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ABSTRACT 

The need for more comparisons among models is widely recognized. This study aimed 

to compare three different modelling approaches for their capability to simulate and 

predict trends and patterns of winter wheat yield in Western Germany. The three 

modelling approaches included an empirical model, a process-based model (LINTUL2), 

and a metamodel derived from the process-based model. The models outcomes were 

aggregated to general climate zones level of Western Germany to allow for a comparison 

with agricultural census data for validation purposes. The spatial patterns and temporal 

trends of winter wheat yield seemed to be better represented by the empirical model (R2= 

70%, RMSE= 0.48 t ha-1 yr-1, and CV-RMSE= 8%) than by the LINTUL2 model (R2= 

65%, RMSE= 0.67 t ha-1 yr-1, and CV-RMSE=11%) and the metamodel (R2= 57%, 

RMSE= 0.77 t ha-1 yr-1, and CV-RMSE=13%). All models demonstrated a similar order of 

magnitude of yield prediction and associated uncertainties. The suitability of the three 

models is context dependent. Empirical modelling is most suitable to analyze and project 

past and current crop-yield patterns, while crop growth simulation models are more 

suited for future projections with climate scenarios. The derived metamodels are fast 

reliable alternatives for areas with well calibrated crop growth simulation models. A 

model comparison helps to reveal shortcomings and strengths of the models. In our case, 

a performance comparison between the three modelling approaches indicated that, for 

simulating winter wheat growth in Western Germany, higher sensitivity to soil depth and 

lower sensitivity to drought in the LINTUL2 model would probably lead to better 

predictions.  

Keywords: Crop growth simulation model, Climate change, Metamodel, Regression 

analysis, LINTUL2.  

INTRODUCTION 

Process-based Crop Growth Simulation 

Models (CGSMs) are a commonly used tool 

for generating future projections of crop yields 

within climate scenarios (12, 20, 42). These 

models provide process-based insight in the 

mechanisms/physiology of crop growth and 

their responses to changes in the environment 

(41). These models are mainly developed for 

the plot and field scale, requiring location-

specific, spatially homogenous input data (22, 

45, 46). When such models are applied to 

larger areas (e.g. provinces or countries) and to 

longer (future) time periods, there is a scaling 

challenge (32, 41, 45). Required daily weather 

data is generally not generated by future 

climate scenarios because they provide coarser 

time steps (13, 27). Required detailed soil data 

is often not available for larger areas. One can 

either mimic the required high resolution data 
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by using e.g. weather generators or other 

downscaling techniques (5, 40), or one can 

work with coarse data, but then recalibration 

of the model may be required (15). 

Furthermore, at a wider range of spatial scales, 

other factors than those typically used by 

CGSMs co-determine yield variability (e.g. 

pests, plagues etc.). Also, at a wider range of 

temporal scales, new factors may emerge that 

turn out to be important (e.g. technological 

development), which are not accounted for in 

CGSMs (7, 31). That leaves us with the 

question how to best use data and models at 

regional scale. Apart from generating the 

required detailed input data, there are two 

common solutions for using the coarser input 

data. One is replacing the CGSM by a 

metamodel that can deal with less detailed data 

(10, 30), and the second is deriving a statistical 

model that relates observed yields to whatever 

data is available (from now on referred to as 

empirical model) (49, 34, 51). A metamodel 

would require similar variables as the original 

process based CGSM, albeit with coarser 

resolutions (6). It may turn out, however, that 

within a certain area and time frame only a 

limited number of environmental and 

management factors determine crop growth 

(e.g. 43). This may save researchers a 

considerable data collection effort. A 

disadvantage of metamodels is that, as they 

mimic the CGSMs, the problem of not 

including factors that play a role at a wider 

range of spatial and temporal scales is not 

solved (14, 18). An empirical model can use 

all data available, including proxies for factors 

that are typically not accounted for in CGSMs 

(e.g. accessibility as a proxy for management 

intensity). These models are calibrated directly 

on the aggregated input data, and can include 

all kinds of factors at any aggregation level. 

The disadvantage of these models is that 

extrapolation beyond the calibration range of 

input variables is illicit, and the relationships 

used are context dependent and not process 

based (9).  

This study was undertaken to compare the 

three approaches to simulate and predict crop 

yields at a wide range of spatial and temporal 

scales in Western Germany: (1) A CGSM, (2) 

A metamodel, and (3) An empirical model. All 

three models are calibrated for a certain time 

period and validated for a subsequent time 

period. The spatial extent of the study is 

Western Germany, and the temporal extent is 

1983-2002. Finally, the models are used to 

make a future projection of crop yields for 

2050, which serve to demonstrate the 

sensitivities of the different modelling 

approaches to the input variables. 

MATERIALS AND METHODS 

Study Area  

Western Germany, i.e. former West 

Germany, covers a wide range of agro-

ecological conditions. The northwest and the 

north have a sea climate while the southern 

part is influenced by the Alpine mountains 

with a boreal climate. Arable farming is 

dominated by soft winter wheat (Triticum 

aestivum L.). Temporal averages over the 

period 1993-2002 of the annual winter wheat 

yields observed in the individual climate zones 

varied between approximately 3 t ha−1 yr-1 in 

the south and southwest to 9 t ha−1 yr-1 in the 

north and northeast (Mean= 6.1 t ha-1 yr-1, St 

dev= 0.9 t ha-1 yr-1) (7) (Figure 1-a). A climate 

zone is defined as a spatial unit that combines 

NUTS-2 (Nomenclature of Territorial Units 

for Statistics) regions and Environmental 

Zones (EnZ) (36). 

Data  

Weather Data 

Weather data were obtained from the 

SEAMLESS database (47) for 70 climate 

zones in Western Germany (3, 27) for the 

period 1983-2002. The database contained 

daily data on: rainfall (mm d−1), maximum and 

minimum air temperature (°C), global solar 

radiation (MJ m−2 d−1), wind speed (m s−1), 

vapor pressure (hPa), and evapotranspiration 

(mm d−1, calculated with the Penman–
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Figure 1. Winter wheat yields averaged over the period 1993-2002 for Western Germany, showing yields per 

climate zone based on: (a) Agricultural statistics, (b) Empirical model, (c) LINTUL2, and (d) Metamodel. In 

the figure, each polygon depicts a different climate zone. 

 

Monteith formula as applied by Allen et al. 

(2)). The CO2 level was considered spatially 

and temporally invariable (that is, for Western 

Germany during the period 1983-2002), and 

one fixed value of 374 ppm was assumed (26).  

As a projection of climate change by the 

mid-21st century, we used the ensemble mean 

of 15 Global Circulation Models (GCMs) 

calculated as part of the third Coupled Model 

Inter-comparison Project (CMIP3) provided 

by the Intergovernmental Panel on Climate 

Change (IPCC) Data Distribution Centre 

(DDC) (13). CMIP3 evaluated a range of 

different scenarios.  

In this study, we used the A1B scenario 

which corresponds to rapid economic growth 

in an integrated world where the global 

population reaches 9.1 billion in 2050.  

Soil Data 

Soil characteristics at the level of the so-

called AgriEnvironmental Zones (25), which 

are a further refinement of the climatic zones, 

were obtained from the Pan European 

SEAMLESS database (3, 47). Data included 

critical soil water content for transpiration 

reduction due to water logging, and the water 

content at field capacity, saturation, wilting 

point, and air dryness (all in volumetric 

fraction). In addition, soil depth (in cm) was 

obtained from the Pan European Soil Erosion 

Risk Assessment project (39). The soil depth 

was then used for the application of the 

metamodel and empirical model.  

Management Data 

Technological development (TD) has also 

played an important role in the development of 

yields over time (12, 20). Here, we used a proxy 

for technological development as described in 

Ewert et al. (20) to estimate yield increase due to 

improved varieties and crop management (e.g. 

pesticides and herbicides). Yield trends were 

calculated for each climate zone by fitting a 

linear regression line through the correspondent 

observed yields. Future trends were obtained by 

extrapolations of past trends, but were modified 

depending on scenario-specific assumptions 

about breeding and crop management. Following 

this approach, for each climate zone, a trend in 

technological development was obtained by 

setting the initial technological development (in 

our case the year 1983) to e.g. 1.033, and we 

obtained a value of each subsequent year by 

adding 0.033. The initial variable is spatially 

explicit, showing a range between 1.033 and 

1.077. The annual increment values (the TD 

variable) ranged from 0.033 (the lowest value 

between 1983 and 1984) to 0.66 (the highest 

value between 2001 and 2002).  

Yearly sowing and harvest dates for winter 

wheat were obtained from the JRC/MARS Crop 
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Knowledge Base for 70 climate zones in 

Western Germany for the period 1983-2002 (28).  

Winter Wheat Yields 

Time series of winter wheat yields from 1983 

to 2002 were obtained from the Statistisches 

Bundesamt Deutschland (7) at NUTS3 level, 

which is the finest spatial level at which 

agricultural statistics are available 

(approximately 1,155 km2 in size). 

In order to simulate a data-poor environment 

(needed to evaluate the suitability of the three 

modelling approaches in such environments), 

data were spatially aggregated to the level of the 

climate zone. This resulted in 70 observations on 

yield, as response variable, and a range of 

explanatory variables which are listed in Table 1. 

Weather data were also temporally aggregated to 

an annual resolution, which were only used by 

the metamodel and empirical model. Four 

aggregations were made by taking the: (i) 

Annual average of daily weather data, (ii) 

Average over the whole growing season (April-

August), (iii) Average over summer (July-

September), and (iv) Average over winter 

(December-March). The winter period is relevant 

because winter wheat is sown in autumn and has 

a rest period throughout winter.  

Modelling Approaches 

Crop Growth Simulation Model  

LINTUL2 is a process-based crop growth 

simulation model made for simulating soft 

winter wheat (for a comprehensive description: 

46). LINTUL2 describes yield under water-

limited conditions. Conditions are still optimal 

with respect to other growth factors, i.e. ample 

nutrients and a pest-, disease- and weed-free 

environment (for the model input variables see 

Table 1). LINTUL2 has been used in numerous 

climate change studies (e.g. 17, 53). 

LINTUL2 is integrated in the so-called 

Agricultural Production and Externalities 

Simulator (APES), which is a cropping system 

modelling framework (1). The model was 

further extended with various calibration 

methods valid for European conditions by 

Angulo et al. (4) to allow for the simulation of 

spatial and temporal yield trends and responses 

to climate change. The extended method, 

considering the region-specific calibration of 

phenology and growth parameters, provided 

the best agreement between observed and 

calibrated yields, therefore, was considered to 

simulate climate change effects on wheat 

yields in Western Germany. This version of 

the model includes the effects of technology 

development (as described by Ewert et al. 

(20)) and CO2 levels (as described by Angulo 

et al. (4)) on winter wheat yield and it was 

recalibrated for spatially aggregated input data 

(4). It was, however, not recalibrated for 

temporally aggregated weather data, nor did it 

include factors such as pests and plagues that 

may become important at a wider range of 

spatial scales (19, 22). Table 1 lists the total set 

of variables that were considered in the 

application of the model. Angulo et al. (4) 

used a simple representation of the effects of 

increased atmospheric CO2 level (ppm) on 

winter wheat yield, using the relationship 

between CO2 and Radiation-Use Efficiency 

(RUE) as proposed by Stockle et al. (44). 

There is a rather strong gradient in RUE 

from northwest to the southeast along which 

RUE increases, due to the gradient in water 

vapour pressure deficit and global solar 

radiation. Increased CO2 also reduces crop 

transpiration: a linear diminution of 

transpiration up to 10% for winter wheat 

was taken into consideration by Angulo et 

al. (4), when the atmospheric CO2 reaches 

700 ppm (18).  

Metamodel 

A metamodel is considered to be the 

simplest parsimonious linear regression model 

that mimics the input–output relationships of 

the process model. A metamodel was derived 

from the LINTUL2 model for Western 

Germany.
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Table 1. The total set of variables used in the particular model approach for Western Germany. a 

Variables   Description  Empirical 

model 

LINTUL2 Meta-

model 

Management data    

TD Technological Development (-) √  √ √ 

Sdates Sowing dates (Day of sowing) √ √ √ 

Hdates Harvest dates (dDay of harvest) √ √ √ 

Weather     

Tmax Mean annual maximum Temperature (°C) √  √ 

Tmin Mean annual minimum Temperature (°C)  √  √ 

Rain Mean annual rainfall (mm d-1) √  √ 

SRAD Mean annual global Solar Radiation (MJ m-2 d-1) √  √ 

WS Mean annual Wind Speed (m s-1) √  √ 

VP Mean annual Vapor Pressure (hPa) √  √ 

ET Mean annual Evapotranspiration (mm d-1) √  √ 

GTmax Mean Growing season maximum Temperature (°C) √  √ 

GTmin Mean Growing season minimum Temperature (°C)  √  √ 

GRain Mean Growing season Rainfall (mm d-1) √  √ 

GSRAD Mean Growing season global Solar Radiation (MJ m-2 d-1) √  √ 

GWS Mean Growing season Wind Speed (m s-1) √  √ 

GVP Mean Growing season Vapor ressure (hPa) √  √ 

GET Mean Growing season Evapotranspiration (mm d-1) √  √ 

WTmax Mean Winter season maximum Temperature (°C) √  √ 

WTmin Mean Winter season minimum Temperature (°C)  √  √ 

WRain Mean Winter season Rainfall (mm d-1) √  √ 

WSRAD Mean Winter season global Solar Radiation (MJ m-2 d-1) √  √ 

WWS Mean Winter season Wind Speed (m s-1) √  √ 

WVP Mean Winter season Vapor Pressure (hPa) √  √ 

WET Mean Winter season Evapotranspiration (mm d-1) √  √ 

STmax Mean Summer season maximum Temperature (°C) √  √ 

STmin Mean Summer season minimum Temperature (°C)  √  √ 

SRain Mean Summer season Rainfall (mm d-1) √  √ 

SSRAD Mean Summer season global Solar Radiation (MJ m-2 d-1) √  √ 

SWS Mean Summer season Wind Speed (m s-1) √  √ 

SVP MeanS season Vapor Pressure (hPa) √  √ 

SET Mean summer season evapotranspiration (mm d-1) √  √ 

DTmax Daily maximum Temperature (°C)  √  

DTmin Daily Minimum Temperature (°C)  √  

DRain Daily rainfall (mm d-1)  √  

DSRAD Daily global Solar Radiation (MJ m-2 d-1)  √  

DWS Daily Wind Speed (m s-1)  √  

DVP Daily Vapor Pressure (hPa)  √  

DET Daily Evapotranspiration (mm d-1)  √  

CO2 Atmospheric CO2 level (ppm)  √  

Soil     

SD Soil Depth (cm) √  √ 

WCFC Water Content at Field Capacity (%) √ √ √ 

WCWP Water Content at Wilting Point (%) √ √ √ 

WCST Water Content at Saturation (%) √ √ √ 

WCAD Water Content at Air Dryness (%) √ √ √ 

WCWET Critical Soil Water Content to Waterlogging (%) √ √ √ 

WHC Water Holding Capacity (%) √  √ 

a √ Indicates whether or not the variable is used in the particular model approach for western 

Germany.       Table 1 continued… 
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Continued of Table1. 

Variables   Description  Empirical 

model 

LINTUL2 Meta-model 

Interactions    

SD×WS Interaction of SD and WS √  √ 

SD×GWS Interaction of SD and GWS √  √ 

SD×WWS Interaction of SD and WWS √  √ 

SD×SWS Interaction of SD and SWS √  √ 

SD×Rain Interaction of SD and Rain √  √ 

SD×GRain Interaction of SD and GRain √  √ 

SD×W.Rain Interaction of SD and WRain √  √ 

SD×SRain Interaction of SD and SRain √  √ 

WHC×WS Interaction of WHC and WS √  √ 

WHC×GWS Interaction of WHC and GWS √  √ 

WHC×WWS Interaction of WHC and WWS √  √ 

WHC×SWS Interaction of WHC and SWS √  √ 

WHC×Rain Interaction of WHC and Rain √  √ 

WHC×GRain Interaction of WHC and GRain √  √ 

WHC×WRain Interaction of WHC and WRain √  √ 

WHC×SRain Interaction of WHC and SRain √  √ 

Rain/ET Ratio of Rain and ET √  √ 

GRain/GET Ratio of G.Rain and GET √  √ 

WRai /WET Ratio of WRain and WET √  √ 

SRai /SET Ratio of SRain and SET √  √ 

Tmax2 Square of Tmax √  √ 

GTmax2 Square of GTmax √  √ 

WTmax2 Square of WTmax √  √ 

STmax2 Square of STmax √  √ 

Tmin2 Square of Tmin √  √ 

GTmin2 Square of GTmin √  √ 

WTmin2 Square of WTmin √  √ 

STmin2 Square of STmin √  √ 

10Log(Rain) The logarithm of Rain √  √ 

10Log(GRain) The logarithm of GRain √  √ 

10Log(WRain) The logarithm of WRain √  √ 

10Log(SRain) The logarithm of SRain √  √ 
     

a √ Indicates whether or not the variable is used in the particular model approach for western 

Germany. 

 

LINTUL2 was run for a ten-year period 

(1983-1992) for the 70 climate zones for the 

simulation of winter wheat in Western 

Germany. This way, both spatial and temporal 

variability was represented in the input and 

output. The metamodel was obtained by 

relating model input to model output by means 

of a multiple linear regression in SPSS. In this 

case, because our metamodel was meant to be 

run with coarser data than those required by 

the LINTUL2 model, we deliberately chose 

variables that were also available at a wide 

range of spatial and temporal scales, i.e. soil 

depth in addition to the detailed variables used 

by LINTUL2, and annual average of daily 

weather data instead of daily data (see Table 

1). As theory suggests that some variables are 

non-linearly related to crop yields, we included 

transformations: (see e.g. 34). Furthermore, we 

included several interactions (see Table 1). 

These were included to account for the 

possibility that, e.g., water holding capacity 

becomes a more important determinant of crop 

yield in areas where rainfall is low. A Pearson 

correlation matrix was calculated to indicate 

the degrees of collinearity between all 

explanatory variables (Table 2). The most 

significant independent variables for 

predicting winter wheat yields were selected 

by means of a backward elimination of the 
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Table 2. Pearson correlation coefficient between variables included in the empirical and metamodel 

approach for Western Germany.  a  

 Rain Tmax SRAD ET GRain GTmin GSRAD GET GVP STmax SSRAD 

GTmax -0.27 0.90 0.54 0.82 -0.26 0.78 0.66 0.88 0.78 0.79 0.51 

SRain 0.81 -0.32 -0.05 -0.23 0.77 -0.06 -0.26 -0.25 -0.08 -0.46 -0.29 

SET -0.32 0.68 0.80 0.91 -0.25 0.39 0.81 0.83 0.43 0.82 0.94 

a Only those variables are shown that were strongly related (i.e. Pearson correlation coefficient > 0.75) to at 

least one of the significant variables. 

variables with the lowest statistical 

significance. The threshold we handled for 

removing variables was P≤ 0.001.  

Empirical Model  

An empirical model was created for the 

simulation of winter wheat in Western 

Germany by regressing 10 years of observed 

annual winter wheat yields (1983-1992) for 70 

climate zones on the various predictor data in 

Table 1, using SPSS. The most significant 

independent variables for predicting winter 

wheat yields were selected by means of a 

backward elimination of the variables with the 

lowest statistical significance, so as to obtain 

the simplest parsimonious model that mimics 

the yield - predictor relationships. Because we 

wanted to compare the empirical model to the 

metamodel, for both models the same set of 

potentially explanatory variables were used, 

including transformed predictors and products 

of predictors. Yearly yields were considered 

independent events, so we did not correct for 

temporal autocorrelation. 

Validation of the Modelling Approaches 

The three modelling approaches were 

validated for a second 10 year period (1993-

2002), for which agricultural yield statistics 

and predictor data were available. The results 

of the validation were expressed as a 

Coefficient of determination (R2), the Root 

Mean Squared Error (RMSE), and the Root 

Mean Squared Error normalized to the 

Average of the Observed values (CV-RMSE). 

The coefficient of determination was 

calculated as 1–SSE/SST, whereby SSE is the 

sum of squares of residuals, and SST is the 

total sum of squares. The RMSE was 

calculated as:  

���� = �∑ (	
���� �	�)�
�    (1)  

Where, �
� is the simulated yield, �� is 

observed yield at climate zone i, and n is the 

number of observations (70 climate zones 

times 10 years). The CV-RMSE was calculated 

as ����/�̅, where �̅ is the average of the 

observed yield. 

Spatial Patterns and Temporal Trends 

Spatial patterns generated by the three 

modelling approaches were compared. Hereto, 

we averaged outcomes over the period 1993-

2002. The results of comparison were 

expressed as an R2, the RMSE [same as in 

Equation (1)], and CV-RMSE. Whereas the 

previous analysis (validation of the modelling 

approaches) was based on 700 observations 

(70 climate zones times 10 years), this analysis 

was based on only 70 observations. Temporal 

trends were compared as well. Hereto, the 

spatial dimension was removed by computing 

the spatial average for the entire study area. 

We averaged temporal observations for blocks 

of five years. As this left us with a few 

observations, we did not apply statistics to 

compare the trends, but made a visual 

comparison instead.  

Simulation of Future Yields 

The three modelling approaches were used 

to simulate future winter wheat yield for a 



  _______________________________________________________________________ Soltani et al. 

198 

possible future (period 2041-2061), in which 

climate changes (according to the 15GCM 

A1B scenario) and technology progresses 

(according to Ewert et al. (20)). The soil 

variables were considered constant in time. 

We took the winter wheat yield maps for the 

period 1993-2002 as the baseline, and 

compared them with the future maps 

(centered around 2050) to explore the 

predicted changes in yields. Although such an 

analysis bears no value in terms of model-

evaluation, it does allow exploring potential 

over-sensitivity or lack of sensitivity of the 

different models to changes in climate. 

RESULTS  

Crop Growth Simulation Model 

LINTUL2 outcomes (Mean= 5.7 t ha-1 yr-1, 

SD= 0.7 t ha-1 yr-1) explained 58% (= R2) of 

the observed winter wheat yield variability for 

the validation period (1993-2002) with an 

RMSE of 0.73 t ha-1 yr-1, and a CV-RMSE of 

12%. As the model was already calibrated (4), 

we only present its performance on the 

validation period.  

Metamodel  

The best metamodel to emulate the winter 

wheat yield estimates (in t ha-1 yr-1) by the 

LINTUL2 for the period 1983-1992 was: 

Yield= -0.2 + TD - 0.3 W.SRAD + 0.1 SRain/SET 

According to this model, yields decrease 

with increasing global solar radiation during 

winter, which can probably be ascribed to the 

fact that rising radiation might have caused 

additional water stress by affecting the soil 

water balance (7, 52). Yields increase with 

increasing the ratio of rainfall and 

evapotranspiration during summer (from now 

on referred to as summer drought), which can 

probably be ascribed to a reduced risk on 

drought damage (29, 35). Furthermore, with 

each unit increase in TD, yields go up by 1 t 

ha-1yr-1. For instance, if the initial technology 

development for a climate zone in the base line 

year has been established at 1.055, the annual 

increase in productivity is 0.055 (i.e. the TD 

variable). This comes down to an annual 

increase of approximately 55 kg ha-1 (1 ton 

times 0.055) in the simulated yield. For the 

calibration period (1983-1992), the metamodel 

(Mean= 5.1 t ha-1 yr-1, SD= 0.7 t ha-1 yr-1) 

predicted 75% of the simulated winter wheat 

yield variability with a RMSE of 0.43 t ha-1 yr-

1, and a CV-RMSE of 8%. For the validation 

period (1993-2002) the metamodel (Mean= 

5.6 t ha-1 yr-1, SD= 0.6 t ha-1 yr-1) predicted 

66% of the simulated winter wheat yield 

variability with a RMSE of 0.75 t ha-1 yr-1, and 

a CV-RMSE of 11%. The metamodel predicted 

51% of the observed winter wheat yield 

variability for the validation period (1993-

2002) with a RMSE of 0.86 t ha-1 yr-1, and a 

CV-RMSE of 14%.  

Empirical Model  

The best linear multiple regression model to 

emulate the observed winter wheat yield (in t 

ha-1 yr-1) for the period 1983-1992 was:  

Yield= -0.3+1.1TD + 0.2 WSRAD - 0.1 GTmax 

+ 0.01 SD 

According to this model, yields are higher 

on deeper soils being related to rooting depth 

and plant available water. Yields decrease with 

increasing maximum temperature during the 

whole growing season and winter radiation, 

which can probably be attributed to the fact 

that increasing temperatures enhance 

development rate and reduce the growing 

period (16, 24), which often counteracts the 

positive effect of temperature on 

photosynthesis. Additionally, higher radiation 

and temperatures might have caused additional 

water stress by affecting the soil water 

balance, which in turn resulted in reduced 

yields (7, 52). The empirical model did not 

contain a precipitation variable. Rainfall was 

also not strongly correlated to any of the 

variables that were included, which could 

account for its absence (Table 2). Indirect 

negative effect of rainfall on yields, such as 
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Figure 2. The temporal trends of observed and simulated winter wheat yields from 1983 to 2050 

for Western Germany. 

increasing the risks for pests and diseases, 

may have counterbalanced the positive effect 

of rainfall on crop growth (7, 33). For the 

calibration period (1983-1992), this model 

(Mean= 5.5 t ha-1 yr-1, SD= 0.7 t ha-1 yr-1) 

predicted 87% of the observed winter wheat 

yield variability with a RMSE of 0.34 t ha-1 yr-1, 

and a CV-RMSE of 6%. For the validation 

period (1993-2002), this model (Mean= 6 t 

ha-1 yr-1, SD= 0.7 t ha-1 yr-1) predicted 63% of 

the observed winter wheat yield variability 

with a RMSE of 0.58 t ha-1 yr-1, and a CV-

RMSE of 9%.  

Spatial Patterns and Temporal Trends 

The observed and modelled winter wheat 

yield maps for 1993-2002 are presented in 

Figure 1. The observed yields, obtained at 

347 NUTS3-units, were aggregated to the 70 

climate zones to allow comparison (Figure 

1-a). Figure 1-b shows results from the 

empirical model, Figure 1-c those of the 

LINTUL2 model, and Figure 1-d those of 

the metamodel. All models have a similar 

order of magnitude of yield prediction and 

associated uncertainties. They were all 

capable of reproducing high-productivity 

regions in the northern part of Western 

Germany as well as the low-productivity 

regions in the southern parts. The spatial 

patterns are better represented by the 

empirical model (R2= 70%, RMSE= 0.48 t 

ha-1 yr-1, and CV-RMSE= 8%) than by the 

LINTUL2 model (R2= 65%, RMSE= 0.67 t 

ha-1 yr-1, and CV-RMSE=11%) and the 

metamodel (R2= 57%, RMSE= 0.77 t ha-1 yr-1, 

and CV-RMSE=13%). This spatial 

variability must be associated with the 

spatial variability in soil depth. The absence 

of any soil variable in the metamodel reveals 

an overall insensitivity of the LINTUL2 

model and metamodel to soil variability for 

this specific case study. This insensitivity 

seems to be refuted by the spatial variability 

in the observed crop yields.  

The temporal trends in winter wheat 

yields, observed as well as predicted by the 

three models, are plotted in Figure 2. The 

reported census data demonstrate a major 

discontinuity around 1990-1995, which is 

only reproduced by the empirical model. All 

models simulate a general increase in 

average yield with time. Based on the small 

differences between the metamodel and the 

empirical model, it seems likely that this 

may be attributed to an overestimation of the 

drought effect in the metamodel. This 

overestimation can be expected for models 

applying the RUE concept instead of 

detailed photosynthesis routines (38), and 

for the derived metamodels. 

Simulation of Potential Climate Change 

Effects for Western Germany  

The difference between simulated future 

winter wheat yields (2041-2061) and past 
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 Figure 3. The difference between wheat yields in 1993-2002 and 2041-2061 for Western Germany, 

simulated by the: (a) LINTUL2, (b) Metamodel, and (c) Empirical model. In the figure, each 

polygon depicts a different climate zone. 

 

yields (1993-2002) is shown in Figure 3 for 

the different modelling approaches. Projected 

future yields were higher than baseline yields 

for all modelling approaches, although the 

increase varied considerably per modelling 

approach and per geographical area. Yield 

increases were highest for the empirical 

model, showing an increase in yields between 

3 and 58% (on average 27%). The metamodel 

predicts a yield increase between 7 and 52% 

(on average 24%). The LINTUL2 model 

predicts the smallest yield increase, between 5 

and 52% (on average 22%). Our results 

suggest the predictions of future ranges depend 

on the models’ sensitivities to specific changes 

in input variables. The degree to which the 

input variables change is, of course, context 

dependent.  

Overall future increases in winter wheat 

yield (Figures 2 and 3) can obviously be 

ascribed to technological development, and, 

for the LINTUL2 projection, also to elevated 

atmospheric CO2. It is remarkable that both the 

metamodel and the empirical model predicted 

higher future yields than the LINTUL2 model, 

in spite of not being sensitive to increased CO2 

levels. This could indicate a structural 

overestimation of a positive effect of one of 

the other (correlated) variables, such as 

technological development. Particularly, 

assumptions about technological development 

can have substantial impacts on yield 

prediction. Yield increase due to technology 

would, between 2002 and 2050, amount to 2 

(according to the metamodel) or 2.3 t ha-1 

(according to the empirical model). This is 

computed by taking the average TD value in 

2050 (being 3.1), subtract the average TD 

value in 2002 (being 1.05; the difference is 

2.05), and multiply that by the coefficients 1 

and 1.1, respectively. Apart from uncertainties 

in the regression coefficients’ estimation 

(resemblance with past trends indicate that 

these are relatively small), most uncertainty 

lies in the estimation of the actual 

development. Here, we have assumed a linear 

extrapolation of past trends (20), but many 

scientists have argued that these increases will 

gradually decline (see e.g. 11, 21). Obviously, 

further investigation is required to reduce 

uncertainty in the assumptions regarding 

technology development, especially for future 

projections of crop yields within climate 

scenarios.  

The spatial variability in the changes 

predicted by the metamodel and the empirical 

model suggests that changes in yield predictors 

vary throughout space. This applies to 

technology development, winter radiation, 

maximum temperature during the whole 

growing season, and summer drought. In the 

center and south (empirical model), and the 
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Figure 4. The change in variables included in the metamodel and empirical model between 1993-2002 and 

2041-2061 for Western Germany: (a) Winter season global solar radiation (MJ m−2 d−1), (b) Growing 

season maximum temperature (°C), and (c) Ratio of summer season rainfall and evapotranspiration. In the 

figure, each polygon depicts a different climate zone. 

 

center east and southeast (metamodel), 

changes in winter radiation, maximum 

temperature during the whole growing season, 

and summer drought have a negative impact 

on yields, almost offsetting the positive impact 

of technological development. Looking at 

Figure 4, it becomes clear that it is especially 

the increase in maximum temperature during 

the whole growing season (mostly in the 

south, used by the empirical model) and 

decrease in summer drought (mostly in the 

southeast, used by the metamodel) that causes 

this relative decline in wheat yields. 

Future projections serve the purpose to 

demonstrate the different sensitivities of the 

modelling approaches to changes in input 

variables that are relevant for studying impacts 

of climate change. According to the LINTUL2 

model, the northwest and southeast RUE 

gradient in Western Germany is important for 

influencing the spatial variability in winter 

wheat yield under future climate conditions 

(Figure 3-a). These projected increases in yield 

can probably be attributed to the presumed 

lower sensitivity to changes in weather 

conditions and a much higher sensitivity to 

elevated atmospheric CO2 level, as also 

suggested by Harrison and Butterfield (23). 

The empirical model, on the other hand, 

predicts large increases in wheat yields for the 

northern parts of the region, while the southern 

parts will only experience small increases in 

yield (Figure 3-c). These projected increases in 

yield can probably be attributed to the model’s 

sensitivity of winter wheat to changes in 

winter radiation and a much higher sensitivity 

to maximum temperature during the whole 

growing season. The metamodel predicts large 

increases in wheat yields for the northWestern 

parts of the region, while the southeastern 

parts will only experience small increases in 

yield (Figure 3-b). These projected increases in 

yield can probably be attributed to the 

metamodel’s sensitivity of winter wheat to 

changes in winter radiation and a much higher 

sensitivity to summer drought. 

DISCUSSION 

We compared different modelling 

approaches for simulating and predicting crop 

yields at a wide range of spatial and temporal 

scales. Apart from the inherent differences of 

the proposed models, all three seem 

reasonably able to predict winter wheat yield 

level at regional to national scales. The fact 

that all approaches had similar model 

performances could be somewhat 

overestimated due to aggregation effects of the 

reported yields. The yields were aggregated 

from NUTS3 to either climate zones (Figure 1) 
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or the whole of Western Germany (Figure 2). 

It is known from landscape-scale studies that 

such aggregation steps can cause a scale-

dependent overestimation of model fits (49). 

Whether this effect has caused some 

overestimations of model performance or not, 

is not relevant for the model approach 

comparison in the sense that it would affect all 

three models in a similar fashion.  

A model comparison helps to reveal 

shortcomings and strengths of the models. For 

example, in our study, a performance 

comparison between the three models 

indicated that a higher sensitivity to soil depth 

in the LINTUL2 model would probably lead 

to better predictions of yield spatial variability. 

Moreover, a performance comparison between 

the three modelling approaches indicated that a 

lower sensitivity to drought in the LINTUL2 

model would probably lead to better 

predictions. The best fit with the observed data 

is demonstrated by the empirical model, which 

outperforms the CGSM and its derived 

metamodel. 

However, the fundamental limitation of the 

empirical model is that it is not valid outside 

its calibration domain, which severely 

hampers its usefulness for future predictions 

(51). When the predicted values of important 

predictors exceed the range that was used for 

calibration, the validity of future projections 

by empirical models is questionable. Future 

projections of crop yields for climate change 

scenarios can, therefore, best be made by more 

mechanistic CGSMs, such as LINTUL2. The 

added value of the metamodel is that it is 

much faster to run and it requires far less 

(detailed) data than the original model. This 

suggests that such metamodels could be 

successfully used for quick scan applications 

of future yield scenarios for areas where the 

CGSM has been calibrated. The empirical 

models and the metamodels are easy to drive 

and require fewer input variables compared to 

the CGSMs to estimate regional patterns of 

crop yield. Moreover, the spatial and temporal 

resolutions can be adjusted to what is available 

at the spatial and temporal scale and extent in 

question. In this study, we selected different 

modelling approaches to assess regional 

patterns of winter wheat in Western Germany 

(e.g., CGSM, metamodel of the CGSM, and 

empirical model). We recognize that there are 

other approaches available (e.g., 37, 48). Note 

that we do not give a final preference to one of 

the approaches. This depends on the specific 

study aim. 

All three modelling approaches are limited 

by the fact that they do not account for other, 

mainly socio-economic, factors in driving crop 

productivity. This could be easily overcome by 

using such data to derive improved empirical 

models. The general validity of such simplistic 

models is questionable because many 

mechanisms of the complex multi-level land 

system are still unknown (50). For example, 

the effect of a shift in the locations where 

wheat is grown is not taken into account, 

although recent research suggests that arable 

cultivation gradually shifts to less favorable 

soils (8). To investigate this properly, far more 

advanced statistical analyses are required (9).  

CONCLUSIONS 

All three explored model options have the 

capability to simulate and predict crop yields 

at a wide range of spatial and temporal scales. 

The suitability of the three modelling 

approaches used is context dependent. For 

near-future projections, the empirical model 

appeared to be most reliable. However, when 

values of predictors exceed the range that was 

present in the calibration dataset, the 

performance of this type of model is 

questionable (51). For that reason, future 

projections of crop yields within climate 

change scenarios can be best made by 

CGSMs. The derived metamodels can be fast 

and reliable alternatives for areas with well 

calibrated CGSMs. The metamodels can easily 

be made more climate-robust by calibrating 

them on the future climate variable range, 

rather than on just the observed one. A model 

comparison helps to reveal shortcomings and 

strengths of the models. In our case, a 

performance comparison between the three 

modelling approaches indicated that, for 

simulating winter wheat growth in Western 



 Modelling Approaches to Simulate Regional Yield ________________________________  

203 

Germany, a higher sensitivity to soil depth and 

a lower sensitivity to drought in the LINTUL2 

model would probably lead to better 

predictions.  
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مقايسه سه روش مدلسازي براي شبيه سازي عملكرد منطقه اي محصول: مطالعه 

  يغرب موردي عملكرد گندم زمستانه در آلمان

 ا. سلطاني، م. م. بيكر، ا. ولدكمپ، و ج. ج.استوروگل

  چكيده

مقايسه روشهاي مختلف مدلسازي بسيار ضروري مي باشد. هدف اين تحقيق، مقايسه توانايي سه 

روش مختلف مدلسازي براي شبيه سازي و پيش بيني الگوي مكاني و زماني عملكرد گندم زمستانه در 

 ) و2. سه روش مدلسازي شامل مدل تجربي، مدل پيشرفته مبتني بر فرآيند ( لينتولبودي غربآلمان 

. به منظور ارزيابي نتايج، خروجي مدلها با داده هاي شاهد منطقه باشدمي 2متامدل بدست آمده از لينتول

مقايسه شدند. مقياس خروجي مدل، براي متناسب شدن با مقياس داده هاي شاهد، افزايش يافتند. نتايج 

 )RMSE= 8%-1, CV-1yr-R2= 70%, RMSE= 0.48 t ha( حاكي از توانايي بيشتر مدل تجربي
و  2RMSE=11%)-1, CV-1yr-(R2= 65%, RMSE= 0.67 t haنسبت به مدل لينتول

در شبيه سازي الگوي .  RMSE=13%)-1, CV-1yr-(R2= 57%, RMSE= 0.77 t haمتامدل

مكاني و زماني عملكرد گندم زمستانه در آلمان غربي مي باشد. هرسه روش مدلسازي مقادير نسبتاٌ 

محصول و عدم قطعيت مربوطه را نشان داده اند. مناسب بودن روشهاي مدلسازي مشابهي از برآورد 

بستگي به شرايط محيطي و پروژه مطالعاتي دارد. مدلهاي تجربي مناسبترين انتخاب براي تجزيه تحليل 

ترين انتخاب براي گذشته و حال الگوهاي عملكرد محصول هستند. در حاليكه مدلهاي پيشرفته مناسب

الگوهاي آينده عملكرد با در نظر گرفتن سناريوهاي اقليم مي باشند. متامدل مشتق شده از مدل  پيش بيني

پيشرفته، جايگزين قابل اعتماد و سريعي از مدلهاي پيشرفته است اگر بخوبي براي شرايط منطقه كاليبره 

ن مطالعه موردي شده باشد. مقايسه مدلها، نقاط قوت و ضعف آنها را آشكار مي سازد. بطوريكه در اي

مقايسه سه روش مدلسازي نشان داد كه براي شبيه سازي عملكرد گندم زمستانه در آلمان غربي، لحاظ 

، 2كردن حساسيت بيشتر نسبت به عمق خاك و حساسيت كمتر نسبت به خشكسالي در مدل لينتول

  .شودمنجر مي  2احتمالاً به پيش بيني دقيقتري از محصول با استفاده از مدل لينتول
 

 


