheric carbon dioxide (Zianis et al. 2005). The REDD+ initia-
tive aims at reducing emissions from ecosystem degradation and deforestation by
enhancing forest conservation and enhancement of carbon stocks through sustainable
utilization of forest resources. However, the contribution of dry forests, particularly the
African savanna woodlands to the global carbon cycle, is little understood (Williams
et al. 2007). Thus, the development of methods for understanding the contribution of
savanna dry forests in the global carbon cycle is critical for dry forest conservation and
enhancement of carbon stocks in these ecosystems (Gara et al. 2014). Such methods
may need to focus on improving the estimates of forest carbon stocks in savanna dry
forest.

Although field measurements are regarded as the most accurate method of estimat-
ing forest carbon stocks (De Gier 2003; Lu 2006), these measurements are costly and
labour intensive and can only be feasible over smaller scales (Van et al. 2000;
Ketterings et al. 2001; Northup et al. 2005). In this regard, the development of methods
that supplement field measurements is important. Among these methods is remote sens-
ing which provides an opportunity to estimate and extrapolate carbon stocks over large
spatial extents. The Inter-Governmental Panel on Climate Change Good Practice
Guidance (IPCC GPG) on Land Use, Land-use Change and Forestry (IPCC 2003),
advocates for the use of remote sensing in forest carbon stocks estimation because of
its repeatability, cost effectiveness and synoptic view (Muukkonen & Heiskanen 2005).
Remote sensing methods for estimating forest carbon stocks are still few and far
between, particularly for dry forests. To this end, the development of remote sensing
methods to quantify carbon stocks in dry forests such as savanna woodlands of
Southern Africa is important for carbon inventory and reporting (IPCC 2003). How-
ever, the level of accuracy and reliability of remote sensing methods principally
depends on the ability of a sensor to characterize the spatial and temporal heterogeneity
in forest carbon stocks with minimal error. Thus, knowledge on the performance of
satellite borne sensors to estimate carbon stocks is critical.

There are known limitations in vegetation indices derived from medium to low spa-
tial resolution satellite imagery despite their wide application in estimating biomass and
forest carbon stocks in various vegetation biomes. Often, models developed from these
sensors are associated with high uncertainties and high prediction errors (Cho et al.
2007). Several studies demonstrate weak to average relationships between spectral
reflectance signal acquired from medium to low resolution data and above-ground bio-
mass in savanna woodlands (Mutanga & Rugege 2006; Verbesselt et al. 2006; Wessels
et al. 2006). For example, Mutanga and Rugege (2006) used a number of vegetation
indices derived from MODIS to estimate herbaceous biomass in savanna woodlands
and their highest coefficient of determination (R2) was 44%. On the other hand, Samimi
and Kraus (2004) found no significant relation between Landsat spectral vegetation
indices and biomass in a study carried out in four study sites in Southern Africa. These
limitations and inconsistencies might be attributed to mixed pixels commonly associ-
ated with medium to low resolution satellite imagery especially in the African savanna.
Mixed pixels result when the sensor receives reflectance signals from alternating earth
surface material (bare soils, vegetation or even water) within the same pixel
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(Muukkonen & Heiskanen 2007). In addition, it is difficult to match the size of field
plots with the spatial resolution of the medium and low sensors. This limits the effec-
tiveness and accuracy of these satellite images (Eisfelder et al. 2011). In this regard, we
hypothesize that remote sensing methods that estimate dendrometric characteristics
based on improved high spatial resolution sensors (spatial resolution <5 m) are critical
to test whether the mapping accuracy of the dendrometric characteristics such as forest
carbon can be improved.

The availability of high spatial resolution sensors such as WorldView-2 and
RapidEye, together with the inclusion of the red-edge (RE) band (approximately 0.68–
0.75 μm) has provided data that can be used to improve the quantification and mapping
of forest carbon stocks at local scales. The red edge is the region or boundary in the
spectral profile of healthy vegetation between the chlorophyll absorption red wave-
lengths and the leaf scattering near-infrared wavelength (Filella & Penuelas 1994). The
RE band is sensitive to chlorophyll, leaf area index and biomass (Turpie 2013). How-
ever, the application of red edge has mainly been limited to biomass and biochemical
analysis (nitrogen) of crop/grass using hyperspectral imagery (Mutanga & Skidmore
2007). The application of the RE band of multispectral satellite imagery in forestry
studies is still rudimentary. Moreover, the anticipated advantage of high spatial resolu-
tion sensors is in their ability to derive near pure pixels. For example, in landscapes
such as savanna woodlands where vegetation distribution is sparse, spatial heterogene-
ity of forest carbon occurs at short distances. Thus, high spatial resolution data become
critical due to its ability to capture uniform and unique pixels, thereby reducing uncer-
tainties in forest carbon estimations at local scales. To date, studies assessing the utility
of high spatial resolution satellite imagery for estimating biomass and carbon have
focused on moist forests and homogenous plantations. In this context, the utility of
multispectral imagery of high spatial resolution such as WorldView-2 and the RE band
in estimating and modelling carbon in dry forests especially savanna woodlands of
Southern Africa remains to be established (Eisfelder et al. 2011).

In this study, we tested whether, to what extent and in what form vegetation indices
(i.e. simple ratio (SR), soil-adjusted vegetation index (SAVI) and normalized difference
vegetation index (NDVI) derived from high spatial resolution sensors, i.e. WorldView-
2, can predict forest carbon in savanna woodlands of Southern Africa. We also tested
whether including reflectance in the RE band as an explanatory variable to vegetation
indices can improve the estimation of forest carbon stocks. We used the best predictive
model relating forest carbon stocks to remotely sensed vegetation indices and reflec-
tance in the RE band to map the spatial variations in forest carbon stocks in Malipati
Safari Area in Zimbabwe.

2. Materials and methods

2.1. Study sites

The study was carried out in Malipati Safari Area in south east Zimbabwe (Figure 1).
Colophospermum mopane is the dominant tree species in Malipati with combretum spp
being a codominant tree species. Table 1 details the location as well as the bio-physical
and climatic conditions of the study site. The study site was selected because human
disturbance is minimal as wood cutting is not allowed in these protected areas. Thus,
the relationships between dendrometric characteristics and satellite imagery data are
assumed to be less affected by human disturbance.
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2.2. Sampling design and field measurements

Before field data collection, we classified WorldView-2 of 14 May 2011 for Malipati
into three land cover types, i.e. woodland, wooded grassland and bare firstly using the
unsupervised iterative self-organizing data analysis technique (ISODATA) algorithm.
After clustering using the ISODATA algorithm, we inspected and labelled visually the
classified image. We then randomly generated sampling points in woodlands and
wooded grasslands in ArcView GIS 3.2 (www.esri.com). Randomly generated points
were used as plot centres in the field data collection.

We sampled 37 plots, and we deemed the number large enough for statistical
purposes (Rawlings et al. 1998). In the field, we used a hand-held Global Positioning

Figure 1. The location of Zimbabwe (insert) and spatial distribution of C. mopane woodlands
in Zimbabwe.
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System (Garmin GPSmap 60CSx) to navigate to the sampling points with an error of
±2 m. We did not correct the accuracy of the GPS as ±2 m was deemed adequate
considering the plot size (30 m × 30 m) used in this study. At each random point, a
north-oriented plot measuring 30 m × 30 m (0.09 ha) was marked using a tape measure.
Plots were oriented to the north using a magnetic compass. The plot size was deter-
mined following Rahman et al. (2008) 30 m × 30 m plot size recommendation for pri-
mary forests. For each standing tree greater than 10 cm in diameter at breast height
(DBH) and 3 m in height (Gschwantner et al. 2009), we identified the tree species and
measured DBH (at 1.3 m above ground surface) and total tree height. We first mea-
sured stem circumference using a tape measure in the field and later converted it to
DBH in a computer spreadsheet. Total tree height was estimated in the following man-
ner: we first used a clinometer to estimate the angle of elevation by aiming at the top
and the base of a tree from a measured distance and then calculating the height in a
spreadsheet using the trigonometric principle.

2.3. Forest carbon estimation

Forest carbon was estimated from wood volume following a number of computational
steps. Firstly, wood volume was estimated from existing allometric equations developed
for sites with similar vegetation types, rainfall and temperature. We used allometric
equations for individual tree species (Table 2). We then computed wood volume per
plot as the sum of the individual tree species volumes. Secondly, following Brown
(1997), we then converted wood volume to above-ground biomass (AGB) using the
function:

AGBðt=haÞ ¼ VOB�WD� BEF (1)

where VOB is wood volume over bark estimated from allometric equations, WD is
wood density, and BEF is biomass expansion factor. WD and BEF were determined

Table 1. Biophysical and climatic conditions of the study sites.

Characteristics Malipati

Longitude 31°20′−31°24′E
Latitude 22°01′–22°03′S
Altitude (m) 300–600
Rainfall (mm) 300–600
Rain season November–March
Temperature range (°C) 5–33
Vegetation type Mopane
Soil classification Lithosols and vertisols

Table 2. Allometric equation used in the study.

Species Allometric Equation References

C. mopane V = 0.0001065 × DBH2.471 Henry et al. (2011)
Combretum apiculatum V = (0.0132 + 0.00079DBH2 + 0.0103Ht)

2 Abbot et al. (1997)
Others species V = DBH2/4 * π * Ht * π * fgross ILUA (2008)

Notes: V, wood volume; DBH, diameter at breast height; BA, basal area; Ht, tree total height; fgross, 0.74.
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following Brown (1997). Finally, we multiplied the above-ground biomass by a conver-
sion ratio of 0.5 to obtain forest carbon (IPCC 2003). This ratio considers that 45–55%
of forest aboveground biomass is carbon (Rahman et al. 2008). We then scaled up car-
bon/plot (30 m × 30 m) to carbon/hectare using plot expansion factor (PEF) using the
following formula:

PEF ¼ 10000

Plotsize ðm2Þ (2)

where PEF is plot expansion factor, and the plot size was 900 m2 (30 m × 30 m).

2.4. Remote sensing data

2.4.1. Image pre-processing

A WorldView-2 satellite image for 14 May 2011 acquired from DigitalGlobe
(http://worldview2.digitalglobe.com/) was used in this study. WorldView-2 (2 m spatial
resolution) has eight multispectral bands in the spectral range of 400–450 μm (coastal
blue), 0.45–0.51 μm (blue), 0.51–0.58 μm (green), 0.585–0.625 μm (yellow), 0.63–0.
69 μm (red), 0.705–0.745 μm (red edge), 0.77–0.895 μm (NIR-1) and 0.86–1.040 μm
(NIR-2). The Worldview-2 satellite imagery was radiometrically and geometrically
corrected before satellite data computation. We converted the WorldView-2 to surface
reflectance using QUAC (QUick Atmospheric Correction) (Bernstein et al. 2005b) in
ENVI 4.8. The QUAC algorithm establishes atmospheric compensation parameters
from the information contained within the scene (observed endmember spectra), thus
allowing the retrieval of accurate reflectance values for different earth surface materials.
The WorldView-2 image was geometrically corrected to less than a pixel using 10
points measured in the field using a Garmin GPSmap 60CSx GPS at a positional error
of ±2 m. We applied a first-order polynomial transformation to the WorldView-2
imagery because the study area has a generally even terrain.

2.4.2. Remotely sensed vegetation indices

In this study, we used remotely sensed vegetation indices and reflectance in the RE
band to estimate forest carbon using regression analysis. We tested the hypothesis that
the inclusion of the RE band as an explanatory variable together with vegetation
indices, i.e. SR, NDVI and SAVI derived from high spatial resolution significantly
improves forest carbon stocks estimations in African savanna woodlands. To achieve
this, we first computed vegetation indices, i.e. SR, NDVI and SAVI (Table 3) based on
high spatial resolution satellite imagery, i.e. WorldView-2. In all vegetation indices
computations, we used the red spectral band, i.e. 0.63–0.69 μm, and the near-infrared
band (NIR-1), i.e. 0.77–0.895 μm. We used NIR-1 band of WorldView-2 of Malipati in
vegetation indices computation because NIR-1 derived vegetation indices demonstrated
stronger relationship with carbon compared with NIR-2. Since vegetation in the
Malipati is generally sparse, we used SAVI due to its minimization of soil background
reflectance (Huete 1988). SR and NDVI were also used because they are well
documented as good measures of biomass and vegetation vigour (Jordan 1969; Tucker
1979). Next, we extracted the reflectance in the RE band and vegetation indices from
WorldView-2 imagery per plot using the average of a 15 × 15 pixel (30 m × 30 m)
window centred on the GPS location of each field plot.
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2.5. Relating forest carbon and vegetation indices

We used simple and multiple regression analysis to examine the nature and strength of
relationship between forest carbon stocks, vegetation indices and reflectance in the red-
edge band in a statistical software. Prior to regression analysis, we tested the forest car-
bon data for spatial auto-correlation using Moran’s I to test for conformity with the
least squares regression assumption of randomness (Legendre 1993). We observed that
our data were not spatial autocorrelated (I = 0.01, Z = 0.3, p > 0.05). Secondly, we
tested if collinearity exists between the explanatory variables, i.e. vegetation indices
and reflectance in the RE band using the variance inflation factor (VIF) statistic
(Brauner & Shacham 1998). In all cases, the VIF between all the vegetation indices
and reflectance in the RE band was less than 10 meaning collinearity did not exist
between the explanatory variables (Table 4).

In all regression analyses, forest carbon stock was the dependent variable, while veg-
etation indices and reflectance in the RE band was the independent variables. We used a
linear regression model (model 1) and second order polynomial regression model (model 2)
(Tables 4 and 5) to test the relationships between forest carbon and vegetation indices
and reflection in the RE band. Initially, we performed regression analysis between forest
carbon stocks and vegetation indices. Next, we included the reflectance in the RE band
as a explanatory variable to test whether the model performance improves. The validity
of each regression model was evaluated based on the root mean square error (RMSE),
the coefficient of determination (R2), the Akaike Information Criterion (AIC) and the
level of significance (p-value) of the overall model as well as the significance level of
the coefficients (slope and intercept). Specifically, in choosing the best fit regression
model, we selected a significant model (p < 0.05), with the lowest RMSE, highest R2

and low AIC. The AIC is goodness of fit indicator that penalize a model for increasing
number of parameters. Increased number of fitting often results in over parameterization.
An optimal model has a low AIC. The AIC is defined as,

AIC ¼ �2� ln ðlikelihoodÞ þ 2�K

Table 3. Vegetation indices used in the study.

Vegetation indices Formula Reference

Simple ratio qNIR
qR Jordan (1969)

Normalized difference vegetation index qNIR� qR
qNIRþqR

Tucker (1979)

Soil-adjusted vegetation index qNIR�qR
qNIRþ qRþL

� �
� 1þ L Huete (1988)

Notes: NIR is reflectance in the near-infrared band, R is reflectance in the Red, L = 0.5 (soil correction
factor).

Table 4. Correlation matrix of vegetation and the reflectance in the RE band.

Red edge NDVI SAVI

Red edge
NDVI 0.18
SAVI 0.43 0.96
SR 0.13 0.99 0.95
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where ln is the maximum log-likelihood of the model and K is the number of
parameters in the model.

The significance level of the intercept was also considered, and a model with a
insignificance (p > 0.05) intercept was considered a better model. An insignificant
intercept implies that intercept is not significantly different from 0 (b1 = 0). This means
such a model does not underestimate or overestimate forest carbon values at low veg-
etation indices and RE reflectance values. Moreover, for all best fit models, residuals
were tested for normality using the shapiro–wilk test. We also plotted scatterplots
of standardized residuals against fitted values of forest carbon stocks to test for
conformity with the least squares regression assumption of homogenous variance
(heteroscedasticity).

We used a k-fold cross validation to check the performance of the regression mod-
els because our sample size (n = 37) was small. A k-fold value of 10 was used in all
cross validation analysis. The operation splits the data set into 10 equal partitions. At
each iteration, k−1 will be used to calibrate the model while the remaining partition is
used for validation. This process is repeated iteratively k times until all the segments
are used for validation as well for calibration. The k-fold validation output (mean
square) was then used to calculate the RMSE and the RMSE% using the following
mathematical formula:

RMSE ¼
ffiffiffi
1

n

r Xn
i¼1

ðyi � y
^
i
Þ2; RMSEð%Þ ¼

ffiffi
1
n

q Pn
1¼n

yi � yi
^� �2

�y
� 100 (3)

where yi is observed carbon, y
^
i
is predicted carbon, �y is the mean of the observed

carbon, n is the number of plots in the test data set.
For mapping the spatial distribution of forest carbon, we used the best regression

model to map the spatial distribution of forest carbon stocks in the two study sites.
Specifically, we mapped carbon in the study site using regression models which had
the highest R2, the lowest AIC and the lowest RMSE. So for both sites, we use SR
models to map spatial variations in forest carbon.

3. Results

3.1. Field measurement of variables related to forest carbon

Table 5 shows the descriptive statistics of field data set for Malipati. Tree size was
significantly different within and among plots in the study area (Figure 2).

Table 5. Descriptive statistics of field data set for Malipati.

Min Max Mean SD

Carbon (Mg ha−1) 8.77 17 12.88 2.08
DBH (cm) 10.18 30.23 16.33 4.23
Tree density (ha−1) 33 522 299 114

Notes: Min, minimum; max, maximum; SD, standard deviation.
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3.2. Statistical models

The strength of relationship between carbon stocks and vegetation indices varied with
respect to the vegetation index used (Figure 3). All simple regression models using
vegetation indices as the only explanatory variable were significant (p < 0.05) with a
RMSE ranging from 10.3 to 12.9% and AIC values ranging from 132 to 195 (Table 6).
Linear models had a low RMSE and AIC values thus characterizing the relationship
between vegetation indices and carbon better than the 2nd order polynomial models.
The slopes of all linear regression models were positive. In other words, an increase in
forest carbon stocks corresponds to an increase in vegetation indices. The intercept (β0)
of all the regression were significant (p < 0.05), implying an overestimation and under-
estimation in positive intercepts and negative intercepts, respectively. All vegetation
indices explained more than 50% variation in forest carbon except for SAVI.

By adding reflectance in the red-edge band as an explanatory variable, the R2

increased and the RMSE and AIC also decreased for all models (Table 7). For exam-
ple, using simple regression, SAVI alone as an explanatory variable the model
explained 45% variance in carbon stocks with a RMSE of 11.9% and an AIC value of
195, however, when the reflectance in the red-edge band was included as an explana-
tory variable the R2 rose to 68%, whilst the RMSE and AIC decreased to 9.46 and
127, respectively. However, the intercept (17.91) of the model relating carbon stocks
with SAVI and reflectance in the RE was significant different (p < 0.05) from 0 inter-
cept (b1 ≠ 0) indicating overestimation of forest carbon stocks at low SAVI and RE
values. The SR explained 62% variance in carbon stocks when used a single explana-
tory variable with a RMSE of 10.3% and an AIC of 132. With the inclusion of reflec-
tance in the red edge, the R2 increased to 68% with a RMSE of 9.56% and an AIC of
127. Likewise, NDVI explained 59% variance in carbon stocks when used a single
explanatory variable with a RMSE of 10.3% and an AIC of 132. With the inclusion of
reflectance in the red edge, the R2 increased to 68% with a RMSE of 9.56% and an
AIC of 127. The intercept for NDVI and SR models when RE was included as an

Figure 2. Variations in tree sizes per plot in Malipati.
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explanatory were not significantly (p > 0.05) different from 0 (b = 0) indicating optimal
estimations of carbon stocks at low SR/NDVI and RE values. It is therefore worthwhile
to note that SR and NDVI performed relatively better when the reflectance in the red
edge was included in the model because the R2 increased, while the AIC and RMSE
dropped and the intercept was not significantly different from 0 (see Figure 4).

Figure 3. Relationships between forest carbon and vegetation indices (a = SR, b = NDVI,
c = SAVI).
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The three vegetation indices performed similarly when reflectance from the RE
band was included as an explanatory as shown by scatterplots between the measured
carbon and carbon predicted from vegetation indices (Figure 5). This is also observed
on the similar spread of the predicted vs. measured carbon around the 1:1 line. The
spatial distribution of carbon stocks as estimated from SR and reflectance in the RE
band is shown in (Figure 6).

4. Discussion

Results in this study indicate that including reflectance in the RE band as an explana-
tory variable to remotely sensed vegetation indices derived from the WorldView-2 sig-
nificantly improve forest carbon stocks estimations in dry forests of Zimbabwe. The
inclusion of the RE band increased the R2 and lowered the RMSE and AIC value of all
regression models. These results are consistent with our initial hypothesis that the red
edge is an important explanatory variable in estimation and modelling forest carbon in
savanna dry forests. The RE region is sensitive to parameters of vegetation such as
canopy biomass and chlorophyll content that are inherently related to forest carbon
stocks (Mutanga et al. 2012). Results obtained in this study are consistent with
Cho et al. (2007) who observed improved predictive performance of the red edge
extracted from airborne HyMap hyperspectral imagery in estimating grass/herb biomass
in the Majella National Park. Thus, from our results, we put forward a claim that inte-
grating reflectance in the RE band and vegetation indices derived high spatial resolution
imagery can be used for accurate estimation of forest carbon stocks.

Table 6. Regression models with vegetation indices as explanatory variable.

Predictors Model Equation R2 AIC RMSE (%)

SR 1 −7.85 + 8.85 (SR) 0.62 132 10.3
2 16.37 − 12.32 (SR) + 4.56 (SR2) 0.63 133 10.4

NDVI 1 −4.75 + 45.78 (NDVI) 0.59 134 10.7
2 19.8 − 86.2 (NDVI) + 175.7 (NDVI2) 0.61 135 10.9

SAVI 1 −1.93 + 62.52 (SAVI) 0.45 195 11.9
2 22.8 – 158 (SAVI) + 486.3 (SAVI2) 0.48 146 12.9

Table 7. Regression models with vegetation indices and the red edge as explanatory variables.

Predictors Model Equation R2 AIC
RMSE
(%)

SR + RE 1 3.04 + 9.21 (SR) − 57.67 (RE) 0.68 127 9.56
2 12.05 − 13.69 (SR)+108.33 (RE) − 0.21 (SR2) −

1077.68 (RE2) + 118.96 (SR*RE)a
0.69 132 9.93

NDVI + RE 1 7.7 + 48.87 (NDVI) − 66.9 (RE) 0.68 128 9.62
2 9.07 − 120.62 (NDVI) + 227.58 (RE) + 18.26

(NDVI2) − 1438.34 (RE2) + 776.88 (NDVI*RE)a
0.7 133 10.1

SAVI + RE 1 17.91 + 83.57 (SAVI) − 121.75 (RE) 0.68 127 9.46
2 −12.9 – 173.9 (SAVI) + 469.3 (RE) + 104.3

(SAVI2) − 2045.9 (RE2) + 1045 (SAVI*RE)a
0.69 132 10

Notes: RE: reflectance in the red edge.
aDepicts insignificant coefficients (slope and intercept).
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The best model explained 68% variation in forest carbon with a RMSE of 9.56%.
This coefficient of determination is higher than obtained by Mutanga and Rugege
(2006) and Samimi and Kraus (2004) in the similar ecosystems. Mutanga and Rugege
(2006) used a number of vegetation indices derived from MODIS to estimate
herbaceous biomass in savanna woodlands in Kruger National Park, South Africa, and
their highest coefficient of determination (R2) was 44%. Samimi and Kraus (2004), on
the other hand, found no significant relation between Landsat spectral vegetation
indices and biomass in a study carried out in four study sites in Southern Africa. Possi-
ble reasons for the difference in results of this study and that of Mutanga and Rugege
(2006) and Samimi and Kraus (2004) are that in this study we used vegetation indices
derived from high spatial resolution data. We also integrated reflectance in the RE band
with conventional vegetation indices and this improved predictions in carbon stocks
significantly. It is important to note that although the models performed better than
previous studies in the savanna dry forest, the coefficient of determination was not very
high (>75%) as we expected. This can be attributed to the fact tree carbon content is a
factor of tree height and DBH; however, spectral vegetation indices derived from
Worldview-2 can only characterize canopy greenness which is related to DBH. In this

Figure 4. A relationship between forest carbon, vegetation indices (a = SR, b = ND, c = SAVI)
and reflectance in the RE band. The graph shows decreasing carbon (high carbon) deep red to
low carbon (dark green).
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Figure 5. Relationships between measured carbon and predicted carbon as predication indices
(a = SR, b = NDVI, c = SAVI). The dotted line is a 1:1 line. The 1:1 line shows how closely the
models predicted carbon stocks.
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regard, additional information on tree height acquired from Light Detection and
Ranging (LIDAR) may be important to achieve higher accuracy.

This study differs from previous studies in three main ways. Firstly, studies that
have used vegetations to estimate biomass or carbon in African savanna have used veg-
etation indices as only explanatory variable in aboveground biomass estimations in the
African savanna. However, in this study, we estimated carbon stocks from vegetation
indices and RE band derived from high spatial resolution satellite imagery with very
low error margins. Thus, it is important to note that integrating vegetation indices and
reflectance in the RE band derived from high resolution improved carbon predictions
compared previous studies. The use of the RE band has mainly being limited to hyper-
spectral imagery analysis, especially grass/crop biomass and biochemical (nitrogen)
analysis. Its application in broadband multispectral imagery has been limited. This is
mainly attributed to the fact that many broadband satellite borne imagery like Landsat
do not have RE band. Moreover, the vegetation indices are often been derived from
medium to low spatial resolution satellite imagery data such as Landsat, MODIS and
AHVRR. These factors have resulted in weak relationships, high errors and uncertain-
ties (du Plessis 1999; Samimi & Kraus 2004; Wessels et al. 2006). Secondly, studies
conducted in the African savanna focused on AGB (du Plessis 1999; Samimi & Kraus
2004; Mutanga & Rugege 2006) and very few proceed to estimate carbon from AGB,
yet carbon is an important dendrometric variable that has direct meaning to the science
of climate change Finally, unlike previous studies that only determined the relationships

Figure 6. Spatial variation in carbon stocks as estimated by the SR and reflectance in the red
edge band (white spaces are bare areas including roads).
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between spectral bands, vegetation indices and tree structural attributes in African
savannas we mapped the spatial variation in carbon stocks at a fine spatial scale with a
low RMSE. Again, we find this especially important in African savannas woodlands
where tree cover is low, thus making high spatial resolution satellite imagery an excel-
lent alternative to delineating spatial variability in carbon. However, it would be useful
to test the applicability of these models in independent study sites to observe whether
the form of remotely sensed models of carbon are consistent and can be improved fur-
ther. Nevertheless, we make a claim that this finding provides an opportunity to mod-
elling carbon storage in dry forests such as the savanna woodlands of Southern Africa.

5. Conclusion

The main objective of this study was to test whether the inclusion of reflectance in the
RE band as a covariate to conventional vegetation indices could improve estimations of
forest carbon stocks estimations in savanna dry forests.

From the results of this study, we conclude that:

(1) The inclusion of reflectance in the RE band as an covariate to vegetation
indices improve the prediction accuracy of carbon estimation in savanna wood-
lands. Vegetation indices alone explained between 45 and 63% variation in car-
bon stocks with a RMSE of between 10.3 and 12.9%. With the inclusion of the
red edge the explained variance varied between 68 and 70% with the RMSE
decreasing to between 9.56 and 10.1%.

(2) Regression models developed based on vegetation indices and reflectance in the
RE band can be successfully used to map the spatial variation in carbon stocks
in savanna dry forests.

We finally conclude that the RE band is important in estimating and mapping spatial
variability in carbon stocks with relatively high levels of accuracy in savanna wood-
lands of Southern Africa. The findings of these results are critical in selection of sensi-
tive bands of hyperspectral remote sensors in quantifying carbon stocks. We suggest
that further studies could aim to include important dendrometric variable such as tree
height estimated using LIDAR to check if further improvements can be achieved.
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