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Abstract Water resources management is a complex task. It requires accurate predic-
tion of inflow to reservoirs for the optimal management of surface resources, espe-
cially in arid and semi-arid regions. It is in particular complicated by droughts.
Markov chain models have provided valuable information on drought or moisture
conditions. A complementary method, however, is required that can both evaluate the
accuracy of the Markov chain models for predicted drought conditions, and forecast
the values for ensuing months. To that end, this study draws on Artificial Neural
Networks (ANNs) as a data-driven model. The employed ANNs were trained and
tested by means of a statistically-based input selection procedure to accurately predict
reservoir inflow and consequently drought conditions. Thirty three years’ data of
inflow volume on a monthly time resolution were selected to enable calculation of
the standardized streamflow index (SSI) for the Markov chain model. Availability of
hydro-climatic data from the Doroodzan reservoir in the Fars province, Iran, allowed
us to develop a reservoir specific ANN model. Results demonstrated that both models
accurately predicted drought conditions, by employing a randomization procedure that
facilitated the selection of the required data for the ANN to forecast reservoir inflow
close to the observed values over a validation period. The results confirmed that
combining the two models improved short-term prediction reliability. This was in
contrast to single model applications that resulted into substantial uncertainty. This
research emphasized the importance of the correct selection of data or data mining,
prior to entering a specific modeling routine.
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1 Introduction

Reservoirs are important sources of water especially in many developing countries, and as
such, forecasting their monthly inflow and the related drought conditions are vital for
achieving optimal reservoir performance and reliability. Moreover, predicting inflow can help
to better address droughts, flood risk assessments and the allocation of potable water,
simultaneously with agricultural and industrial uses. In recent times, demands for water use
in Iran have increased significantly due to a rapid population growth in an arid and semi-arid
climate (Sattari et al. 2012). Global warming and climate change have also amplified the
pressure on reservoir storage and supply guarantee, consequently, there is a strong need to
develop accurate models to forecast monthly reservoir inflow.

A common and functional method of forecasting inflow to reservoirs is provided by
artificial neural networks (ANNs). ANNs have been used extensively in modeling the
non-linear behavior of hydrological processes. Applications of ANNs in hydrology and
water resources includes rainfall-runoff processes (Hsu et al. 1995; Shamseldin 1997;
Tokar and Johnson 1999; Kumar et al. 2005; Rezaeianzadeh et al. 2010), streamflow
forecasting (Kisi 2007; Isik et al. 2013), water level prediction (Emamgholizadeh et al.
2014; Rezaeianzadeh et al. 2015), water quality (Singh et al. 2009; Kalin et al. 2010)
and drought forecasting (Mishra and Desai 2006; Morid et al. 2007; Keskin et al. 2011;
Rezaeianzadeh and Tabari 2012). Likewise, the application of ANNs in forecasting
inflow to reservoirs has been addressed both on a daily scale (Coulibali et al. 2000;
Coulibali et al. 2001; Coulibali et al. 2005; Sattari et al. 2012; Krishna 2014) and a
monthly scale (Jain et al. 1999; Valipour et al. 2013).

Markov chains are useful to stochastically model a time series composed of discrete
variables. When applied to the Palmer index time series, they have demonstrated the ability
to be utilized effectively for predicting wet and dry periods (Lohani and Loghanthan 1997).
Paulo and Pereira (2007) used a Markov chain to understand the stochastic characteristics of
droughts by means of analyzing the probabilities for each severity class of drought based on
the standardized precipitation index (SPI) values in Alentejo, southern Portugal. A two-state,
first-order Markov chain was efficient for describing wet and dry weather patterns based on
daily rainfall data in Colombo Sri Lanka when evaluating wet and dry spells (Sonnadara and
Jayewardene 2015).

In a Markov chain, monthly volumes of inflow to reservoirs are the key inputs, with the
evaluation and forecasting of drought conditions for the subsequent month serving as the
output. A major drawback of such modeling is that it provides the user with the predicted wet,
dry, or normal drought conditions, together with the probability of the occurrence of that
condition, however, no discharge is predicted as the forecasted inflow to the reservoir. Both
ANNs and Markov chains are capable of forecasting drought conditions; the ANN provides a
single value and with a comparison to threshold values, the drought condition can be
evaluated, whereas a Markov chain is based on transition probabilities.

Tabari et al. 2015 proved that first-order Markov chain models are adequate to reproduce
the statistical structure of the streamflow drought index (SDI)-based hydrological droughts. In
the current study, a three-state, first-order Markov chain model was applied to standardized
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stream flow index (SSI) data to predict drought conditions for the succeeding month. An ANN
model was also developed to be used in conjunction with the Markov chain model, which to
the best of our knowledge, is adequate in evaluating the suitability of such an ANN model
compared with a Markov chain model for forecasting drought conditions based on inflow
volumes. Hydrological drought and Markov chains have been studied in the past by Nalbantis
and Tsakiris (2009). Also, Tsakiris and Vangelis (2004), Tsakiris and Vangelis (2005), Tsakiris
et al. (2006), Araghinejad (2011), Tabari et al. 2013; Tsakiris et al. 2013, provide a solid
background in a variety of drought indices.

The aim of the current study was to develop an ANN model based on hydro-climatic inputs
to (i) forecast the monthly inflow volume for the subsequent month and to (ii) evaluate the
Markov chain results for forecasting drought conditions 1 month ahead as transition proba-
bilities, controlling the next state of the system based only on the current state. The latter
purpose can be achieved by comparing values forecasted by ANN with the threshold values of
wet, dry and normal states from the Markov chain. In addition to the main purposes of the
study, different training algorithms in ANN models for forecasting reservoir inflow were
evaluated where the outcome could be used as a preliminary guideline for future studies.
The model was applied to the watershed of the Doroodzan reservoir in Iran. To the best of the
authors’ knowledge, there is no further study reported to develop an ANN model as a
complementary method for evaluating drought conditions forecasted by a Markov chain.
This simple but efficient methodology can be exploited to forecast drought conditions and
inflow to reservoirs. In doing so, it is able to flag potential short-term future water shortage in
reservoir systems, whereas it helps to improve operational water management in the presence
of drought over a sub annual to multi annual time frame.

2 Study Area and Data set

The Doroodzan watershed within the Fars Province in Iran, (29°50′N, 51°53′E), (30°15′ N,
52°22′E), was selected as a case study catchment (Fig. 1). Construction of the Mollasadra
reservoir dam as a regulating dam upstream of the Doroodzan dam has caused a reduction in
inflow volume to the cited reservoir during the past several years. For this motive, the combined
watershed upstream of both the Doroodzan and Mollasadra reservoirs was chosen as the study
area. The drainage area totals 4116 km2 with terrain ranging in height from a maximum of
3677 m to a minimum of 1626 m, and an average land slope approximately 26 %. Daily
precipitation data from the five weather stations Chamriz, Jamalbeig, Chobkheleh, Doroodzan,
andMorozeh were used for this study. The mean annual rainfall over the watershed is estimated
as 443 mm. Doroodzan dam is a homogenous earth filled dam with a 57 m crest height and
approximately 700 m crest length. Pre-construction studies and investigations were carried out
between 1963 and 1966 with the dam construction initiated in 1970. The dam was completed in
1974 to a capacity of 994×106 m3. It was designed to mitigate the effects of severe flood events
in the Karbal region, and to provide a reliable potable water supply, as well as accommodate
agricultural and industrial uses. The facility also supports a hydroelectric plant with an installed
electricity generating nominal capability of 10 MW.

The Mollasadra dam is an earth filled dam with a clay core (2006) and was designed to
meet local needs for agriculture and potable water supply demand coupled with hydroelectric
energy production. The height of the crest is 72 m with a length of 630 m. The capacity of the
reservoir was calculated at: 440×106 m3 when it entered into exploitation.
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In total, over ninety six thousand daily values were processed from five rain gauges, two stream
gaging stations; Doroodzan and Chamriz, and one type A evaporation pan. This data set spanned
thirty three water years and comprised of 396 monthly values. Precipitation data from the 1976 to
2009 water years were used as input to the neural networks. Additionally, an analysis was initiated
to emphasize the importance of encountering the optimum input combinations and distributing the
data between training and testing datasets prior to modeling. This was particularly important in the
case of long term time series precipitation data and corresponding stream flow data. Increasing the

Fig. 1 Map of the study area
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length of the time series augments the non-stationarity of the data, and is important for the
distribution of the extreme and normal values of data (here inflow to the reservoir), within the
calibration (training) and validation (testing) phases. To this end, a randomization procedure based
on evaluation of the equality of variances and means of the two samples, training and testing
datasets, was followed so that the datasets displaying no statistically significant difference based on
t-test were chosen to be the optimal datasets to be considered as final training and testing portions.
This showed to be a very efficient method, especially when various drought conditions had been
seen in a long term time series of data, as was the case for this study. As Chen et al. (2014) noted,
knowledge discovery processes on the data includes data recording, data filtering and analysis, and
constituted a significant segment of this study.

Approximately 70 % of the data, (277 monthly values), were used for training the ANN,
with 30 % of the data (119 monthly values) employed for testing. Investigating the area-
weighted precipitation and inflow to the Doroodzan reservoir suggested that periods with zero
or negligible precipitation have correspondingly increased in the reservoir inflow data.
Accordingly, the analysis of the available data showed that inflow to the Doroodzan reservoir
arises partially and dominantly from runoff registered at the Chamriz station located upstream
along the Kor River. Rezaeianzadeh et al. (2013b), reported that the area-weighted precipita-
tion was superior when applied as an input to ANNs compared to spatially varied precipitation
inputs; consequently, area-weighted precipitation values were considered in this study. Mean
diurnal precipitation on the watershed area was estimated using Thiessen polygons, accord-
ingly, the area-weighted precipitation over the catchment was determined by calculating each
station’s rainfall amount in proportion to its area of influence (Rezaeianzadeh et al. 2013a).
Weights equal to 0.31, 0.22, 0.18, 0.2, and 0.09 were assigned to the Chamriz, Jamalbeig,
Chobkheleh, Doroodzan, and Morozeh precipitation stations, respectively. For the sake of
clarity, the variables are named here and the procedures for their selection will be discussed in
detail in the results section. The target (dependent) variable for the ANN model, is the inflow
volume of the subsequent month (V(t+1)), whereas predictor variables are the inflow volume
from the current (V(t)) and antecedent (previous) time steps ((V(t-1)), area-weighted precipi-
tation of the current month (P(t)), antecedent precipitation with one month lag (P(t-1)),
evaporation of both the current (E(t)) and the antecedent month (E(t-1)).

3 Methodology

3.1 Standardized Precipitation Index (SPI)

The standardized precipitation index (SPI) was developed by McKee et al. (1993), as a means
to define and monitor drought events. Computation of the SPI involves fitting a probability
density function (PDF) to total precipitations for the stations of interest. In this study, the
gamma distribution is applied, and defined by its frequency or PDF as:

G xð Þ ¼
Zx

0

g xð Þdx ¼ 1

βαΓ αð Þ
Zx

0

x α−1ð Þe −x=βð Þdx for x > 0 ð1Þ

Where x is the precipitation amount, α and β are shape and scale parameters and Г(α) is the
Gamma function. The α and β parameters have to be estimated, to each time scale of interest
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(1, 2, 3…months) and for each month of the year. The maximum likelihood estimation was
also employed. The resulting parameters were used to find the cumulative probability of an
observed precipitation event for a specific month and timescale. This was then used in turn to
obtain SPI values classified into different ranges of above and below normal values, in this
way indicating the severity of the drought or non-drought event (Table 1). Several character-
istics of droughts such as magnitude, duration or intensity can be derived based on the SPI
values. In order to account for the probability q of zero rainfall to occur, the cumulative
distribution function (CDF) for the Gamma distribution is modified as:

H xð Þ ¼ q þ 1 − qð Þ G xð Þ ð2Þ
The calculated precipitation probabilities were transformed into the corresponding standard

normal values, from which the SPI values were subsequently calculated. Additional descrip-
tions can be found in Edwards and McKee (1997). A discussion of the advantages and
disadvantages of using the SPI to characterize drought severity has been offered by Hayes
et al. (1999). Table 1 provides a drought classification based on the SPI (McKee et al. 1993).
Since monthly volumes of streamflow values were engaged in this study, the SPI was replaced
with a new definition, standardized streamflow index (SSI). In the Doroodzan watershed,
sources of water include direct overland flow, snowmelt, and spring discharges. Much of the so
called spring discharges are actually delayed flows from rainfall or snowmelt, which may take
several weeks or months to materialize in the hydrographic network. As a result, while a
continuous streamflow regime is maintained throughout the year, the rainy season spans just
seven months (October to April). As a result, the so called annual SPI, would only include data
from the rainy season (Tabrizi et al. 2010) and consequently it would affect the streamflow
values, consequently, a 12-month time scale was adopted.

3.2 Three-State, First-Order Markov Chain

A common class of stochastic models to represent a time series of discrete variables is
known as the Markov chain or MC. A MC is based on a collection of system states, with
the first-order MC as the most common form depending only on the current system state,
and not on preceeding states. On the contrary, a first-order Markov chain is a stochastic

Table 1 The SPI drought category classification (McKee et al. 1993)
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process (random variable), such that X tþ1 is conditionally independent on X 0,, X 1,, X 2,,
…, X t�1, given X t, for any time t. The probability that X tþ1 takes a particular value j is
then obtained as (Çinlar 1975):

Pr X tþ1 ¼ j X0; X1; …; Xtjf g ¼ Pr Xtþ1 ¼ j Xt ¼ ijf g ∀i; j ∈S; t∈T ð3Þ

A Markov chain is thus characterized by a set of states, S, and by the transition probability,
pij, between states. The transition probability pij is the probability that the Markov chain is at
the next time point in state j, given that it is at the present time point in state i (Paulo and
Pereira 2007).

The transition probabilities of a Markov chain are conditional probabilities. A conditional
probability distribution therefore pertains to each possible state that specifies the probabilities for
the states of the system at the next time period. These conditional probability distributions allow
for different transition probabilities that depend upon the current state. A three state-, first-order
Markov chain is illustrated schematically in Fig. 2. The three states wet (W), dry (D) and normal
(N) were considered in this study as at each time t, the random variable X adopts one state. First-
order time dependence implies that there are 32=9 transition probabilities, pij, with pi1+pi2+
pi3=1 each i=1, 2, 3. Estimation of the transition probabilities for multiple-state Markov chains
are obtained from the conditional relative frequencies of the transition counts (nij):

p̂i j ¼
ni j
niþ

; i; j ¼ 1; 2; 3 ð4Þ

For the 3-state the Markov chain (4) can be written as:

p̂DW ¼ nDW
nWW þ nDW þ nNWð Þ ð5Þ

Where: nDW indicates the number of changes from dry to wet. The three-state Markov chain
has been used to characterize transitions between below-normal, near-normal and above-
normal months as defined by Wilks (1995).

Wet Dry 

Normal 

PWW

PDW

PWD

PDD

PNN

PDN

   PWN

PNW

PND

Fig. 2 Schematic illustration of a
three-state, first-order Markov
chain. Note that, PDW is the prob-
ability of a dry day given that the
previous day is wet
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3.3 Artificial Neural Networks

An artificial neural network (ANN) is made up of a number of interconnected nodes (called
neurons) arranged into three basic layers (input, hidden and output) (Dawson andWilby 1998).
Developing a multilayer feed forward back-propagation network is a common practice in a
range of hydrology and water resources projects. Various training algorithms, including,
resilient backpropagation (rp), scaled conjugate gradient (scg), variable learning rate (gdx),
and Levenberg-Marquardt (lm) were considered to optimally train the MLPs. Readers are
referred to Rezaeianzadeh et al. (2010), Rezaeianzadeh et al. (2013c) and Rezaeianzadeh et al.
2013a for information about MLP. After determining the optimal network architecture, the
ANN model was trained and tested using the procedure later discussed. To validate the
forecasted drought conditions by the Markov chain, threshold values for transition from one
state to another (in three-state classification) were considered and according to those thresh-
olds, the ANN forecasted value expressed as a drought condition.

3.4 Data Preprocessing and Input Selections

To discover the optimum input combinations for the ANNs, an autocorrelation analysis (Kisi
2007; Rezaeianzadeh et al. 2010) of the streamflow volume data was carried out. Figure 3
shows the autocorrelation results for the streamflow volume to Doroodzan dam. The function
indicates a significant correlation up to a lag of two months for the time series of the inflow
volume, and then drops within the confidence limits. Therefore, the application of antecedent
inflow volumes as input to the ANNs can be determined to be effective inputs. For this motive,
(V(t)) and ((V(t-1)) variables were selected as inputs to the ANN models.

Subsequently, a multiple regression analysis was used to model the relationship between the
predictor variables: inflow volume, precipitation, evaporation and their antecedents (values
with time lags), and the inflow volume one month ahead, (V(t+1)) as the dependent variable.
Plainly, the antecedent inflow volume and precipitation with one month lag (V(t) and P(t))
respectively, and precipitation with two months lag (P(t-1)) showed a significant correlation
(p-value<0.05) with inflow volume one month ahead. Although there was no significant
correlation between evaporation and V(t+1), its inclusion into the models improved the ANN.

A significant correlation between Chamriz streamflow values and inflow volume into the
Doroodzan reservoir (r=0.9) confirmed the importance of Chamriz streamflow values for
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predicting inflow to the reservoir, even though a considerable amount of inflow to the reservoir
comes from the watershed upstream of the Chamriz station. Therefore, discharge (monthly
streamflow) data of the Chamriz station were selected as a major input to the developed
models. Following this, an autocorrelation analysis of monthly stream flowdata from Chamriz
station confirmed that the application of up to two months lag can play a considerable role in
forecasting inflow volume to Doroodzan reservoir. All the discussed statistical analysis
accompanied by simple trial and errors resulted in the best input combinations for the training
and testing phases of the ANN model:

V t þ 1ð Þ ¼ f
�
P tð Þ; P t−1ð Þ; V tð Þ; V t−1ð Þ;E tð Þ; E t−1ð Þ; QCh tð Þ; QCh t−1ð Þ ð6Þ

where P, V, E refer to the Doroodzan data and QCh are streamflow data at Chamriz.
After confirming the input combinations, four singular training algorithms, including

resilient back propagation (rp), scaled conjugate gradient (scg), variable learning rate (gdx),
and Levenberg–Marquardt (lm)) were worked to establish which was optimal. Numerous
epochs were considered to confirm the ability of the optimal training algorithm to predict
reservoir inflow. The results specifically relating to fifty epochs are presented in Table 2.
Performance of the models was evaluated in terms of the root mean square error (RMSE) and
coefficient of determination (R2). All the models had one neuron in output layer.

4 Results and Discussion

Having endured drought events in recent years, there was an obvious reduction in the values of
inflow volume to the Doroodzan reservoir; hence, in an attempt to distribute the wet and dry
conditions to training and testing datasets for developing ANN models, the monthly stream

Table 2 Optimization of the number of neurons in the hidden layer accompanied by the related results for
various training algorithms

Topology of Layers GDX RP LM SCG

Hidden R2 RMSE
(MCM)

R2 RMSE
(MCM)

R2 RMSE
(MCM)

R2 RMSE
(MCM)

3 0.24 74.78 0.53 48.12 0.45 59.45 0.64 34.60

4 0.22 75.76 0.59 48.68 0.49 49.14 0.61 42.06

5 0.53 49.53 0.58 46.05 0.06 140.08 0.61 48.47

6 0.32 60.65 0.60 47.84 0.30 96.49 0.65 45.71

7 0.52 83.01 0.52 50.32 0.31 86.65 0.60 47.05

8 0.42 55.75 0.58 49.3 0.28 92.83 0.54 49.92

9 0.25 71.03 0.50 51.7 0.29 99.22 0.59 45.5

10 0.33 60.03 0.58 45.53 0.22 72.47 0.55 52.26

11 0.30 79.42 0.57 48.76 0.31 75.82 0.52 51.41

12 0.20 96.23 0.46 59 0.30 81.91 0.57 49.51

13 0.21 84.2 0.48 55.34 0.15 95.04 0.60 44.37

14 0.41 117.68 0.50 51.71 0.47 100.187 0.61 44.44

15 0.21 127.96 0.49 51.21 0.21 135.49 0.58 46.23
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flow data were randomly selected. This procedure was progressively undertaken to achieve
optimal datasets for training and testing which would include all the aspects of extremes and
normal values. The Levene test and t-test (Rezaeianzadeh et al. 2010, 2015) were used to
obtain two sets of data for different flow regimes (mean, high and low flows) in training and
testing the models. To apply the t-test, there is a need to specify the equality of variance from
two groups of data (training and testing datasets). To that end, the p-value of the Levene test
was equal to 0.679, thus, the hypothesis of unequal variances was rejected, and the t-test was
executed with the assumption of equal variances for the training and testing datasets.
Accordingly, the p-value for t-test was equal to 0.373 declaring that there is no statistically
significant difference between these two datasets and those datasets that were finally selected
as optimal.

Table 2 shows that the most useful results were related to the application of the scg training
algorithm. Optimum architecture was achieved using 8 input vectors and 3 hidden neurons,
with R2 and RMSE values attained of 0.64 and 34.6× 106 m3, respectively. This conclusion is
in sound agreement with the study by Rezaeianzadeh et al. (2013c). One of the major
drawbacks of that study was that the monthly discharge volume and the precipitation (as
major input) were at the same time step, and as such it could not be considered valid for a real
world project requiring a forecast. Nonetheless, in this study a successful endeavor was made
to build upon that study in that all data from current (t) or previous time steps (t-1) were
considered to predict the inflow volume for the next time step (t+1).

Table 3 presents the threshold values of drought conditions (wet, normal and dry condi-
tions) using SSI values, and includes the predicted drought conditions for the 2009–2010 water
year. Inputs to ANN and (real) observed and ANN predicted inflow volumes to the Doroodzan
reservoir are presented in Table 4. To clarify the use of threshold values, the predicted MC
condition for September 2009 is ‘dry’. Table 4 shows that the predicted value for the inflow
volume to the reservoir equals, 9.81×106 m3, which is less than 24.14×106 m3. This signifies
that the forecasted value from the ANN is placed in the class ‘dry’ drought condition. The
drought conditions of values predicted by the ANN using the threshold values detailed in
Table 4 shows mainly dry conditions, with the exception of the month of May. It is interesting
to note that the predicted drought conditions by the Markov chain model are all placed in the
dry conditions, thus confirming a good agreement between the two models. To further
elucidate, the predicted value in May, 2010 equals 27.55×106 m3, whereas, the threshold
value equals 24.52×106 m3. Therefore, the ANN-predicted inflow volume for May is showing
a normal condition for May, whereas the MCmodel predicted dry conditions. Predicted inflow
volume by the ANN hence confirmed the ability of a three-state, first-order Markov chain to be
utilized for drought forecasting.

A closer look at the predicted inflow volumes by the ANN can be obtained from
Fig. 4. Nevertheless, there are some discrepancies especially in Dec 2009, Feb 2010 and
May 2010. Figure 5 displays the box-plots of inflow to the Doroodzan reservoir for
various months. There are considerable variances for Dec 2009 and Feb 2010 compared
to the other months, accompanied by some significant outliers. Accordingly these vari-
ances and outliers disturb the exactness of the ANNs, and the predicted inflow volume is
considerably dissimilar from the observed values. For May 2010, the number of outliers
dominates the variance of the data, and consequently the result was not acceptable. The
standard deviation (StD) for Dec 2009 and Feb 2010 were equal to 23.0× 106 m3 and
133.3×106 m3, respectively, and are listed among the highest standard deviations in all
the months of a year.
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This study focused on finding a way of capturing more information from their inputs i.e.,
targeted data mining, before inputting them into the models (here ANNs). As a matter of detail,
ANNs were used to evaluate and confirm the MC estimations. Since we cannot disturb the
time series structure of MC, the data were used by MC in their original order. By using a
randomization procedure, the top input combinations among all the available inputs were
chosen to be distributed into training and testing phases of ANNs which significantly
facilitated help the training of the ANNs and the confirmation of the MC results. Although
the randomization procedure was introduced and applied by Rezaeianzadeh et al. (2010), the
importance of this input selection procedure has been realized recently by the researchers of
this study. A graphical user interface (GUI) for the ANN to predict future inflow to the
reservoir will be available upon request, as well as the raw and analyzed datasets.

Table 4 Input data from 2009 to 2010 water year (accompanied by antecedent 2 months since those values have
been considered as input to ANN), observed and forecasted inflow volumes to Doroodzan reservoir. Note that
Sep to Dec refer to 2009 and the rest refer to 2010

Date Area-weighted
Precipitation (mm)

Evaporation (mm) Chamriz
discharge (m3/sec)

Observed inflow
volume (106 m3)

Predicted inflow
volumes (106 m3)

Jul 0 298.8 6.7 3.94 ------

Aug 0 253.9 5.71 4.32 ------

Sep 0 178.4 3.75 7.27 9.81

Oct 40.92 100.2 3.194 11.44 14.84

Nov 186.49 52.6 8.346 40.47 28.04

Dec 20.65 65.7 4.988 23.46 55.81

Jan 97.18 72.8 13.321 50.11 44.38

Feb 48.08 111.6 27.066 81.54 48.99

Mar 52.51 120.8 8.365 33.00 48.69

Apr 27.77 162.7 5.736 18.87 32.86

May 0.225 274.6 4.695 3.93 27.55

Jun 0 325.3 7.536 3.87 18.57

Jul 0 272.2 5.701 3.76 11.70

Aug 2.17 235.0 9.119 4.67 7.69
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Fig. 4 Forecasted versus observed inflow volumes for 2009–2010 water year using ANN model
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5 Conclusions

In this study, stochastic and data-driven models were used to predict drought conditions
1 month ahead and the inflow volume using an ANN at the Doroodzan reservoir dam in the
Fars province, Iran. The ANN model was developed, trained and tested using hydro-climatic
variables. Although the construction of the Mollasadra reservoir as a regulating dam upstream
the Doroodzan dam caused a reduction in the inflow volume to this dam over recent years, the
proposed ANN model showed satisfactory results in forecasting both the moisture condition
and reservoir inflow. The scaled conjugate gradient (scg) training algorithm produced superior
results as compared to other applied training algorithms in predicting the inflow volume.
Application of correlation/autocorrelation analysis accompanied by multiple regression anal-
ysis identified the most important input vectors to the ANNs. To evaluate all possible inputs to
establish a more robust model in the application of ANNs, a randomization procedure was
established. It derived the most informative sections for the training and testing phases. The
study concluded that the ANN model provided an effective alternative to the MC model, and
their simultaneous application reduced both the uncertainty and the error as compared to
separate application.
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